城市污泥农用的可行性及风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污泥是污水处理厂在废水处理过程中所产生的沉淀物质,是由有机残片、细菌菌体、无机颗粒及胶体等组成的极其复杂的非均质体。随着我国城市化进程的加快和污水处理率的提高,城市污泥的产生量也在急剧增加,急需无害化处理和资源化处置,综合比较各种污泥处置方式,污泥农用是一种经济有效的方法之一。我国在建立基于污泥农用研究的污染物的数据库方面的科学积累严重不足;对污泥农用后的环境效应进行风险评价方面的研究还较为薄弱;缺少长期定位田间试验的数据和结果;另外,由于城市污泥农用引起的氮、磷对土壤的污染风险也没有通过长期田间试验研究来进行分析和评价;以上问题皆是当前迫切需要解决的课题。
     本研究针对我国城市污泥的合理施用及我国污泥农用标准的制定中尚须解决的问题,通过代表性的石灰性土田间试验,研究施用污泥对土壤环境质量及作物生长的影响,确定污泥的安全、适宜用量,评估污泥施用的环境和农业风险,为污泥农用的可行性研究提供科学依据;通过对污泥农用的痕量元素土壤—植物间的转移系数的采集及数据库的建立,探讨了物种敏感性分布法在农用污泥中镉的阈值与风险评价研究中的应用,为城市污泥安全合理农用和我国污泥农用标准的制定提供理论依据和数据基础。本研究主要获得以下研究结果:
     以北京为例,研究了城市污泥中养分和痕量元素的动态变化,其结果显示北京市污泥呈高氮磷、低钾的特点,养分、有机质含量及pH均符合农业行业有机肥料标准(NY525-2002)。北京市污泥中Zn、Cu、Cr、Pb、Ni、As、Hg、Cd的含量平均值依次为1075、96、78、39、33、13.6、10、1.6mg kg-1,污泥痕量元素Cr、Cu、Cd、Ni、Pb和As的含量都远低于农用泥质标准(CJ/T 309-2009),但Zn含量接近A级污泥限值(1500 mgkg-1),Hg含量高于A级污泥限值(3 mg kg-1)。北京市污泥中的风险元素是Zn和Hg,特别是Hg,是中国城市污泥中Hg平均含量的3.6倍,北京市污泥农用要注意Hg的污染。
     选用山东德州田间位点进行了为期5年的污泥农用田间试验,研究结果显示施加污泥处理增加小麦、玉米籽粒中总氮(TN)、总磷(TP)含量,且施加污泥处理的作物产量维持在一个较高水平,其效果如同施加氮肥、鸡粪的处理;根据污泥施用后的小麦、玉米的籽粒产量效应函数得出小麦、玉米当年的最佳施肥量为18t ha1yr-1。
     在小麦-玉米轮作系统中,基于作物对氮的需求施用污泥到土壤中会导致土壤磷的累积,土壤中施加可溶性磷肥与施加污泥在土壤有效磷(Olsen-P)的累积方面有相似的趋势;在小麦-玉米轮作的石灰性土壤中,在施用78.6-1274千克污泥磷范围内,建立了以土壤起始的Olsen-P浓度、污泥磷的施用量、作物产量、土壤pH和耕作时间为参数的模型来预测土壤Olsen-P的浓度和磷的累积速率。
     德州石灰性土壤经过5年的污泥施加,耕层(0-20 cm)土壤中所有8种痕量元素含量均显著性的增加,尤其是Zn、Cu、Cd和Hg四种元素;而鸡粪处理的土壤中痕量元素含量则没有显著变化;土壤中Zn、Cu、Cd、Hg的含量(mgkg-1)与土壤中污泥施加量(t ha-1)之间存在着显著的线性回归关系,土壤中每年每公顷增施1吨污泥,土壤中Zn、Cu、Cd,Hg含量分别增加1.10、0.128、0.00099、0.0062 mg kg-1;按照农用泥质标准(CJ/T309-2009)每年施用7.5 t ha-1污泥的情况下,土壤中Hg含量达到土壤环境质量二级标准(GB15618—1995)所需要的年限为最短(18年),其次是Zn(30年),其它痕量元素所需年限较长(>30年)。
     施用污泥处理显著增加了小麦和玉米籽粒中Zn的含量。小麦和玉米籽粒中除Cr、Pb个别处理超过国家食品卫生标准(GB 2762-2005)外,其他元素含量均达标。小麦、玉米籽粒对痕量元素的BCF均小于0.5,小麦籽粒对痕量元素的BCF大小顺序为:Zn>Cu>Cd>Cr、Hg>Pb>Ni>As;玉米籽粒对痕量元素的BCF大小顺序为:Zn>Cu>Cd>Cr>Pb>Hg>Ni>As。
     利用转移系数和物种敏感性分布研究了农用污泥中镉的阈值,研究结果显示土壤镉阈值(HC5值)主要受土壤pH和有机碳含量(OC)的影响,pH是最主要的影响因子,可控制HC5值变异的62.7%,OC可控制HC5值变异的25.2%。通过土壤镉HC5值与土壤pH和OC的关系建立的预测模型能较好地预测不同类型土壤中的镉阈值,为土壤镉生态环境质量标准的制定和执行提供科学基础。基于土壤总镉含量限制的污泥农用风险评价模型的建立较好地控制不同类型土壤中的施加污泥的总量及污泥的总镉含量限制,为城市污泥安全合理农用提供理论依据。
     本文的创新点:在我国首次利用长期定位田间试验研究了污泥农用对小麦-玉米轮作体系的影响,利用量化模型研究了污泥养分元素和重金属元素在土壤与植物体系中的积累及转运规律;基于污泥农用的Cd的BCF数据,构建了Cd在不同类型土壤中的SSD曲线,探讨SSD法在农用污泥中Cd的环境风险评价研究中的应用,并提出了污泥中痕量元素首要控制因素,限量标准和使用年限,为污泥资源化利用提供了可靠的依据。
Biosolids, as the sediment of the sewage treatment plant wastewater treatment process, which is complex non-homogeneous body composed of organic debris, bacteria, inorganic particles and colloidal. Along with the acceleration of urbanization and improvement of the sewage treatment rate in China, biosolids production is increasing dramatically and in urgent need for harmless treatment and resource disposal. Comprehensive comparison of various kinds of biosolids disposal, biosolids agricultural utilization is a kind of economic and effective method. In our country, toxicology database based on the pollutants of biosolids agricultural utilization is absent. The rsearch on risk assessment of environmental effects caused biosolids agricultural application is also relatively weak. The laboratory experimental protocols are known to lead to several artefacts, so it is important that research on the control standards of bioslids agricultural application under field conditions should be undertaken. Morever, the soil pollution risk caused by nitrogen, phosphorus accumulation in bioioslids agricultural application be evaluated for lack of a long-term field experiment research. Therefore, it is an important and urgent task to research the above issues under field conditions.
     A field experiment was designed for the rational application biosolids and control standards of bioslids agricultural application. The biosolids added to a calcareous field soil was studied in order to assess the effects of biosolids agricultural application on soil quality and crop growth, and to determine the safety amount of the applied biosolids. The field experimental results were analyzed for assessing the environmental and agricultural risk of biosolids application in order to supply scientific basis for the feasibility of biosolids agricultural application. Bioaccomulation factors of trace elements for bioslids agricultural application were collected to extablish database and conbined with species sensitivity distribution to develope the cadmium criteria in soils and biosolids in order to provide a scientific basis for the rational application biosolids and control standards of bioslids agricultural application. The main results and conclusions are as follows:
     First, the dynamic changes of nutrients and trace elements in bioslids from Beijing were studied, and the results showed that the biosolids presents the characteristics of high nitrogen, phosphorus contents, and low potassium contents. Also the contents of nutrients and organic matter, pH in biosolids can meet the organic fertilizer standards of agricultural industry (NY525-2002). The mean concentrations of Zn, Cu, Cr, Pb, Cd, Ni, As, Hg and Cd in biosolids from Beijing sludge disposal plant are 1075,96,78,39,33,13.6,10 and 1.6 mg g-1, respectively. The contents of trace elements such as Cr, Cu, Cd, Ni, Pb, and As are much lower than the control standards for biosolids agricultural use (CJ/T309-2009), however, the contents of Zn were close to limits for the class A biosolids (1500 mg kg-1), Hg contents were over the limits for class A biosolids (3 mg kg-1). Zn and Hg in biosolids in Beijing are the elements of high risk for soil environmental quality, especially for Hg, which is 3.6 times of the average content in biosolids Hg of Chinese urban, so that Beijing biosolids are applied to agricultural field should pay attention to biosolids Hg pollution.
     The field experiment was carried out for five years in Dezhou, Shandong province. The results showed that the contents of TN and TP for wheat and maize grain were significantly increased by biosolids treatment. Crop yields by biosolids treatment maintain at a high level. biosolids can be a replacement for a part of nitrogen fertilizer or chicken manure. The optimum biosolids application rates was 18 t ha-1 yr-1, which derived from the wheat and maize grain yield effect functions by biosolids application.
     In wheat-maize rotation system, application of biosolids to agricultural soils based on the N requirement of crops will oversupply P. A similar trend of Olsen-P accumulation was found in soils treated with soluble P fertilizers only or with biosolids P as well, which provides evidence that the behaviour of biosolids P in field soils is similar to that of inorganic P fertilizers. In soils with the range of 78.6-2097 kg P ha-1 added by biosolids, the concentrations of Olsen-P in soils with wheat-maize rotation systems and the P accumulation rates could be predicted by a model that depended upon the initial concentration of Olsen-P in the soil, P input rate, crop yield, soil pH, and cultivation time.
     All of the eight kinds of trace elements were significantly increased in the plough layer (0-20cm) of Dezhou calcareous soil after biosolids application for five years, especially of Zn, Cu, Cd and Hg, and there were no significant changes in trace elements of soils applied with chicken manure. There was a significant linear relationship between the concentrations (mg kg-1) of Zn, Cu, Cd and Hg in plough layer soils and the biosolids application rates (kg ha-1); the increased concentration of Zn, Cu, Cd and Hg in plough layer soil were 1.10,0.128,0.00099, 0.0062 mg kg-1, respectively, when biosolids of 1 t ha-1 per year was added to the soil. According to the accumulation rates of different trace elements and the control standards for biosolids agricultural use (CJ/T309-2009), soil Hg content was up to the soil environmental quality standards (GB15618-1995) required the shortest time (18 years), followed by Zn (30 years), and other trace elements required more time (>30 years).
     The contents of Zn in wheat and corn grains were significantly increased by biosolids applied. The contents of all trace elements except Cr and Pb in wheat and corn grains were under the national food hygiene standards (GB 2762-2005). The bioaccumulation factor (BCF) of all trace elements for wheat and maize grains were less than 0.5, the BCF of trace elements for wheat grains were in the order:Zn>Cd>Cu>Cr, Hg>Pb>Ni>As; the BCF of trace elements for wheat grains were in the order:Zn>Cu>Cd>Cr>Pb>Hg>Ni>As.
     The cadmium of concentration in soils which prevents 95% plant edibile parts in safety (HC5) was mainly affected by soil pH and OC. Meanwhile, soil pH is the most important predictor for HC5, which explains 62.7% of variances while soil OC explains 25.2% of variances.
     The prediction model was set up by the relationship between soil pH, OC value and cadmium HC5 can well predict the cadmium threshold values in different soil types, which supplies a scientific basis for formulation and implementation the environmental quality standard of soil cadmium. The model for biosolids agricultural application based on the limits of soil total cadmium content can well control the amount of biosolids applied and the cadmium content of biosolids in different types of soil, which provide the theory basis for the safety and rational of biosolids agricultural application.
     Main innovative points:using a five-year continuous field experiment to investigate the feasibility of biosolids application to agricultural soils in a wheat-maize rotation system; the accumulation of the nutrient elements and trace elements in soils after biosolids application was quantified; the BCF values of trace elements in soil-plant systems integrated with species sensitivity distribution (SSD) were used for derivation of cadmium thresholds in soils and biosolids when biosolids were applied to soils; and finally the feasibility with cautions for biosolids application in agriculture was presented.
引文
[1]李琼,徐兴华,韦东普,等.城市污泥农用的环境效应及控制标准的研究进展.中国生态农业学报,2011,19(2):468-476.
    [2]McGrath S P, Zhao F J, Dunham S J, et al. Long-term changes in the extractability and bioavailability of zinc and cadmium after sludge application [J]. Journal of Environmental Quality,2000,29:875-883.
    [3]Oliver I W, McLaughlin M J, Merrington G. Temporal trends of total and potentially available element concentrations in sewage biosolids:a comparison of biosolid surveys conducted 18 years apart [J]. Science of the Total Environment,2005,337(11):139-145.
    [4]USEPA. Biosolids generation, use and disposal in the United States [R]. United States Environmental Protection Authority, EPA 530-R-99-009,1999.
    [5]NRC, National Research Council. Biosolids Applied to Land:Advancing Standards and Practices[R]. Washington, DC:National Academy Press.2002.
    [6]CEC, Commission of the European Communities. Report from the Commission to the Council and the European Parliament on the Implementation of Community Waste Legislation [R]. Brussels,2000.
    [7]Richards B K, Steenhuis T S, Peverly J H, et al. Effect of sludge processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading [J]. Environmental Pollution, 2000,109:327-346.
    [8]Magesan G N, Wang H. Application of municipal and industrialresiduals in New Zealand forests:an overview [J]. Australian Journal of Soil Research,2003,41:557-569.
    [9]Gonzalez M, Mingorance M, Sanchez L, et al. Pesticide adsorption on a calcareous soil modified with sewage sludge and quaternary alkyl-ammonium cationic surfactants [J]. Environmental science and pollution research international,2008,15:8-14.
    [10]李艳霞,陈同斌,罗维,等.中国城市污泥有机质及养分含量与土地利用[J].生态学报,2003,23(11):2464-2474.
    [11]王新,周启星.污泥堆肥土地利用对树木生长和土壤环境的影响[J].农业环境科学学报,2005,(1):174-177.
    [12]邹绍文,张树清,王玉军,等.中国城市污泥的性质和处置方式及土地利用前景[J].中国农学通报,2005,21(1):198-201,284.
    [13]Logan T J, Harrison B J. Physical characteristics of alkaline stabilized sewage sludge (N-Viro Soil) and their effects on soil physical properties [J]. Journal of Environmental Quality,1995,24(11):153-164.
    [14]Caravaca F, Garcia C, Hernandez M T, et al. Aggregate stability changes after organic amendment and mycorrhizal inoculation in the afforestation of a semiarid site with pinus halepensis [J]. Applied Soil Ecology,2002,19(3):199-208.
    [15]Shober A L, Stehouwer R C, Macneal K E. On-farm assessment of biosolids effects on soil and crop tissue quality [J]. Journal of Environmental Quality,2003,32(55):1873-1880.
    [16]Martinez F, Cuevas G, Calvo R, et al. Biowaste effects on soil and native plants in a semiarid ecosystem [J]. Journal of Environmental Quality,2003,32:472-479.
    [17]www.natesc.gov.cn中国肥料信息网.
    [18]Kidd P S, Dominguez-Rodriguez MJ, Diez J, et al. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge [J]. Chemosphere,2007,66:1458-1467.
    [19]陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569.
    [20]Calvet R, Bourgeois S, Msaky J J. Some experiments on extraction of heavy metals present in soil [J]. International Journal of Environmental Analytical Chemistry,1990,39:31-45.
    [21]陈茂林,胡忻,王超.我国部分城市污泥中重金属元素形态的研究[J].农业环境科学学报,2004,23(6):1102-1105.
    [22]安淼,周琪,李永秋.城市污泥中重金属的形态分布和处理方法的研究[J].农业环境科学学报,2003,22(2):199-202.
    [23]胡忻,陈茂林,吴云海,等.城市污水处理厂污泥化学组分与重金属元素形态分布研究[J].农业环境科学学报,2005,24(2):387-391.
    [24]Hettiarachchi G M, Scheckel K G, Ryan J A, et al. μ-XANES and μ-XRF investigations of metal binding mechanisms in biosolids[J]. Journal of Environmental Quality,2006,35:342-351.
    [25]Bosecker K. Bioleaching:metal solubilization by microorganisms [J]. FEMS Microbiology Reviews, 1997,20:591-604.
    [26]Tyagi R D, Tran F T. Bacterial leaching of metal from digested sewage sluage by indigenous iron-oxidizing [J]. Environmetal Pollution,1993,82:9-12.
    [27]Couillard D, Mercier G. Bacterial leaching of heavy metals from sewage sludge- bioreactors comparison [J]. Environmetal Pollution,1990,66,237-252.
    [28]Shoor F, Tyagi R D. Thermophilic microbial leaching of heavy metals from municipal sludge using indigenous sulfur-oxidizing microbial [J]. Application Microbiology Biothnology,1996,45(3):440-446.
    [29]Chan L C, Gu X Y, Wong J W C. Comparison of bioleaching of heavy metals from sewage sludge using iron-and sulfur-oxidizing bacteria [J]. Advances in Environmental Research,2003,7:603-607.
    [30]Mingot J I, Obrador A, Manue J, et al. Acid extraction sequential fraction of heavy metals in water treatment sludge [J]. Environmetal Technology,1995,16(9):869-876.
    [31]Veeken A H M, Hamelers H V M. Removal of heavy metals from sewage sludge by extraction with organic acids [J]. Water Science Technology.1999,40(1),129-136.
    [32]Marchioretto M M, Bruning H, Loan N T P, et al. Heavy metals extraction from anaerobically digested sludge [J]. Water Science Technology.2002,46 (10),1-8.
    [33]Jeong H, Kang B. Removal of lead from contaminated Korean marine clay by electrokinetic remediation technology. Contaminated ground:fate of pollutants and remediation [M]. London. Thomas Telford Publishing,1997.
    [34]Mathilde R, Jakobsen J F R, Signe N, et al. Electrodialytic removal of cadmium from wastewater sludge [J]. Journal of Hazardous Materials,2004,106:127-132.
    [35]Wang J Y, Zhang D S, Olena S. Evaluation of electrokinetic removal of heavy metals from sewage sludge [J]. Journal of Hazardous Materials,2005,124:139-146.
    [36]Schnaak W, Kuchler T, Kujawa M, et al. Organic contaminants in sewage sludge and their ecotoxicological significance in the agricultural utilization of sewage sludge [J]. Chemosphere,1997, 5(1-2):5-11.
    [37]Cai Q Y, Mo C H, Wu Q T, et al. Quantitative determination of organic priority pollutants in the composts of sewage sludge with rice straw by gas chromatography coupled with mass spectrometry[J]. Journal of Chromatography A,2007,1143:207-214.
    [38]莫测辉,蔡全英,吴启堂,等.城市污泥中有机污染物的研究进展[J].农业环境保护,2001,20(4):273-276.
    [39]Smith S R. Agricultural recycling of sewage sludge and the environment [J]. Wallingford:CAB International,1996:207-236.
    [40]Stevens J L, Northcott G L, Stern G A, et al. PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in U.K. sewage sludge:survey results and implications [J]. Environmental Science Technology,2003,37(3):462-467.
    [41]Perez S, Farre M, Garcia M J, et al. Occurrence of polycyclic aromatic hydrocarbons insewage sludge and their contribution to its toxicity in the ToxAlert(?) 100 bioassay [J]. Chemosphere,45(66):705-712.
    [42]蔡全英,莫测辉,赖坤容,等.我国城市污泥中含氮有机污染物的初步研究[J].生态学杂志,2004,23(3):76-80.
    [43]郑晓英,周玉文.城市污水污泥中邻苯二甲酸酯的研究[J].给水排水,2005,11,27-29.
    [44]甘平,樊耀波,王敏健.氯苯类化合物的生物降解[J].环境科学,2001,22(3):93-96.
    [45]Tejada M, Gonzalezb J L. Influence of organic amendments on soil structure and soil loss under simulated rain [J]. Soil and Tillage Research,2007,93(1):197-205.
    [46]Cheng H F, Xu W P, Liu J L. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth[J]. Ecological Engineering,2007,29:96-104.
    [47]Fernandes S A P, Bettiol W, Cerri C C. Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity [J]. Applied Soil Ecology,2005,30(1):65-77.
    [48]Barkay T, Tripp S C, Olson B H. Effect of metal-rich sewage sludge application on the bacterial communities of grasslands [J]. Applied and Environmental Microbiology,1985,49:333-337
    [49]Parat C, Chaussod R, Leveque J, et al. Long-term effects of metal-containing farmyard manure and sewage sludge on soil organic matter in a fluvisol [J]. Soil Biology and Biochemistry,2005,37:673-679.
    [50]Kizilkaya R, Bayrakli B. Effects of N-enriched sewage sludge on soil enzyme activities [J]. Applied Soil Ecology,2005,30(3):192-202.
    [51]Garcia-Gil J C, Plaza C, Senesi N, et al. Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil [J]. Biology and Fertility of Soils,2004,39: 320-328.
    [52]Pascual J A, Hernandez T, Garcia C, et al. Enzymatic activities in an arid soil amended with urban organic wastes:laboratory experiment [J]. Bioresource Technology,1998,64(2):131-138.
    [53]Antolin M C, Pascual I, Garcia C, et al. Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions [J]. Field Crops Research,2005,94:224-237.
    [54]Meyer S L F, Zasada I A, Tenuta M, et al. Application of a biosolid soil amendment, calcium hydroxide, and Streptomyces for management of root-knot nematode on cantaloupe [J]. HortTechnology,2005, 15(3):635-641.
    [55]Zerzghi H, Gerba C P, Brooks J P, et al. Long-term effects of land application of class B biosolids on the soil microbial populations, pathogens, and activity [J]. Journal of Environmental Quality,2009,39: 402-408.
    [56]Criquet S, Braud A, Neble S. Short-term effects of sewage sludge application on phosphatase activities and available P fractions in Mediterranean soils [J]. Soil Biology and Biochemistry,2007,39:921-929.
    [57]Krogstad T, Sogn T A, Asdal A, et al. Influence of chemical and biologically stabilized sewage sludge on plant-available phosphorous in soil[J]. Ecological Engineering,2005,25(1):51-60.
    [58]阎双堆,卜玉山,刘利军,等.污泥垃圾复混肥对油菜及土壤的影响[J].土壤学报,2006,43(3):524-527.
    [59]Casado-Vela J, Selles S, Navarro J, et al. Evaluation of composted sewage sludge as nutritional source for horticultural soils [J]. Waste Management,2006,26:946-952.
    [60]Sukkariyah B F, Evanylo G, Zelazny L, et al. Cadmium, copper, nickel, and zinc availability in a biosolids-amended piedmont soil years after application [J]. Journal of Environmental Quality,2005,34: 2225-2262.
    [61]Su J, Wang H, Kimberley M O, et al. Fractionation and mobility of phosphorus in a sandy forest soil amended with biosolids [J]. Environmental Science and Pollution Research,2007,14(7):529-535.
    [62]Sui Y B, Thompson M L, Mize C W. Redistribution of biosolids-derived total phosphorus applied to a mollisol [J]. Journal of Environmental Quality,1999,28:1068-1074.
    [63]Sui Y B, Thompson M L, Shang C. Fractionation of phosphorus in a mollisol amended with biosolids [J]. Soil Science Society of America,1999,63:1174-1180.
    [64]Cogger C G, Bary A I, Fransen S C, et al. Seven years of biosolids versus inorganic nitrogen applications to tall fescue [J]. Journal of Environmental Quality,2001,30:2188-2194.
    [65]Gilbertson C B, Norstadt F A, Mathers A C, et al. Animal waste utilization on cropland and pastureland:A manual for evaluating agronomic and environmental effects [R]. Washington, DC:Utilization Res. Rep.6. USDA,1979.
    [66]Huang X L, Chen Y, Shenker M. Solid phosphorus phase in aluminum-and iron-treated biosolids [J]. Journal of Environmental Quality,2007,36:549-556.
    [67]Shober A L, Hesterberg D L, Sims J T, et al. Characterization of phosphorus species in biosolids and manures using XANES spectroscopy[J]. Journal of Environmental Quality,2006,35:1983-1993.
    [68]Udom B E, Mbagwu J S C, Adesodun J K, et al. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge [J]. Environment International,2004,30(4): 467-470.
    [69]Walter I, Martnez F, Cala V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses [J]. Environmental Pollution,2006,139:507-514
    [70]Wei Y, Liu Y. Effects of sewage sludge compost application on crops and cropland in a 3-year field study [J]. Chemosphere,2005,59(9):1257-1265.
    [71]Mantovi P, Baldoni G, Toderi G. Reuse of liquid, dewatered and composted sewage sludge on agricultural land:effects of long-term application on soil and crop [J]. Water Research,2005,39:289-296.
    [72]徐兴华,马义兵,韦东普,等.污泥和水溶性重金属盐的植物有效性比较研究[J].中国土壤与肥料,2008,6:51-54.
    [73]李琼,徐兴华,左余宝,等.污泥农用对痕量元素在小麦-玉米轮作体系中的积累及转运的影响[J].农业环境科学学报,2009,28(10):2042-2049.
    [74]Oliver D P, Hannam R, Tiller K G, et al. The effects of zinc fertilization on cadmium concentration in wheat grain [J]. Journal Environmental Quality,1994,23:705-711.
    [75]McLaughlin M J, Whatmuff M, Warne M, et al. A field investigation of solubility and food chain accumulation of biosolid-cadmium across diverse soil types [J]. Environmental chemistry,2006,3(6): 428-432.
    [76]Chaudri A, McGrath S, Gibbs P, et al. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts [J]. Chemosphere,2007,66:1415-1423.
    [77]Nadal M, Schunhmacher M, Domingo J L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain [J]. Environmental Pollutant,2004,132:1-11.
    [78]Oleszczuk P, Baran S. Influence of soil fertilization by sewage sludge on the content of polyaromatic hydrocarbons (PAHs) in plants [J]. Journal of Environmental Science and Health,2005,40(11): 2085-2103.
    [79]Oleszczuk P, Baran S. Kinetics of PAHs losses and relationships between PAHs properties and properties of soil in sewage sludge-amended soil [J]. Polycyclic Aromatic Compounds.2005,25(3):245-269.
    [80]申荣艳,骆永明,章钢娅,等.城市污泥农用对植物和土壤中有机污染物的影响[J].农业环境科学学报,2007,26(2):651-657.
    [81]Wild S R, Jones K C. Polycyclic aromatic hydrocarbons uptake by carrots grown insludge-amended soil [J]. Journal of Environmental Quality,1992,21:217-225.
    [82]Jackson A P, Eduljee G H. An assessment of the risks associated with PCDDs and PCDFs following in the application of sewage sludge to agricultural land in the UK [J]. Chemosphere,1994,29(12):2523-2543.
    [83]McLachlan M S, Hinkel M, Reissinger M, et al. A study of the influence of sewage sludge fertilization on the concentrations of PCDD/F and PCB in soil and milk [J]. Environmental Pollution,1994,85(33): 337-343.
    [84]Oleszczuk P, Baran S. Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (salix viminalis) cultivated on the sewage sludge-amended soil [J]. Water, Air, and Soil Pollution,2005c,168: 91-111.
    [85]莫测辉,蔡全英,吴启堂,等.城市污泥及其堆肥施用对通菜中有机污染物的累积效应[J].环境科学,2002,(23)5:52-56.
    [86]蔡全英,莫测辉,王伯光,等.城市污泥和化肥对水稻土种植的通菜中多环芳烃(PAHs)的影响[J].生态学报,2002,22(7):1091-1097.
    [87]蔡全英,莫测辉,朱夕珍,等.城市污泥对通菜-水稻土中有机污染物的累积效应[J].中国环境科学,2003,23(3):321-326.
    [88]GB18918-2002,城镇污水处理厂污染物排放标准[S].国家环保总局,中国,北京,2002.
    [89]USEPA. Municipal solid waste in the United States:2000 facts and figures executive summary[R]. Office of Solid Waste and Emergency Response, EPA-530-5-02-001, Washington, DC,2002.
    [90]NSW EPA. Environmental Guidelines:use and disposal of biosolids products [R], Environmental Protection Authority, New South Wales, Sydney,1997.
    [91]Pierzynski, G M. Plant nutrient aspects of sewage sludge [M]//Clapp CE, Larson WE, Dowdy RH. Sewage sludge:land utilization and the environment, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison,1994.
    [92]Kanak A, Osborne G, Swinton E A. Beneficial Use of Biosolids in the Sydney region [J]. In Water magazine,1995,7:9-12.
    [93]Gilmour J, Wilson S, Cogger C G, et al. Estimating plant available nitrogen in biosolids:a revision [C]. Water Environment Federation. Proceedings of the residuals and biosolids management conference, WEF, Alexandria, VA,2000.
    [94]Rawlinson L V. Biosolids land application trial at Muresk Institute of Agriculture (Northam) for the Water Corporation of Western Australia[R]. L.V. Rawlinson and Associates Pty Ltd, Berry, NSW,1997.
    [95]Penney N. Review of environmental factors:biosolids land application-Annadale Farm, Gillingarra [R]. Water Corporation of Western Australia, Leederville, Appendix 1:based on Occasional paper WTC, No. 1/95,1999.
    [96]DEP, WRC, DOH. Western Australian guidelines for direct land application of biosolids and biosolids products [R]. Department of Environmental Protection, Waters and Rivers Commission and Department of Health, Perth,2002.
    [97]EEA. Sludge treatment and disposal management approaches and experience [R]. European Environmental Agency,1997.
    [98]鲁如坤.土壤农业化学分析方法[M].北京:中国科学出版社,1999.
    [99]Bowman G M, Hutka J. Soil physical measurement and interpretation for land evaluation. In Jacquier DW, McKenzie N, Brown K L, Isbell R F, Paine T A, eds, Australian Soil and Land Survey Handbooks Series 17.1. CSIRO Publishing, Collingwood, VIC, Australia,2002, pp 224~239.
    [100]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [101]U.S.Environmental Protection Agency, Microwave assisted acid digestion of siliceous and organically based matrices, Method 3052, Office of Solid Waste and Emergency Response, U.S. Government Printing Office, Washington, D C,1996.
    [102]Page A L, Millar R H, Keeney D R.1982. Methods of soil analysis:part 2. American Society of 321 Agronomy/Soil Science Society of America, Madison, Wisconsin, USA.
    [103]马娜,陈玲,熊飞.我国城市污泥的处置与利用[J].生态环境,2003,12(1):92-95.
    [104]陈同斌,郑国砥,高定,等.城市污泥堆肥处理及其产业化发展中的几个关键问题[J].中国给水排水,2009,25(9):104-108.
    [105]方先金,张韵.高碑店污水处理厂处理水资源化再利用的研究.北京市市政工程设计研究总院编.北京市市政工程设计研究总院建院45周年论文集[M].2000.
    [106]刘荣乐,李书田,王秀斌,等.我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J]农业环境科学学报,2005,24(2):392-397.
    [107]腾葳,柳琪,李倩,等.重金属污染对农产品的危害与风险评估[M].北京:化学工业出版社,2010,72-76.
    [108]郭翠花,张红,杨国栋.重工业城市农田生态系统中Hg污染及防治[J].农业环境保护,2000,19(4):245-247.
    [109]Shoham-Frider E, Shelef G, Kress N. Mercury speciation in sediments at a municipal sewage sludge marine disposal site [J]. Marine Environmental Research,2007.64:601-615.
    [110]Carpi A, Lindberg S. Sunlight-Mediated Emission of Elemental Mercury from Soil Amended with Municipal Sewage Sludge [J]. Environmental Science Technology.1997,31,2085-2091.
    [111]Garrido S, Del Campo Martin G, Esteller M V. Heavy metals in soil treated with sewage sludge composting, their effect on yield and uptake of broad bean seeds (viciafaba 1.) Water, air and soil pollution.2005,166(1-4):303-319.
    [112]Parkpian P, Leong S T, Laortanakul P. Regional Monitoring of Lead and Cadmium Contamination in a Tropical Grazing Land Site, Thailand [J]. Environmental Monitoring and Assessment,2003,85(2): 157-173.
    [113]Lavado R S. Concentration of potentially toxic elements in field crops grown near and far from cities of the Pampas (Argentina) [J]. Journal of Environmental Management,2006,80(2):116-119.
    [114]Bozkurt H. Utilization of natural antioxidants:Green tea extract and Thymbra spicata oil in Turkish dry-fermented sausage [J]. Meat Science,2006,73:442-450.
    [115]Walter I, Martnez F, Cala V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses [J]. Environmental Pollution,2006,139:507-514.
    [116]Mullen C, Druce S. Cereal fertilizer recommendations. In:Regional on-farm exceriments 2001, Dubbo-Mudgee-Nyngan-Warren-Wwllington agronomy districts. NSW Agriculture, Regional Publicaton: Dubbo. PP.74-77.
    [117]Stehouwer R, Day R L,Macneal K E. Nutrient and Trace Element Leaching following Mine Reclamation with Biosolids [J]. Journal of Environmental Quality,2006,35:1118-1126.
    [118]USEPA. Part 503 implementation guidance. EPA 833-R-95-001.1995, USEPA, Washington, DC.
    [119]Haering K C, Daniels W L, Feagley S E. Reclaiming mined lands with biosolids, manures, and papermill sludges. In:Barnhisel R I, et al. (ed.) Reclamation of drastically disturbed lands. Agron. Monogr.41. ASA, SSSA, and CSSA, Madison, WI.2000. pp.615-644.
    [120]Spinosa L, Vesilind P A. Sludge into Biosolids [M]. IWA Publishing, London.2001.
    [121]Osborn R W, De Samblanx G W, Thevissen K, et al. Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifra-gaceae [J]. FEBS Letters,1995,368: 257-262.
    [122]莫测辉,蔡全英,吴启堂,等.微生物方法降低城市污泥的痕量元素含量研究进展[J].应用与环境生物学报,2001,7(5):511-515.
    [123]中华人民共和国住房和城乡建设部.城镇污水处理厂污泥处置-农用泥质标准(GJ/T309-2009)[B],2009.
    [124]O'Connor G A, Sarkar D, Brinton S R, et al. Phytoavailability of biosolids phosphorus [J]. Journal of Environmental Quality,2004,33:703-712.
    [125]McCoy J L, Sikora, L T, Weil R R.1986. Plant availability of phosphorus in sewage sludge compost [J]. Journal of Environmental Quality,15:403-409.
    [126]Benke M B, Hao X, Chang C. Effects of long term cattle manure applications on soil, water and crops:Implications for animal and human health. In:Banuelos GS, Lin ZQ (eds) Development and uses of biofortified agricultural products [M. CRC Press, Boca Raton, Florida,2008, pp.135-151.
    [127]Tang X, Li J M, Ma Y B, et al. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions [J]. Field Crops Research,2008,108:231-237.
    [128]Ma Y B, Li J M, Li X Y, et al. Phosphorus accumulation and depletion in soils in wheat-maize cropping systems:modeling and validation [J]. Field Crops Research,2009,110:207-212.
    [129]Dobermann A, Cassman K. G, Cruz P C S, et al. Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. Ⅲ Phosphorus [J]. Nutrient Cycling in Agroecosystems,1996,46:111-125.
    [130]Cassman K G,De Datta S K, Amarante S T. Long-term comparison of the agronomic efficiency and residual benefits of organic and inorganic nitrogen sources for tropical lowland rice [J]. Experimental Agriculture,1996,32:427-444.
    [131]Rostagno C M, Sosebee R E. Biosolids application in the Chihuahuan deserts:Effects of runoff water quality [J]. Journal of Environmental Quality,2001,30:160-170.
    [132]Young E O, Ross D S. Phosphate release from seasonally flooded soils:A laboratory microcosm study [J]. Journal of Environmental Quality,2001,30:91-101.
    [133]Sommers L E, Nelson D W, Jost K J. Variable nature of chemical composition of sewage sludges [J]. Journal of Environmental Quality,1976,5:303-306.
    [134]Bar-Tal A, Yermiyahu U, Beraud J, Keinan M, Rosenberg R, Zohar D, Rosen V, Fine P.2004. Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications [J]. Journal of Environmental Quality,33:1855-1865.
    [135]Eghball B, Power, J F. Phosphorus-and Nitrogen-Based Manure and Compost Applications Corn Production and Soil Phosphorus [J]. Soil Science Society of America Journal,1999,63:895-901.
    [136]Pommel B. Phosphorus value of sludges related to their metal content, In:Hucker T W G, Catroux G, eds., Phosphorus in sewage sludge and animal waste slurries:proceedings of the EEC Seminar organised jointly by the CEC and the Institute for Soil Fertility [M].1981, pp:137-147
    [137]Coker E G, Carlton-Smith C H.1986. Phosphorus in sewage sludges as a fertilizer [J]. Waste Manage and Research,4:303-319.
    [138]Toor G S, Cade-Menun B J, Sims J T. Establishing a linkage between phosphorus forms in dairy diets, feces, and manures [J]. Journal of Environmental Quality,2005,34:1380-1391.
    [139]Fine P, Mingelgrin U. Release of phosphorus from waste activated sludge [J]. Soil Science Society of America Journal,1996,60:505-511.
    [140]Crouse D A, Sierzputowska-Gracz H, Mikkelsen R L, Wollum A G. 2002. Monitoring phosphorus mineralization from poultry manure using phosphatase assays and phosphorus-31 nuclear magnetic resonance spectroscopy [J]. Communications in Soil Science and Plant Analysis,33:1205-1217.
    [141]Hedley M, McLaughlin M J. Reactions of phosphate fertilizers and by-products in soils. In:Sims J T, Sharpley A N, eds., Phosphorus:agriculture and the environment American Society of Agronomy [M], America.2005, pp.181-252
    [142]Owens L B, Shipitalo M J. Surface and Subsurface Phosphorus Losses from Fertilized Pasture Systems in Ohio [J]. Journal of Environmental Quality,2006,35:1101-1109.
    [143]Chang C, Whalen J K, Hao X. Increase in phosphorus concentration of a clay loam surface soil receiving repeated annual feedlot cattle manure applications in southern Alberta [J]. Canadian Journal of Soil Science,2005,85:589-597.
    [144]Heckrath G, Brookes P C, Poulton P R, Goulding K W T.1995. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment [J]. Journal of Environmental Quality,24:904-910
    [145]McDowell R, Sharpley A N, Brookes P, et al. Relationship between soil test phosphorus and phosphorus release to solution [J]. Soil Science,2001,166:137-149.
    [146]McLaughlin M J, Hamon R E, McLaren R G, et al. Review:a bioavailability-based rationales for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand [J]. Austrilia Journal of Soil Research,2000,38:1037-1086.
    [147]Lavado R S, Rodriguez M B, Taboada M A. Treatment with biosolids affects soil availability and plant uptake of potentially toxic elements [J]. Agriculture, Ecosystems and Environment,2005,109: 360-364.
    [148]Bragato G, Leita L, Figliola A, et al. Effects of sewage sludge pre-treatment on microbial biomass and bioavailability of heavy metals [J]. Soil Tillage Reseach,1998,46:129-134.
    [149]Kaschl A, Romheld V, Chen Y. Cadmiun binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost [J]. Journal of Environmental Quality,2002,31: 1885-1892.
    [150]Cogger C G, Bary A 1, Sullivan D M. Biosolids processing effects on first and second year available nitrogen [J]. Soil Science Society of America Journal,2004,68:162-167.
    [151]Basta N T, Sloan J J. Bioavailablility of heavy metals in strongly acidic soils treated with exceptional quality biosolids [J]. Journal of Environmental Quality,1997,28,633-639.
    [152]Gardiner D T, Miller R W, Badamchian B, et al. Effect of repeated sewage sludge applications on plant accumulation of heavy metals [J]. Agriculture, Ecosystems and Environment,1995,55:1-6.
    [153]Hooda P S, Alloway B J. Effects of time and temperature on the bioavailability of Cd and Pb from sludge-amended soils [J]. Journal of Soil Science,1993,44:97-110.
    [154]Krogmann U, Qu M, Boyles L, et al. Biosolids and sludge management [J]. Water Environment Research.1998,70:557-580.
    [155]Stacey S, Merrington G, MacLaughlin M J. The effect of aging biosolids on the availability of cadmium and zinc in soil [J]. European Journal of Soil Science,2001,52:313-321.
    [156]Corey R B, King L D, Lue-Hing C, et al. Effects of sludge properties on accumulation of trace elements by crops. In:Land Application of Sludge, Food Chain Implications [M]; Page A L. (ed.); Lewis Publishers:Chelsea, MI. 1987, pp.25-51.
    [157]Berti W R, Jacobs L W. Chemistry and phytotoxicity of soil trace elements from repeated sludge application [J]. Journal of Environmental Quality,1996,25:1025-1032.
    [158]王新,周启星,陈涛,葛英华,台培东.污泥土地利用对草坪草及土壤的影响[J].环境科学,2003,24(2):50-53.
    [159]马利民,陈玲,马娜,刘东燕,赵建夫.种花卉植物对污泥中铅的富集特征[J].生态学杂志,2005,24(6):644-647.
    [160]杨军,郭广慧,陈同斌,等.中国城市污泥的重金属含量及其变化趋势[J].中国给水排水,2009,25(13):122-124.
    [161]Zheng G D, Gao D, Chen T B, et al. Stabilization of nickel and chromium in sewage sludge during aerobic composting [J]. Journal of Hazardous Materials,2007,142(1-2):216-221.
    [162]Gao D, Zheng G D, Chen T B, et al. Changes of Cu, Zn, and Cd speciation in sewage sludge during composting [J]. Journal of Environmental Science,2005,17(6):957-961.
    [163]Udom B E, Mbagwu J S C, Adesodun J K, et al. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge [J]. Environment International,2004,30(4): 467-470.
    [164]后藤茂子,茅野充男,山岸顺子,等.长期施用污泥导致重金属在土壤中蓄积[J].水土科技情报,1999,(3):1-4.
    [165]Craig G, Cogger, Andy I. seven years of biosolids versus inorganic nitrogen applications of tall fescue [J]. Journal of Environmental Quality,2001,30:2188-2194.
    [166]Gregory E, Beshr S, Martha A E, et al. Bioavailability of heavy metals in biosolids-amended soil. Communications in Soil Science & Plant Analysis,2006,37(150):2157-2170.
    [167]Bai Y Y, Chen W P, Chang A C. et al. Uptake of metals by food plants grown on soils 10 years after biosolids application [J]. Journal of Environmental Science and Health, Part B,2010,45(6):531-539.
    [168]E P A. U S. Environmental Protection Agency,40 CFR Part 503:National Sewage Sludge Survey: Availability of information and data, and anticipated impacts on proposed regulations proposed rule [Z], Federal Register,1990,55:47210-47283.
    [169]肖玲,李岗,郝卫平.垆土施污泥对小麦生长的影响研究[J].西北农业大学学报,1994,22(1):89-93.
    [170]李惠英,陈素英,王豁.铜、锌对土壤—植物系统的生态效应及临界含量[J].农村生态环境, 1994,10(2):22-24.
    [171]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [172]刘维涛,张银龙,陈喆敏,等.矿区绿化树木对镉和锌的吸收与分布[J].应用生态学报,2008,19(4):752-756.
    [173]郭郿兰,田若涛,王雁卿,等.城市污泥和污泥垃圾堆肥作为肥源对作物重金属积累的影响[J].农业环境保护,1995,14(2):67-71.
    [174]Barbarick K A, Ippolito J A, Westfall D G. Biosolids effect on phosphorus, copper, zinc, nickel, and molybdenum concentrations in dry land wheat [J]. Journal of Environmental Quality,1995,24:608-611.
    [175]Cheng H F, Xu W P, Liu J L. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth [J]. Ecological Engineering,2007,29:96-104.
    [176]黄游,陈玲,李宇庆,等.模拟酸雨对污泥堆肥中重金属形态转化及其环境行为的影响[J].生态学杂志,2006,25(11):1352-1357.
    [177]Gao S, William udan J W, Dahlgren R A, et al. Simultaneous sorption of Cd, Cu, Ni, Zn, Pb, and Cr on soils treated with sewage sludge supernatant[J].Water, Air, and Soil Pollution,1997,93:331-345.
    [178]Casado-Vela, S. Selles, Navarro J. Evaluation of composted sewage sludge as nutritional source for horticultural soils [J]. Waste Management,2006,26:946-952.
    [179]Ojeda G, Alcaniz J M, Ortiz O. Runoff and losses by erosion in soils amended with sewage sludge [J]. Land Degradation & Development.2003.14(6):563-573.
    [180]Antoniadis V, Alloway B J. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils [J]. Environmental Pollution,2002,17:515-521.
    [181]Jamali M K, Kazia T G, Arain M B, et al. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge [J]. Journal of hazardous materials,2009,164:1386-1391.
    [182]Karami M, Afyuni M, Rezainejad Y. et al. Heavy metal uptake by wheat from a sewage sludge-amended calcareous soil [J]. Nutrient Cycling in Agroecosystems,2009,83:51-61.
    [183]Logan T J, Lindsay B J, Goins L E, et al. Field assessment of sludge metal bioavailability to crops: sludge rate response [J]. Journal of Environmental Quality,1997,26:534-550.
    [184]Chaney R. L, Oliver D P. In Contaminants in the Soil Environment in the Australasia-Pacific Region (Eds R. Naidu, R. Kookana, D. P. Oliver, S. R. Rogers, M. J. McLaughlin). Kluwer Publishers: Dordrecht, Netherlands.1996, pp.456-478.
    [185]Hough R L,Breward N,Young S D. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ Health. Perspect,2004,112: 215-221.
    [186]Efroymson R A, Smaple B E, Suter G W. Uptake of inorganic chemicals from soil by plant leaves: Regressions of field data. Environmental Toxicolgy Chemistry,2001,20(11):2561-2571
    [187]李志博,骆永明,宋静,等.丛于稻米摄入风险的稻田十壤镉临界值研究:个案研究.土壤学报,2008,45(1):76-81.
    [188]Kooijman S A L M. A safety factor for LC50 values allowing for differences in sensitivity among species [J]. Water Research,1987,21:269-276.
    [189]Guerit I,Bocquene G,James A,et al. Environmental risk assessment:a critical approach of the European TGD in an in situ application[J].Ecotoxicology and Environmental Safety,2008,71(1):291-300.
    [190]Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions:data and model choice [J]. Marine Pollution Bulletin,2002,45:192-202.
    [191]Hose G C, Van den Brink P J. Confirmming the species2sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data [J]. Archives of Environmental Contamination and Toxicology,2004,47:511-520.
    [192]Hough R L, Breward N, Young S D. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ Health. Perspect,2004,112: 215-221
    [193]Swartjes F A, Dirven-Van Breemen E M, Otte P F, et al. Human health risks due to consumption of vegetables from contaminated sites, towards a protocol for site-specific assessment. RIVM report 711701040,2007.
    [194]Green I D, Tibbett M. Differential Uptake, Partitioning and Transfer of Cd and Zn in the Soil-Pea Plant-Aphid System [J]. Environmental Science and Technology,2008,42(2):450-455.
    [195]CSIRO (Australia's Commonwealth Scientific and Industrial Research Organization). A Flexible Approach to Species Protection [EB/OL]. http://www.cmis.csiro.au/envir/burrlioz,2008-03-01.
    [196]Posthuma L, Traas T P, Suter G W.2002. General introduction to species sensitivity distributions/ /Posthuma L, Traas T P, Suter GW. Species Sensitivity Distributions in Ecotoxicology [M]. Boca Raton, FL, USA:Lewis.3-9
    [197]Van Straalen N M. Threshold models for species sensitivity distributions app lied to aquatic risk assessment for zinc [J].Environmental Toxicology and Pharmacology,2002b,11:167-172
    [198]Brown S L, Chaney R L, Angle J S, et al. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils. Journal of Environmental Quality,1998,27(5):1071-1078.
    [199]Smolders E, Oorts K, Van Sprang P, et al. Toxicity of trace metals in soil as affected by soil type and aging after contamination:Using calibrated bioavailability models to set ecological soil standards [J]. Environmental Toxicology and Chemistry,2009,28:1633-1642.
    [200]黄昌勇.土壤学[M].北京,中国农业出版社,2000,66-67.
    [201]中国环境监测总站.中国土壤元素背景值[M].北京,中国环境出版社,1990,86-87.
    [202]EPA US. United States Environmental Protection Agency,1993. The standards for the use or disposal of sewage sludge [S]. Final 40 CFR Part 503 Rules, EPA 822/Z-93/001.
    [203]Stehouwer R C, Wolf A M, Doty W T. Chemical monitoring of sewage sludge in Pennsylvania: variability and application uncertainty [J]. Journal of Environmental Quality,2000,29:1686-1695.
    [204]EU EEA, European Environment Agency Indicator fact sheet signals.2001-Chapter waste,2002.
    [205]European Union. Working Document on Sludge,3rd Draft [Z]. ENV.E.3/LM. European Union, Brussels, Apr 12,2000.
    [206]Matthews P. Transatlantic comparison of biosolids practices. Proceedings Water Residuals and Biosolids Management:Approaching the Year 2000 [Z]. WEF/AWWA Joint Conference, Aug 3-6,1997, Philadelphia, Pennsylvania, pp.16-9/32.
    [207]陈同斌,李艳霞,金燕.城市污泥复合肥的肥效及其对小麦重金属吸收的影响[J].生态学报,2002,22(5):643-648..
    [208]许学工,林辉平,付在毅,等.黄河三角洲湿地区域生态风险评价[J].北京大学学报(自然科学版),2001,37:111-120.
    [209]黄圣彪,王子健,乔敏.区域环境风险评价及其关键科学问题[J].环境科学学报,2007,27:705-713.
    [210]陈才丽,彭超.长沙市城市污水处理厂污泥资源化可行性初探[J].企业技术开发,2004,23(4):30-32.
    [211]丁武泉.重庆污水处理厂污泥特性分析[J].安徽农业科学,2008,36(26):11508-11509.
    [212]葛晓燕,孙雪萍,庄惠生.洛阳市城市污水处理厂污泥成分及土地利用可行性分析[J].洛阳理工学院学报(自然科学版),2010,20(1):5-7.
    [213]顾启峰,乌兰,杨波,等.天津市中心城区污水处理厂污泥最终处置方式的选择与研究[J].天津建设科技,2007,5:46-48.
    [214]何祥亮,周晓铁,孙世群.合肥市污水处理厂污泥的土地资源化可行性分[J].合肥工业大学学报(自然科学版),2008,31(4):511-514.
    [215]胡绵好.应用地质累积指数评价南昌市城市污泥重金属污[J].广东微量元素科学,2010,17(3):27-31.
    [216]吉晋兰,王增长,张弛.晋城市污水厂污泥农用的重金属影响分析[J].太原大学学报,2009,10(4):126-129.
    [217]晋王强,南忠仁,王胜利,等.兰州市城市污水处理厂污泥中重金属形态分布特征与潜在生态风险评价[J].农业环境科学学报,2010,29(6):1211-1216.
    [218]李慧君,孟昭福,谷胜意,等.西安市污水处理厂污泥施用于赤红壤中的探讨[J].农业环境科学学报,2003,22(5):593-596.
    [219]李淑更,张可方,周少奇,等.城市污泥重金属形态及其生物有效性的研究[J].陕西科技大学学报,2008,26(3):125-131.
    [220]刘英霞,杨启霞,常显波.烟台市污水处理厂污泥中重金属的形态分析[J].安徽农业科学,2008,36(27):11977-11978,11984.
    [221]刘忠良,梅忠,赵华.金华市城市污水处理厂污泥成分及农用价值分析[J].广东微量元素科学,2008,15(9):61-64.
    [222]鲁群.武汉城市污水处理厂污泥特征及其处置方案研[D].武汉理工大学,2006.
    [223]孟范平,赵顺顺,张聪.青岛市城市污水处理厂污泥成分分析及利用方式初步研[J].中国海洋大学学报,2007,37(6):1007-1012.
    [224]孙西宁,张增强,张永涛,等.陕西杨凌污水处理厂污泥成分月际变化及其土地利用探讨[J]. 西北农林科技大学学报(自然科学版).2007,35(9):215-220.
    [225]孙玉焕,骆永明,吴龙华,等.长江三角洲地区城市污水污泥重金属含量研究[J].环境保护科学,2009,35(4):26-29,37.
    [226]陶俊杰,王海涛,王晓霞,等.城市污水处理厂污泥农用的可行性分析[J].市政技术,2006,24(2):72-74.
    [227]王新,贾永锋.沈阳北部污水处理厂污泥土地利用可行性研究[J].农业环境科学学报,2007,26(4):1543-1546.
    [228]王宇峰,高俊发,侯晓峰,等.污泥的重金属含量及浸出毒性测定与资源化利用的研究[J].应用化工,2008,37(5):576-578.
    [229]吴新民,陈德明.施用城市污泥对土壤中重金属积累和迁移的影响[J].环境与健康杂志,2005,22(3):177-179.
    [230]武雁榕,李定龙,张志军,等.污水污泥重金属迁移规律研究[J].江苏工业学院学报,2008,20(2):13-16.
    [231]姚金玲,王海燕,于云江,等.城市污水处理厂污泥重金属污染状况及特征[J].环境科学研究,2010,23(6):696-702.
    [232]郑承松.三明市城市生活污水处理厂污泥中的重金属含量及其形态分布研究[J].海峡研究,2007,6:48-49.
    [233]郑翔翔,崔春红,周立祥,等.江苏省城市污水处理厂污泥重金属含量与形态研究[J].农业环境科学学报,2007,26(5):1982-1987.
    [234]Basta N T, Ryan J A, Chaney R L. Trace element chemistry in residual treated soil:Key concepts and metal bioavailability [J]. Journal of Environmental Quality,2005,34:49-63.
    [235]Heemsbergen D A, McLaughlin M J, M. Whatmuff M S, et al. Bioavailability of zinc and copper in biosolids compared to their soluble salts [J]. Environmental Pollution,2010,158:1907-1915.
    [236]Sukkariyah B F, Evanylo G,, Zelazny L, et al. Cadmium, Copper, Nickel, and Zinc Availability in a Biosolids-Amended Piedmont Soil Years after Application [J]. Journal of Environmental Quality,2005, 34:2255-2262.
    [237]Hseu Zeng-Yei. Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids [J]. Chemosphere,2006,63:762-771.
    [238J Speir T W, Kettles H A, Percival H J, et al. Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? [J]. Soil Biology and Biochemistry,1999,31(14): 1953-1961.
    [239]Stevens D, McLaughlin P M J, Heinrich T. Determining toxicity of lead and zinc runoff in soils: Salinity effects on metal partitioning and on phytotoxicity [J]. Environmental Toxicology and Chemistry, 2003,22(12),3017-3024.
    [240]De Vries M P C, Tiller K G. Sewage sludge as a soil amendment, with special reference to Cd, Cu, Mn, Ni, Pb and Zn-comparison of results from experiments conducted inside and outside a glasshouse [J]. Environmental Pollution,1978,16(3),231-240.
    [241]US EPA. The Technical Support Document for Land Application of Sewage Sludge [S]. United States Environmental Protection Agency, Office of Water, Washington, D.C., U.S.A.,822/R-93-001a and 001b,1992
    [242]Garcia W J, Blessin C W, Sandford H W, et al. Translocation and Accumulation of Seven Heavy Metals in Tissues of Corn Plants Grown on Sludge-Treated Strip-Mined Soil [J]. Journal of Agricultural and Food Chemistry,1979,27(5),1088-1094.
    [243]Lavado R S, Rodriguez M, Alvarez R, et al. Transfer of potentially toxic elements from biosolid-treated soils to maize and wheat crops [J]. Agriculture, Ecosystems and Environment,2007,118: 312-318.
    [244]Cooper J L. The effect of biosolids on cereals in central New South Walse, Australia.2. Soil levels and plant uptake of heavy metals and pesticides [J]. Australian Journal of Experimental Agriculture,2005, 45:445-451.
    [245]Kabata-Pendias A, Pendias H, Kabata-Pendias A. Trace Elementsin Soils and Plants [M].3th ed. CRC Press,2000.
    [246]Kim J G, Dixon J B, Chusuei C C, et al. Oxidation of chromium (Ⅲ) to (Ⅵ) by manganese oxides [J]. Soil Science Society of America Journal,2002,66,306-315.
    [247]Wittbrodt P R, Palmer C D. Effect of temperature, ionic strength, background electrolytes and Fe (Ⅲ on the reduction of hexavalent chromium by soil humic substance [J]. Environmental Science and Technology,1996,30,2470-2477.
    [248]Patterson R R, Fendorf S E, Fendorf M. Reduction of hexavalent chromium by amorphous iron sulfide [J]. Environmental Science and Technology,1997,31,2039-2044.
    [249]Patra M, Sharma A. Mercury toxicity in plants [J]. Botanical Review,2000,66:379-422.
    [250]李艾芬,钱士明,李瑾.浙江省嘉兴市南湖区土壤环境质量评价和无公害水稻生产[J].浙江大学学报(农业与生命科学版),2010,36(1):74-77.
    [251]梁丽娜,黄雅曦,杨合法,等.污泥农用对土壤和作物重金属累积及作物产量的影响[J].农业工程学报,2009,25(6):81-86.
    [252]Shen Z G, Li X D, Wang C C, et al. Lead Phytoextraction from Contaminated Soil with High-Biomass Plant Species [J]. Journal of Environmental Quality,2002,31:1893-1900.
    [253]王宏康,刘宝元,冯国洲,等.农用污泥汞控制标准研究[J].北京农业大学学报,1982,8(2):69-75.
    [254]Warne M S J, Heemsbergen D, Whatmuff M, et al. Models for the field-based toxicity of Cu and Zn salts to wheat in eleven Australian soils and comparison to laboratory-based models [J]. Environmental Pollution,2008,156:707-714.
    [255]Heemsbergen D A, Warne M S J, Broos K, et al. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids [J]. Science of the Total Environment,2009, 407:2546-2556.
    [256]Merrington G, Oliver I, Smernik R J, et al. The influence of sewage sludge properties on sludge-borne metal availability [J]. Advances in Environmental Research,2003,8,21-36.
    [257]Hamon R. E, Bertrand I, McLaughlin MJ. Use and abuse of isotopic exchange data in soil chemistry [J]. Australian Journal of Soil Research,2002,40:1371-1381.
    [258]Campbell E, Palmer M J, Shao Q, et al. BurrliOZ:a computer programfor the estimation of the trigger values for the ANZECC and ARMCANZ water quality guidelines [P]. National water quality management strategy, Australian and New Zealand Guidelines for fresh and marine water quality ANZECC and ARMCANZ (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand), NZECC and ARMCANZ, Canberra, Australia; 2000.
    [259]Rooney C P, Zhao F J, Mc Grath S P, et al. Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation [J]. Environmental Pollution,2007,145: 596-605.
    [260]Li B, Ma Y B, McLaughlin M J, et al. Influences of soil properties and leaching on copper toxicity to barley root elongation [J]. Environmental Toxicology and Chemistry,2010a,29:835-842.
    [261]Li B, Zhang H T, Ma Y B, et al. Influences of soil properties and leaching on nickel toxicity to barley root elongation [J]. Ecotoxicology nd Environmental Safety (in review),2010b.
    [262]Guo X Y, Zuo Y B, Wang B R, et al. Toxicity and accumulation of copper and nickel in maize plants cropped on calcareous and acidic field soils [J]. Plant and Soil,2010,333(1-2):365-373.
    [263]安志装,陈同斌,雷梅,等.蜈蚣草耐铅、铜、锌毒性和修复能力的研究[J].生态学报,2003,23(12):2594-2598.
    [264]康玉林,黄新江,刘更另.玉米锌中毒可能性的研究[J].中国农业科学,1992,25(1):58-67.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.