玉米矮花叶病抗病基因的分子标记开发及定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四一是课题组在我国现有玉米种质资源的基础上,筛选出的一份综合农艺性状优良的自交系,其含有两个显性互补的抗玉米矮花叶病基因,即RSCMV1和RSCMV2。其中RSCMV1位于第6染色体的短臂,RSCMV2位于第3染色体的长臂。国内外多个课题组利用不同的抗源均在这两个区域发现了抗病基因或抗病QTL。对四一中的这两个抗病基因的效应进行了分析时发现,位于第6染色体短臂上的抗病基因RSCMV1控制植株的早期抗病性,在我国的很多抗病材料中均发现了该位点的存在。而位于第3染色体上的抗病基因RSCMV2位点特异在成株期表现出抗病性,是我国玉米育种材料中特异的抗病基因资源。分离这两个区域的抗病基因不仅对玉米矮花叶病抗病育种具有重要的实践作用,而且为解析其抗病的分子机制有重要的意义。结合玉米基因组测序公布的BAC信息,利用课题组构建的近等基因系,利用各种方法在抗病基因区域内开发分子标记,并对抗病基因进行定位,为其图位克隆奠定基础。主要工作包括以下方面:
     1.07年利用BC4F3、BC4F4群体(共676株)对抗病基因RSCMV1进行初步定位,将其定位于微卫星标记umc1018和umc2311之间,两者之间的物理距离为6.83Mb。针对两个标记之间的BAC信息,在不同的位置上随机选取14个BAC,设计了47对BAC-SSR引物,17对ILP引物,经凝胶电泳检测,有13对引物在亲本间为共显性,4对引物在亲本间表型为显性。利用开发的标记对umc1018和umc2311之间的18个交换单株检测,并对其衍生后代进行表型鉴定,将抗病基因RSCMV1定位在A16-18与a1-1之间,两者相距2.6Mb。08年利用BC4F3、BC4F4、BC4F5群体(1279株)对玉米矮花叶病基因RSCMV1进行定位,将其定位在BAC-SSR标记A5-1和ILP标记a1-1之间,分别相距0.3cM和0.3cM,其物理距离为0.8Mb,其中A4-3、A4-2A、a2-1与抗病基因共分离。其中在A5-1和a1-1之间发生交换的抗病单株有4株。
     2.07年利用BC4F3、BC4F4群体(共549株)对抗病基因RSCMV2进行初步定位,将其定在于分子标记bnlg1456与umc2020之间,两者之间的物理距离为16.61Mb,大约113个BAC。在不同位置上选取41个BAC,共设计了129对BAC-SSR引物,共有26对引物在亲本间有多态性;有69对引物在亲本中无多态性;另有34对引物没有扩增出条带。利用开发的标记对bnlg1456和umc2020之间的交换单株检测,将抗病基因定位在bnlg1456与3-AC16-20之间,并对其衍生后代进行接种鉴定。08年利用为将近7000株的BC4F5群体和5922粒的F2代种子及其部分单株对抗病基因进行定位,最终将抗病基因RSCMV2定位在3-ac36-9与3-AC16-20之间。两者之间的物理距离为5.54Mb。在BC4F5群体中共检测到154株在3-ac36-9与3-AC16-20之间交换的单株,其中抗病单株40株,感病单株114株。08年冬在海南对部分交换单株进行了接种鉴定,其结果与室内分子标记检测结果一致。
Maize dwarf mosaic virus is one of the most important virus diseases of maize and causes serious yield losses in the world. The most effective way to control the disease is to breed and popularize resistant hybrids based on screenings of resistant materials and understanding on the inheridity of resistance. In our previous study, one inbred line Siyi with elite agronomy traits was singled out and its inheritance of resistance to SCMV was studied. Two dominant complementary genes were detected to determine the resistance to sugarcane mosaic virus in Siyi.They were mapped on chromosome 3 and chromosome 6, respectively using microsatellite markers. They were named RSCMV2 and RSCMV1. Many people were found resistance genes or disease resistance QTL in these regions. Action mode analysis of two dominant complementary genes using NILs. These results suggest that RSCMV1 is likely a predominant gene and shows basal resistance to SCMV, while RSCMV2 shows specific resistance at adult stage. Separation of the two resistance gene is important for the resistance breeding practice and the analysis of its molecular mechanism of disease resistance. Combination of maize genome sequencing information, development of molecular markers and mapping of resistance genes by using near isogenic lines in Maize is base of map-based cloning. The results were obtained as following:
     1. 674 F2 individuals derived from Mo17AaBB were used to mapping of the RSCMV1 in 2007. The resistant gene RSCMV1 was flanked by SSR markers umc1018 and umc2311. The physical distance between the two SSR markers is 6.83 MB, which contained about 50 BAC. Based on 41 BAC’s sequences of different regions by randomly selected , 47 pairs of BAC-SSR primers and 17 pairs of ILP primers were developed, 13 pairs of primers exhibited polymorphisms between Siyi and Mo17 and 4 pairs of exhibited dominant phenotyp . Consequently, the resistant gene RSCMV1 was mapped between A16-18 and a1-1, The physical distance between the two markers is 2.6 MB. This result is proved by the offsprings of recombinat plants phenotype. 1279 F3 individuals derived from Mo17AaBB were used to conduct fine mapping of the RSCMV1 in 2008.finally, the resistant gene RSCMV1 was located in a 0.8×106 bp long region on chromosome 6 and co-segregation markers A4-3, A4-2 and a2-1were detected.
     2. In 2007, 549 F2 individuals derived from Mo17AaBB were used to mapping of the RSCMV2. The resistant gene RSCMV2 was located in SSR markers bnlg1456and umc2020. The physical distance between the two SSR markers is 16.61MB, which contained 113 BAC. Based on 14 BAC’s sequences of different regions by randomly selected , 129 pairs of BAC-SSR primers were developed and 26 pairs of primers exhibited polymorphisms between Siyi and Mo17 .Consequently, the resistant gene RSCMV2 was located between bnlg1456 and 3-AC16-20. This result is proved by the offsprings of recombinat plant’s phenotype. in 2008, 7000 F3 individuals derived were used to conduct fine mapping of the RSCMV2.finally, the resistant gene RSCMV1 was located in BAC-SSR markers 3-ac36-9 and 3-AC16-20, the physical distance is 5.54MB. Totally 154 individual plants showed recombination between RSCMV1 and SSR markers.
引文
[1] Messing J Maize genomics. In D Leister, ed, Plant Functional Genomics. Haworth's Food Products Press. Binghamton, 2005,279–303.
    [2]李伟,印莉萍.基因组学相关概念及其研究进展[J],生物学通报,2000,35(11):1-3.
    [3] Hieter P, Boguski M,et al. Functional genomics: It’s all how you read it. Science,1997, 278:601~602
    [4] Bennett M D, Smith J B. Nuclear DNA amounts in angiosperms. Phil Trans Roy Soc Lond B Biol Sci,1976, 274:227~274.
    [5] Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species. Plant Mol Biol Rep,1991, 9:211~215.
    [6] Bennett M D, Laurie D A. Chromosome size in maize and sorghum using EM serial section reconstructed nuclei. Maydica,1995, 40:199~204.
    [7] Bennetzen J L. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol, 1996, 4:347-353.
    [8] Haberer G, Young S, Bharti A K, et al. Structure and architecture of the maize genome. Plant Physiol,2005, 139:1612~1624.
    [9] Martienssen R A, Rabinowicz P D, O'shaughnessy A, et al. Sequencing the maize genome. Curr Opin Plant Biol,2004, 7:102~107.
    [10]张学才.利用近等基因系进行玉米矮化叶病抗病基因精细定位及互作效应分析:[硕士学位论文].河南:河南农业大学,2008.
    [11] Kosambi D D. The estimation of map distances from recombination values. Ann. Eugen,1944,12:172-175.
    [12] Emersion R A,Beadle G W,Fraser A C. A summary of linkage studies in maize. Cornell University Agric. EXP. Stn Memoir, 1935, 180:1-83.
    [13] Roman H, Ullstrup L L. The use of A-B translocations to locate genes in maize. Agron, 1951, 43:450-454.
    [14] Helentjaris T, Slocum M, Wright S. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. TAG, 1986, 72:761-769.
    [15] Weber D, Helentjaris T. MappingRFLPLociinmaizeusingB-Atranslations. Genetics,1989, 121:583-590.
    [16] Beavis W D, Grant D. A linkage map based on information fronm four F2 populations of maize. TAG, 1991, 82:636-644.
    [17] Gardiner J M, Coe E H, Melia-Hancock S. Development of a core RFLP map in maize usingalong Chromosome 1 of maize (Zea mays ssp mays L.). Proc Natl Acad Sci USA, 2001, 98:9161-9166.
    [50] Rafalski A. Applications of singe nucleotide polymorphisms in crop genetics. Curri Opin Plant Biol, 2002, 5:94-100.
    [51] Wang X S, Zhao X P, Zhu J, Wu WR. Genomewide investigation of intron length polymorphisms and their potential sa molecular marker in rice(Oryza sativa L.). DNA Res,2005, 12(6):417-427.
    [52]卢泳全,汪旭升,黄伟素等.基于水稻内含子长度多态性开发禾本科扩增共有序列遗传标记.中国农业科学,2006, 39(3):433-439.
    [53] Randall J, Visser, Peter J. Balint-Kurti, Rebecca J.Nelson. The Genetic Architecture of Disease Resistance in Maize: A Synthesis of Published Studies. Phytopathology, 2006, 6(2):120-9.
    [54]张书红,张世煌等.玉米抗病基因一致性图谱的构建.中国农学通报,2007, 23(6):601-606.
    [55]肖文开.玉米全基因组抗病侯选基因的克隆和定位:[博士学位论文].北京:中国农业大学, 2005.
    [56]孙文丽,刘昱辉等.植物抗病基因研究进展.湖北农业科学,2008, 47(5):598-601.
    [57] Muharrem D, Kulvinder S G. dentification and analysis of expressed resistance gene sequences in wheat. Plant Molecular Biology, 2003, 53:771–787.
    [58]吴迪,刘斌,侯文胜,朱延明,韩天富.转座子标签法及其在大豆功能基因组研究中的应用前景.大豆科学,2007, 26(2):254-258.
    [59] Johal G S, Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258:985-987.
    [60] Jones D A , Thomas C M , Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging, Science,1994, 266(5186):789-793.
    [61] Anderson P A , Lawrence G J, Morrish B C , et al. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell, 1997, 9(4):641-651.
    [62] Lauren S, Steghen J, Timothy C B, et al. Overcoming limitation of the mRNA differential display technique. Nucleic Acids Res.1995, 22:4738-4739.
    [63] Whitham S, Dinesh-Kumar S P, Choi D,et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin 1 receptor.Cell, 1994, 78(6):1101-1115.
    [64]王泽立,戴景瑞,王斌.植物基因的图位克隆.生物技术通报,2000, (4):21-27.
    [65]王洁.水稻白叶枯病抗性相关基因及抗病基因类似序列的克隆: [博士学位论文].北京:中国农业大学,2005.
    [66]易图永,谢丙炎等.植物抗病基因同源序列及其在抗病基因克隆与定位中的应用.生物技术通报,2002,2:16-20.
    [67] Collins N C, Webb C A, Seah S, et al. The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact,1998, 11:968-978.
    [68] Feuillet C, Schachermayer G, et al. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J, 1997, 11:45-52.
    [69] Dilbirligi M, Gill K S. Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol, 2003, 53:771-87.
    [70] Xiao WK, Xu ML, Zhao JR, Wang FG, Li JS, Dai JR. Genome-wide isolation of resistance gene analogs is maize(Zea mays L.). Theor Appl Genet,2006, 113:63-72.
    [71] Xiao WK, Zhao JR, Fan SC, Li L, Dai JR, Xu ML. Mapping of genome-wide resistance gene analogs(RGAs)in maize(Zea mays L.). Theor Appl Genet,2007, 115(4):501-508.
    [72] Williams L E, Alexander L J. Maize dwarf mosaic a new corn disease. Phytopathology, 1965, 55: 802-804.
    [73]刘秀峰.玉米矮花叶病河南标样的全序列分析研究:[硕士学位论文].河南:河南农业大学, 2002.
    [74]何广达,王祖云.玉米矮花叶病问题探讨.河北农学报,1984, 9(4):56-60.
    [75]高文臣,魏宁生.玉米矮花叶病研究进展.西北农业大学学报,2000,28(1):86-91.
    [76] Mackenize D R, Wernham C C, Ford R E. Differences in maize dwarf mosaic virus isolates of the Northeastern United States. Plant disease repopter, 1966, 50:814-818.
    [77] Louie R, Knoke J K. Strains of maize dwarf mosaic virus. Plant disease repopter, 1975, 59(6):518-522.
    [78] McDaniel L L. Identification of new strains of maize dwarf mosaic virus. Plant Disease, 1985, 69:602-607.
    [79]石银鹿,张琪,王富荣.玉米矮花叶病毒得株系鉴定.植物病理学报,1986, 16(2):99-104.
    [80] Shukla D D, Ward C W. Idenfification and classification of potyviruses on the basis of coat protein sequence data and serology. Archive of Virology, 1989, 106:171-200.
    [81] Frenkel M J, Jilka J M, McKern N M, et al. Unexpected sequence diversity in the amino-terminal ends of the coat proteins of strains of sugarcane mosaic virus. J Gen Virol,1991, 72(2):37-42.
    [82]李向东,李怀方,范在丰等.玉米矮花叶病毒山东和北京两分离物的比较鉴定.山东农业大学学报,2000, 31(3):239-243.
    [83]程晔,陈炯,郑滔等.杭州地区玉米矮花叶病由甘蔗花叶病毒引起.中国病毒学,2001,16(2):170-174.
    [84] Jiang J X, Zhou X P. Maize dwarf mosaic disease in different regions of China is caused by Sugarcane mosaic virus. Arch Virol,2002, 147(12):2437-43.
    [85] Liu X, Wang X, Zhao Y, Zheng C, Zhou G. Complete nucleotide sequence of a potyvirus causing maize dwarf mosaic disease in central China. Acta Virol. , 2003, 47(4):223-7.
    [86]姜华,高小蓉,安利佳等.辽宁省玉米矮花叶病毒外壳蛋白基因序列分析及株系鉴定.沈阳农业大学学报,2000, 31(5):498-502.
    [87]姜华,安利佳,陆敏等.辽宁省玉米矮花叶病毒原鉴定及cDNA克隆与序列分析.玉米科学,2001,9(1):83-87.
    [88] Gordon D T, Williams L E. The relationship of a maize virus isolate form Ohio to sugarcane mosaic virus strains and the B strain of maize dwarf mosaic virus. Phytopathology, 1970, 60:1293.
    [89] Shukla D D, Ward C W. Idenfification and classification of potyviruses on the basis of coat protein sequence data and serology. Archive of Virology,1989, 106:171-200.
    [90] Yang Z N, Mirkov T E. Sequence and relationships of sugarcane mosaic and sorghum mosaic virus strains and development of RT-PCR-Based RFLPs for discrimination. Phytopathology,1997, 87(9):932-939.
    [91] Duble C W, Melchinger A E, Kuntze L. Molecular mapping and gene action of Scm1 and Scm2,two major QTL contributing to SCMV resistance in maize. Plant Breeding, 2000, 119:299-303.
    [92]林肯恕.玉米矮花叶病抗性鉴定的研究.中国农业科学,1989, 22(1):57-61.
    [93]张成和,刘爱国,张晓青,罗畔池.河北省玉米自交系和杂交种对矮花叶病的抗性鉴定.河北农业科学,1992,(3):13-15.
    [94]周广和,王锡锋,杜志强.我国玉米病毒病防治研究中有待解决的问题.植物保护,1996, 22(1):32-33.
    [95]吴建宇.玉米矮花叶病抗性的鉴定和遗传研究:[博士学位论文].南京农业大学,1997.
    [96]张学才,崔蕴刚,丁俊强,吴建宇等.主要杂种优势群玉米矮花叶病抗性评价与比较分析.中国农学通报,2008, 24(4):337-340.
    [97] Scott G E, Rosenkran Z E. A new method to determine the number of genes for resistance to maize dwarf mosaic virus in maize. Crop Sci, 1982, 22:756-761.
    [98] Scott G E, Nelson L R. Locating genes for resistance to maize dwarf mosaic virus in seedlings by using chromosomal translocations. Crop Sci, 1971, 11:801-803.
    [99] Scott G E, Rosenkran Z E. Use of chromosomal translocations to determination of maizegenotypes for reaction to maize dwarf mosaic. Crop Sci, 1973, 13:724-725.
    [100] Louie R. Effects of genotype and inoculation protocols on resistance evalution of maize tomaize dwarf mosaic virus strains.1986, 76:769-773.
    [101] Louie R, Findley W R, Knoke JK, et al. Genetic basis of resistance in maize to five maize dwarf mosaic virus strains [J]. Crop Sci,1991, 31:14-18.
    [102] Mcmullen M D, Louie R. Restriction fragment length polymorphism of a gene for resistance to maize dwarf mosaic virus [J]. Phytopathology,1988, 78:1543.
    [103] Mcmullen M D, Louie R. The linkage of molecular markers to a gene controlling the symptom response in maize dwarf mosaic virus. Molecular plant-microbe interactions, 1989, 2(6):309-314.
    [104] Praff R C, Mcmullen M D, Louie R. RFLP marker-assisted breeding for maize virus resistance in biotechnology [J]. Research on Tropical Crops in Africa,1992, (5):247-254.
    [105] Simcox K D, Mcmullen M D, Louie R. Co-segregation of the maize dwarf mosaic virus resistance gene, Mdml, with the nucleolus organizer region in maize [J]. Theor Appl Genet, 1995, 90:341-346.
    [106] Melchinger A E , Kuntze L, Gumber R K, Lübberstedt T, Fuchs E. Genetic basis of resistance to sugarcane mosaic virus inEuropean maize germplasm. Theor Appl Genet, 1998, 96:1151-1161.
    [107] Xu M L, Melchinger A E, Xia X C, Lubberstedt T. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP,SSR,and AFLP markers.Mol Gen Genet, 1999, 261:574-581.
    [108] Xia X C, Melchinger A E,Kuntze L. Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology, 1999, 89:660-667.
    [109] Duble C W,Melchinger A E,Kuntze L. Molecular mapping and gene action of Scm1 and Scm2,two major QTL contributing to SCMV resistance in maize. Plant Breeding, 2000, 119:299-303.
    [110] Xu M L, Melchinger A E, Lubberstedt T. Origin of Scm1 and Scm2-two loci conferring resistance to sugarcane mosaic virus(SCMV) in maize. Theor.Appl.Genet, 2000, 100:934-941.
    [111]夏宗良,吴建宇,丁俊强等.玉米抗矮花叶病基因的染色体定位及分子标记研究进展.河南农业大学学报2001,35(1):4-8.
    [112]洪霓.玉米抗矮花叶病的遗传分析及抗病基因的SSR和ISSR标记:[硕士学位论文].北京:中国农业大学,2001.
    [113]王凤格.玉米矮花叶病抗性QTL的初步分析:[硕士学位论文].北京:中国农业科学院作物所, 2001.
    [114]夏宗良.玉米矮花叶病一个新的抗病基因位点的发现和定位:[硕士学位论文].河南:河南农业大学,2001.
    [115]王振华.玉米抗矮花叶病遗传分析及数量性状基因定位:[博士学位论文].东北农业大学, 2002.
    [116]吴建宇,丁俊强,杜彦修等.两个玉米矮花叶病显性互补抗病基因的发现和定位[J].遗传学报,2002, 29(12):1095-1099.
    [117] Wu JY, Ding JQ, Du YX, et a1. Genetic analysis and molecular mapping of two dominant complementary genes determining resistance to sugarcane mosaic virus in maize [J]. Euphytica, 2007, 156:355-364.
    [118] Wu JY, Tang JH, Xia ZL, et a1. Molecular tagging of a new resistance gene to maize dwarf mosaic virus using microsatellite markers [J]. Acta Botanical Sinica, 2002, 44:177-180.
    [119] Zhang SH, Li XH, Wang ZH, et a1. QTL mapping for resistance to SCMV in Chinese maize germplasm [J].Maydica, 2003, 48:307-312.
    [120]陈旭,李新海,郝转芳等.玉米抗甘蔗花叶病QTL定位[J].作物学报,2005, 31(8):983-988.
    [121]刘小红,张红伟,荣廷昭等.玉米抗矮花叶病QTL的定位分析.西南农业大学学报,2006, 28(4):544-548.
    [122]吕香玲,李新海,,郝转芳等.基于近等基因导入系发掘玉米抗甘蔗花叶病毒主效基因.玉米科学,2007, 15(3):9-14.
    [123]席章营,张书红,李新海等.一个新的抗玉米矮花叶病基因的发现及初步定位.作物学报,2008, 34(9):1494-1499.
    [124] Chun Shi, Christina Ingvardsen, Fritz Thummler, et al. Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol Gen Genomics, 2005, 273: 450-461.
    [125] Jiang L, Ingvardsen CR, Lübberstedt T, Xu M. The Pic19 NBS-LRR gene family members are closely linked to Scmv1, but not involved in maize resistance to sugarcane mosaic virus. Genome,2008, 51(9):673-84.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.