木瓜属栽培品种的分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木瓜属(Chaenomeles Lindley)隶属蔷薇科(Rosaceae)苹果亚科(Maloideae),约有4个原生种。除日本木瓜(C. japonica (Thunb.) Lindley ex Spach.)特产日本外,皱皮木瓜(C. speciosa (Sweet) Nakai)、毛叶木瓜(C. cathayensis (Hemsl.) Schneider)和西藏木瓜(C. thibetica Yü)主要分布于我国西南部和中东部。本属植物早春花繁色艳,秋天果实芳香,是重要的观赏花木、药材和果品,世界各地广泛栽培。木瓜属植物表型具有很强的可塑性,种间杂交容易,虽然对园艺利用有很高的价值,但对种质资源的鉴别和分类带来很大麻烦。随着新品种的培育和变异类型的调查发现,出现同物异名、同名异物,品种种源和品种间的亲缘关系模糊不清,缺乏完善的品种分类系统等一系列问题,亟待对木瓜属植物品种进行进一步的分类研究。
     在木瓜属品种资源调查的基础上,选用41个形态学性状对29个栽培品种和2个野生种进行了数量分类学的聚类分析。聚类结果显示,木瓜属品种资源可按品种的来源划分为毛叶木瓜种系、西藏木瓜、皱皮木瓜种系和日本木瓜种系4个表征群。日本木瓜种系较为独立,与毛叶木瓜种系的亲缘关系最远;西藏木瓜与毛叶木瓜的亲缘关系密切;皱皮木瓜种系位于日本木瓜种系和毛叶木瓜种系之间,与C.×superba和C.×vilmoriniana聚在一起。主成分分析表明,41个性状可综合为6个主成分,其累积贡献率达72.396%。综合聚类分析和主成分分析的结果结合实际应用,作者认为木瓜属栽培品种的分类体系首先应以种系(品种来源)为第一级标准,花的大小可作为品种分类的二级标准,花色作第三级分类标准。
     采用简化的SDS方法从木瓜属植物干燥的幼叶中提取总DNA,并对影响SRAP扩增反应的Mg2+浓度和DNA浓度等反应参数进行优化。优化得到结果稳定、重复性好的SRAP反应体系(25μL):1×PCR Buffer,2.0mmol·L-1 Mg2+,0.2 mmol·L-1 dNTPs,1.0 U Taq酶,10 pmol(各)引物,50 ng模板DNA。本研究建立的反应体系适合木瓜属植物的SRAP研究,为从分子水平鉴定种质资源和构建遗传图谱奠定基础。
     利用22个SRAP(sequence-related amplified polymorphism)引物组合对27份栽培品种和5份野生种进行聚类分析、主坐标分析及遗传多样性的评价。总共检测到152个多态性位点,平均每个引物组合6.91个的多态性位点,多态性位点百分数为73.08%。聚类分析显示,32份材料可划分为毛叶木瓜种系、西藏木瓜、皱皮木瓜种系、日本木瓜种系4个类群。西藏木瓜与毛叶木瓜种系聚为一支,亲缘关系密切;日本木瓜种系和皱皮木瓜种系聚为另一支,日本木瓜种系与毛叶木瓜种系亲缘关系最远,皱皮木瓜种系位于日本木瓜种系与毛叶木瓜种系之间。遗传多样性分析显示,日本木瓜种系和皱皮木瓜的遗传多样性指数高于毛叶木瓜种系,可能与交配、繁殖方式有关。属的水平上,种系间的遗传分化系数GST=0.4969。SRAP分子标记是研究木瓜属栽培品种遗传关系的有效工具。结合形态特征和SRAP分析结果,花柱基部被毛的状态是鉴定木瓜属栽培品种种源的准确指标之一。C.×superba是非独立的分类群,可作为皱皮木瓜种下的品种群。
The genus Chaenomeles Lindley is assigned to the subfamily of the ecologicaily and economically important Rosaceae. Four species, C. cathayensis (Hemsl.) Schneider, C. thibetica Yü, C. speciosa (Sweet) Nakai, and C. japonica (Thunb.) Lindley ex Spach. are now recognized in Chaenomeles. C. japonica is native only in Japan, C. cathayensis, C. thibetica, and C. speciosa are mainly distributed in south-western, middle and eastern of China. The showy flowers of Chaenomeles occur in clusters, and open in the early spring. Fruits become fragrant during ripening in autumn. Chaenomeles species are the important ornamental flowers, herbs and fruits, which are cultivated widely throughout the world. Individual species exhibit a strong plasticity of form and easy interspecific hybridization which is value in commercial horticulture but of difficulty to botanists. With the new cultivars bred and types of variation investigated, there occur synonyms and homonym phenomena. The botanical source and relationship of Chaenomeles cultivars are unclear and the lack of proper cultivar classification needs further taxonomic research.
     Based on the survey of Chaenomeles cultivars resources, the numerical taxonomic method was used for the cluster analysis of 29 cultivars and 2 wild species with 41 morphological characters. The result revealed that 31 OTUs (Operational Taxonomic Units) could be divided into 4 phenetic groups according to their botanical sources, namely C. cathayensis system, C. thibetica, C. speciosa system and C. japonica system. C. japonica system and C. cathayensis system are the most distantly related systems; C. thibetica appeared to be rather closely related to C. cathayensis; C. speciosa system together with the hybrid taxon C.×superba and C.×vilmoriniana takes an intermediate position between C. japonica system and C. cathayensis system. Principal component analysis showed that the 41 characters can be consolidated for the 6 principal components and their accumulative contribution ratio amounted to 72.396%. Integrated cluster analysis and principal component analysis with practical applications , the author suggested that the classification of Chaenomeles cultivars should be firstly based on the systematics of wild species (cultivar sources). Then, the flower size could be as the second criterion for the classification of Chaenomeles cultivars, and the flower color as the third criterion.
     The purpose of this paper is intended to establish SRAP reaction system in Chaenomeles species. Simplified SDS method was used to extract the genomic DNA from the silica gel dried young leaves. The factors which affect the SRAP amplification, such as Mg2+ concentration and template DNAs concentration, were optimized. Efficient SRAP reaction systems were developed as follows: the reactions were performed in a volume of 25μL containing 1×PCR Buffer, 2.0 mmol·L-1 Mg2+, 0.2 mmol·L-1 dNTPs, 1.0 U Taq DNA polymerase, 10 pmol primers, and 50 ng template DNAs. Using the optimum system, 22 pairs of SRAP primers, with high stability and polymorphism had been obtained. The reaction system in this study is suitable for SRAP research of Chaenomeles species, and it has set up a foundation for species germplasm identification and genetic map construction.
     The botanical source, genetic relationship, and genetic diversity of Chaenomeles cultivars were probed. The arm is to provide a scientific basis for Chaenomeles cultivars classification. The cluster analysis, principal coordinate analysis and genetic diversity of 27 cultivars of Chaenomeles and 5 wild species were analyzed using 22 SRAP primer combinations. A total of 152 polymorphic loci were detected among these materials with average 6.91 polymorphic loci per SRAP primer combinations, and the percentage of polymorphic loci was 73.08%. The cluster analysis result revealed 32 materials could be divided into 4 groups, namely C. cathayensis system, C. thibetica, C. speciosa system and C. japonica system. C. thibetica appeared to be rather closely related to C. cathayensis system. C. japonica system and C. speciosa system clustered into together. C. japonica system and C. cathayensis system were the most distantly related systems. C. speciosa system took an intermediate position between C. japonica system and C. cathayensis system. Genetic diversity analysis showed that C. japonica system and C. speciosa system were more diverse than C. cathayensis system. Differences in mating and breeding systems among the species can be suggested as a possible explanation of the results. In the genus level, the coefficient of genetic differentiation among species (GST) was 0.4969. SRAP molecular markers were an effective research tool for genetic relationship of Chaenomeles cultivars. Integrated morphological characters and SRAP analysis, the state of style hairiness basally was one of accurate indicators which identified the botanical source of Chaenomeles cultivars. C.×superba was a non-independent taxon, and could be used as a cultivar group in C. speciosa.
引文
[1]陈大霞,李隆云,瞿显友,吴叶宽,崔广林.青蒿种质资源遗传多样性的SRAP分析[J].分子植物育种, 2007, 5(6): 52– 56.
    [2]陈红,王关祥,郑林,等.木瓜属(贴梗海棠)品种分类的研究历史与现状[J].山东林业科技, 2006, 166(5): 70– 72.
    [3]陈洪超,丁立生,彭树林,廖循.皱皮木瓜化学成分的研究[J].中草药, 2005, 36(1): 30– 31.
    [4]陈俊愉.“二元分类”—中国花卉品种分类新体系[J].北京林业大学学报, 1998, 20(2): 1– 5.
    [5]陈俊愉.中国梅花品种分类最新修正体系[J].北京林业大学学报, 1999, 21(2): 1– 6.
    [6]程远辉,周昌华,马爱芬,石小刚,张兴翠.重庆何首乌遗传多样性的SRAP研究[J].中国中药杂志, 2007, 32(8): 661– 663.
    [7]樊洪泓,李廷春,邱婧,李正鹏,林毅,蔡永萍.药用石斛遗传多样性的SRAP标记研究[J].中国中药杂志, 2008, 33(1): 6– 10.
    [8]龚复俊,陈玲,卢笑丛,王有为.皱皮木瓜果实中有机酸成分的GC-MS分析[J].植物资源与环境学报, 2005, 14(4): 55– 56, 58.
    [9]龚复俊,卢笑丛,陈玲,王有为.西藏木瓜挥发油成分研究[J].中草药, 2006, 37(11): 1634– 1635.
    [10]郭学敏,章玲,全山丛,洪永福,孙连娜,刘明珠[J].皱皮木瓜中三萜化合物的分离鉴定.中国中药杂志, 1998, 23(9): 546– 547.
    [11]国家药典委员会.中华人民共和国药典(2005版一部) [M].北京:化学工业出版社, 2005.
    [12]李廷春,樊洪泓,高正良,周应兵,杨华应.丹参遗传多样性的SRAP标记分析[J].核农学报, 2008, 22 (5): 576– 580.
    [13]刘厚佳,胡晋红,孙莲娜,蔡溱,石晶,刘涛.木瓜中齐墩果酸抗乙型肝炎病毒研究[J].解放军药学学报, 2002, 18(5): 272– 274.
    [14]刘振岩,李震三.山东果树[M].上海:上海科学技术出版社, 1999.
    [15]卢盛栋.现代分子生物学实验技术[M].北京:中国协和医科大学出版社, 1999.
    [16]骆建霞,孙建设.园艺植物科学研究导论[M].北京:中国农业出版社, 2002.
    [17]曲泽洲,孙云蔚.果树种类论[M].北京:农业出版, 1990.
    [18]权俊萍,袁菊红,穆红梅,张明霞,李乃伟,夏冰.百里香属植物ISSR-PCR和SRAP-PCR体系的确立及优化[J].植物资源与环境学报, 2008, 17(2): 1– 8.
    [19]任羽,张银东,尹俊梅,王得元.辣椒31个优良自交系的亲本类群分析[J].遗传, 2008 , 30(2): 237– 245.
    [20]邵则夏,陆斌,刘爱群,姚京洲.云南的木瓜种质资源[J].云南林业科技, 1993, 3: 32– 36, 43.
    [21]邵则夏,陆斌,刘爱群,姚京洲.云南的木瓜种质资源[J].云南林业科技, 1993, 3: 32-36, 43.
    [22]邵则夏,陆斌.云南的木瓜[J].果树科学, 1995, 12: 155– 156.
    [23]佘素贞,王家骥,魏凌珍,孙美芳,王取南,张尤然. 7种中草药的抗诱变性试验[J].癌变·畸变·突变, 1994, 6(2): 31– 35.
    [24]宋亚玲,封智兵,程永现,高锦明.木瓜化学成分的研究[J].西北植物学报, 2007, 27(4): 0831– 0833.
    [25]王汉屏,王立志.木瓜叶芽营养成分含量分析[J].食品工业科技, 2008, 29(4): 269– 270, 273.
    [26]王宏贤.木瓜保肝降酶作用的实验研究[J].世界中西医结合杂志, 2007, 2(4): 213– 214.
    [27]王嘉祥,王侠礼,管兆国,滕照青.木瓜品种调查与分类初探[J].北京林业大学学报, 1998, 20(2): 123– 125.
    [28]王嘉祥.山东皱皮木瓜品种分类探讨[J].园艺学报, 2004, 31(4): 520– 522.
    [29]王明明,王建华,宋振巧,李圣波,曲燕,刘静.木瓜属植物品种资源的数量分类研究[J].园艺学报, 2009, 36(5): 701– 710.
    [30]吴廷俊,张浩,熊荣先,戴跃进,黎雪.中药木瓜的药源调查[J].华西药学杂志, 1996, 11(3): 190– 192.
    [31]吴征镒,路安民,汤彦承,陈之端,李德铢.中国被子植物科属综论[M].北京:科学出版社, 2003.
    [32]徐克学.数量分类学[M].北京:科学出版社, 1994.
    [33]宣继萍,章镇.适合于苹果的ISSR反应体系的建立[J].植物生理学通讯, 2006, 38(6): 549– 551.
    [34]袁菊红,权俊萍,胡绵好,孙视,彭峰,夏冰.石蒜SRAP-PCR扩增体系的建立与优化[J].植物资源与环境学报, 2007, 16(4): 1– 6.
    [35]俞德浚,关克俭.中国蔷薇科植物分类之研究(一) [J].植物分类学报, 1963, 8(3): 202– 234.
    [36]俞德浚.关于园艺植物品种分类和命名问题[J].园艺学报, 1963, 2(2): 225– 232.
    [37]俞德浚.蔷薇科植物的起源和进化[J].植物分类学报, 1984, 22 (6): 431– 444.
    [38]袁志超,汪芳安,王慧溪,徐霞.皱皮木瓜提取物增强体内免疫活性研究[J].武汉工业学院学报, 2007, 26(2): 22– 26.
    [39]苑兆和,陈学森,张春雨,尹燕雷,张元俊,朱丽琴,冯涛.沂州木瓜不同品种果实香气物质GC-MS分析[J].果树学报, 2008, 25(2): 269– 273.
    [40]臧德奎,王关祥,郑林,陈红.我国木瓜属观赏品种的调查与分类[J].林业科学, 2007, 43(6): 72– 76.
    [41]张茜,王光,何祯祥.木瓜种质资源的植物学归类及管理原则[J].植物遗传资源学报, 2005 ,6(3): 339– 343.
    [42]赵冰,雒新艳,张启翔.蜡梅品种的数量分类研究[J].园艺学报, 2007, 34 (4): 947– 954.
    [43]赵红霞,郭帅,赵兰勇.沂州海棠数量分类学研究[J].山东农业大学学报:自然科学版, 2003, 34(3): 379– 382.
    [44]赵凯歌,虞江晋芳,陈龙清.蜡梅品种的数量分类和主成分分析[J].北京林业大学学报, 2004, 26 (增刊) : 79– 83.
    [45]郑林,陈红,张雷,臧德奎.木瓜属植物的花粉形态及品种分类[J].林业科学, 2008, 44(5): 53– 57.
    [46]郑林,王关祥,陈红,臧德奎.临沂市木瓜属品种资源调查与分类研究[J].山东林业科技, 2007, 1: 45– 47.
    [47]中国科学院中国植物志编辑委员会.中国植物志(第36卷) [M] .北京:科学出版社, 1974.
    [48]周鹤峰,邵敏,葛正龙.碱裂解法提取质粒DNA的研究[J].遵义医学院学报, 2005, 28(3):225– 227.
    [49]周延清. DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社, 2005
    [50] Bailey I W, Swamy B G L. The conduplicate carpel of dicotyledons and its initial trends of specialization [J]. American Journal of Botany, 1951, 38 (5): 373– 379.
    [51] Bartish I V, Garkava L P, Rumpunen K, Nybom H. Phylogenetic relationships and differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes [J]. Theor Appl Genet, 2000a, 101: 554– 563.
    [52] Bartish I V, Rumpunen K, Nybom H. Combined analyses of RAPDs, cpDNA and morphology demonstrate spontaneous hybridization in the plant genus Chaenomeles [J]. Heredity, 2000b, 85: 383– 392.
    [53] Bartish I V, Rumpunen K, Nybom H. Genetic diversity in Chaenomeles (Rosaceae) revealed by RAPD analysis [J]. Plant Systematics and Evolution, 1999, 214: 131– 145.
    [54] Bilia A R, Palme E, Catalano S, Flamini G, Morelli I. New triterpenoid saponins from the roots of Potentilla tormentilla [J]. Journal of Natural Products, 1994, 57(3): 333– 338.
    [55] Brickell C D, Baum B R, Hetterscheid W L A, Leslie A, McNeill J, Trehane P, Vrugtman F, Wiersema J H. International code of nomenclature for cultivated plants (ICNCP) [J]. Acta Horticulturae, 2004, 647.
    [56] Brummitt R K. Report of the Committee for Spermatophyta: 39 [J]. Taxon, 1993, 42(4): 873– 879.
    [57] Campbell C S, Donoghue M J, Baldwin B G, Wojciechowski M F. Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA andits congruence with morphology [J]. American Journal of Botany, 1995, 82(7): 903– 918.
    [58] Campbell C S, Evans R C, Morgan D R, Dickinson T A, Arsenault M P. Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history [J]. Plant Systematics and Evolution, 2007, 266: 119– 145.
    [59] Chen Jaw-chyun, Chang Yuan-shiun, Wu Shih-lu, Chao de-Cheng, Chang Chih-shiang, Li Chia-cheng, Hoc Tin-yun, Hsiang Chien-yun. Inhibition of Escherichia coli heat-labile enterotoxin-induced diarrhea by Chaenomeles speciosa [J]. Journal of Ethnopharmacology, 2007, 113: 233– 239.
    [60] Dai Min, Wei Wei, Shen Yu-xian, Zheng Yong-qiu. Glucosides of Chaenomeles speciosa remit rat adjuvant arthritis by inhibiting synoviocyte activities [J]. Acta Pharmacologica Sinica (中国药理学报), 2003, 24 (11): 1161– 1166.
    [61] De Candolle A P. Rosaceae. Prodromus [J], 1825, 2: 525– 639.
    [62] Decaisne M J. Mémoirs sur le famille des Pomacées [J]. Nouvelles Archives du Museum D'Histoire Naturelle De Paris, 1874, 10: 113– 192.
    [63] Focke W O. Rosaceae [M]. Nat. Pflanzenfam. III, 1888, 3: l– 61.
    [64] Garkava L P, Rumpunen K, Bartish I V. Genetic relationships in Chaenomeles (Rosaceae) revealed by isozyme analysis [J]. Scientia Horticulturae, 2000, 85: 21– 35.
    [65] Golubev V N, Kolechik A A, Rigavs U A. Carbohydrate complex of the fruit of Chaenomeles maulei [J]. Chemistry of Natural Compounds, 1991, 26(4): 387– 390.
    [66] Kalkman C. The phylogeny of the Rosaceae [J]. Botanical Journal of the Linnaean Society, 1988, 98: 37– 59.
    [67] Kalkman C. Rosaceae. In: Kubitzki K. (ed.) The families and genera of vascular plants, vol. 6, Flowering plants - Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales [M]. Berlin: Springer, 2004.
    [68] Kaneko Y, Nagaho I, Bang S W, Matsuzawa Y. Classification of flowering quince cultivars (genus Chaenomeles) using random amplified polymorphic DNA markers [J]. Breeding Science, 2000, 50: 139– 142.
    [69] Kashiwada Y, Wang H K, Nagao T, Kitanaka S, Yasuda I, Fujioka T, Yamagishi T, Cosentino L M, Kozuka M, Okabe H, Ikeshiro Y, Hu C Q,Yeh E, Lee K H. Anti-AIDS Agents, 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids [J]. Journal of Natural Products, 1998, 61(9): 1090– 1095.
    [70] Kaufmane E, Rumpunen K. Sporogenesis and gametophyte development in Chaenomeles japonica (Japanese quince) [J]. Scientia Horticulturae, 2002a, 94: 241– 249.
    [71] Kaufmane E, Rumpunen K. Pollination, pollen tube growth and fertilization in Chaenomeles japonica (Japanese quince) [J]. Scientia Horticulturae, 2002b, 94: 257–271.
    [72] Kim B J, Kim J H, Kim H P, Heo M Y. Biological screening of 100 plant extracts for cosmetic use (II): anti-oxidative activity and free radical scavenging activity [J]. International Journal of Cosmetic Science, 1997, 19, 299– 307.
    [73] Koehne E. Die Gattungen der Pomaceen [M]. Wissenschaftliche Beilage zum Programm des Falk-Realgymnasiums zu Berlin, 1890.
    [74] Kokubun T, Harborne J B. Phytoalexin induction in the sapwood of plants of the Maloideae (Rosaceae)-biphenyls or dibenzofurans [J]. Phytochemistry, 1995, 40(6): 1649– 1654.
    [75] Kviklys D, Rumpunen K, Ruisa S. Mulching systems and weed control in Japanese quince (Chaenomeles japonica LDL.) plantations [J]. Journal of Fruit and Ornamental Plant Research, 2004, 12: 125– 132.
    [76] Lee K T, Kim B J, Kim J H, Heo M Y, Kim H P. Biological screening of 100 plant extracts for cosmetic use (I): inhibitory activities of tyrosinase and DOPA auto-oxidation [J]. International Journal of Cosmetic Science, 1997, 19, 291– 298.
    [77] Lesinska E, Przybylski R, Eskin N A M. Some volatile and non volatile components of the dwarf quince (Chaenomeles japonica) [J]. Journal of Food Science, 1988, 53(3): 854– 856.
    [78] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet, 2001, 103: 455– 461.
    [79] Lindley J. Observations on the natural group of plants called Pomaceae [J]. Transactions of the Linnean Society of London, 1822, 13: 88– 106.
    [80] Masuda T. New flowering quince cultivars [J]. Engei guide, 1983, No.2: 36-41. (in Japanese)
    [81] Moffett. The chromosome constitution of the Pomoideae [J]. Proceedings of the Royal Society of London, 1931, 108: 423– 446.
    [82] Phipps J B, Robertson K R, Rohrer J R, Smith P G. Origins and evolution of subfam. Maloideae (Rosaceae) [J]. Systematic Botany, 1991, 16(2): 303– 332.
    [83] Phipps J B, Smith P G, Rohrer J R. A checklist of the subfamily Maloideae (Rosaceae) [J]. Canadian Journal of Botany, 1990, 68: 2209– 2269.
    [84] Potter D, Eriksson T, Evans R C, Oh S, Smedmark J E E, Morgan D R, Kerr M, Robertson K R, Arsenault M, Dickinson T A, Campbell C S. Phylogeny and classification of Rosaceae [J]. Plant Systematics and Evolution, 2007, 266: 5– 43.
    [85] Qun Chen, Wei Wei. Effects and mechanisms of glucosides of Chaenomeles speciosa on collagen-induced arthritis in rats [J]. International Immunopharmacology, 2003, 3: 593– 608.
    [86] Rehder A. Manual of cultivated trees and shrub shardy in North America exclusive of the subtropical and warmer temperature regions, 2nd ed [M]. New York: Macmillan, 1940.
    [87] Rehder A. Bibliography of cultivated trees and shrubs hardy in the cooler temperature regions of the northern hemisphere [M]. Jamaica Plain, Massachusetts: Arnold Arboretum of Harvard University, 1949.
    [88] Robertson R K, Phipps J B, Rohrer J R, Smith P G. A synopsis of Genera in Maloideae (Rosaceae) [J]. Systematic Botany, 1991, 16(2): 376– 394.
    [89] Roemer M J. Familiarum naturalium regni vegetabilis synopses monographicae. III. Rosiflorae [M]. Amygdalacearum et Pomacearum. Weimar: Landes- Industrie-Comptoir, 1847.
    [90] Rohrer J R, Robertson K R, Phipps J B. Variation in structure among fruits of Maloideae (Rosaceae) [J]. American Journal of Botany, 1991, 78(12): 1617– 1635.
    [91] Rohrer J R, Robertson K R, Phipps J B. Floral morphology of Maloideae (Rosaceae) and its systematic relevance. American Journal of Botany [J], 1994, 81(5): 574– 581.
    [92] Ros J M, Laencina J, Hellína P, Jordán M J, Vila R, Rumpunen K. Characterization of juice in fruits of different Chaenomeles species [J]. Lebensmittel-Wissenschaft and Technologie, 2004, 37: 301– 307.
    [93] Rumpunen K, Kviklys D. Combining ability and patterns of inheritance for plant and fruit traits in Japanese quince (Chaenomeles japonica) [J]. Euphytica, 2003, 132: 139– 149.
    [94] Singh G. Plant systematics: an integrated approach [M]. Plymouth: Science Publishers, 2003.
    [95] Stace C A. Plant taxonomy and biosystematics [M]. London: Edward Arnold, 1980.
    [96] Stanys V, Weckman A, Staniene G, Duchovskis P. In vitro induction of polyploidy in Japanese quince (Chaenomeles japonica) [J]. Plant Cell, Tissue and Organ Culture, 2006, 84: 263– 268.
    [97] Sterling C. Comparative Morphology of the Carpel in the RosaceaeⅦ. Pomoideae: Chaenomeles, Cydonia, Docynia [J]. American Journal of Botany, 1966a, 53(3): 225– 231.
    [98] Sterling C. Comparative Morphology of the Carpel in the RosaceaeⅨ. Spiraeoideae: Quillajeae, Sorbarieae [J]. American Journal of Botany, 1966b, 53(10): 951– 960.
    [99] Takhtajan A. Diversity and classification of flowering plants [M]. New York: Columbia University Press, 1997.
    [100] Thomas M, Crépeau M J C, Rumpunen K, Thibault J F. Dietary fibre and cell-wall polysaccharides in the fruits of Japanese quince (Chaenomeles japonica) [J]. Lebensmittel-Wissenschaft and Technologie, 2000, 33: 124– 131.
    [101] Thomas M, Guillemin F, Guillon F, Thibault J F. Pectins in the fruits of Japanese quince (Chaenomeles japonica) [J]. Carbohydrate Polymers, 2003, 53: 361– 372.
    [102] Timberlake C F, Bridle P. Anthocyanins in petals of Chaenomeles speciosa [J]. Phytochemistry, 1971, 10(9), 2265– 2267.
    [103] Wang Ni-ping, Dai Min, Wang Hua, Zhang Ling-ling, Wei Wei. Antinociceptive effect of glucosides of Chaenomeles speciosa [J]. ChineseJournal of Pharmacology and Toxicology (中国药理学与毒理学杂志), 2005, 19(3): 169– 174.
    [104] Weber C. Cultivars in the genus Chaenomeles [J]. Arnoldia, 1963, 23: 17-75.
    [105] Weber C. The genus Chaenomeles (Rosaceae) [J]. Journal Arnold Arbor, 1964, 45: 161– 205.
    [106] Wells J S. The rooting of Chaenomeles [J]. American Nurseryman, 1955, 1:11, 59– 65.
    [107] Wenzig T. Die Pomaceen. Charaktere der Gattungen und Arten [J]. Jahrbuch K?niglich Botanischer Garten zu Berlin, 1883, 2: 287– 307.
    [108] Wijnands D O. Proposal to Conserve the Spelling of 3336a Chaenomeles Lindley (Rosaceae) [J]. Taxon, 1990, 39(3): 534– 535.
    [109] Xie Xian-fei, Cai Xiao-qiang, Zhu Shun-ying, Zou Guo-lin. Chemical composition and antimicrobial activity of essential oils of Chaenomeles speciosa from China [J]. Food Chemistry, 2007, 100: 1312– 1315.
    [110] Zhang Ling-ling, Wei Wei, Yan Shang-xue, Hu Xiang-yang, Sun Wu-yi. Therapeutic effects of glucosides of Cheanomeles speciosa on collagen-induced arthritis in mice [J]. Acta Pharmacologica Sinica (中国药理学报), 2004, 25(11): 1495– 1501.
    [111] Zhang Shu Yin. Wood anatomy of the Rosaceae [M]. Leiden: Rijksherbarium/Hortus Botanicus, 1992.
    [112] Zhao L P, Liu L W, Gong Y Q, Wang M X, Yu F M, Wang L Z. Cultivar fingerprinting in radish (Raphanus sativus) with SRAP and AFLP marker [J]. Bulletin of Botanical Research, 2007, 27(6): 687– 693.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.