锂离子电池正极材料LiNi_xCo_(1-2x)Mn_xO_2的制备与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源环境问题的日益突出以及现代化科技的高速发展,提高电池性能已是迫切需求。锂离子电池以其高能量密度、不污染环境、长循环寿命、高工作电压等优势而成为人们的首选。开发成本低、容量高的新型正极材料是当今国际的发展趋势。锂离子电池LiNixCo1-2xMnxO2正极材料正是具有比容量高、成本低等优点而被认为是最有潜力的新型正极材料之一。
     首先,本文采用高温固相法合成了锂离子电池正极材料LiNixCo1-2xMnxO2。通过XRD和SEM对其结构和形貌进行表征,通过考察x值、Li/(Ni+Co+Mn)摩尔比、焙烧温度、煅烧时间对其电化学性能的影响,确定了最佳烧结条件。研究结果发现,提高Co含量可以改善材料的循环性能;当n(Li)/n(M)=1.10,950℃煅烧20h时,可得到电化学性能优良的正极材料。
     研究了不同合成方法对LiNi0.4Co0.2Mn0.4O2正极材料的表面形貌、晶格常数、粒径分布、比表面积和电化学性能的影响,研究发现共沉淀法合成的材料粒径和形貌可以得到有效控制。接下来又进一步研究了不同沉淀剂对LiNi0.4Co0.2Mn0.4O2性能的影响。研究发现以NaOH+NH3和Na2CO3为沉淀剂均可以得到性能较好的正极材料,但选用Na2CO3作为沉淀剂制备更为方便。
     通过掺杂对LiNixCo1-2xMnxO2正极材料进行改性方面的研究。采用高温固相法制备了阴离子掺杂型LiNi0.45Co0.1Mn0.45O2-xFx正极材料。结果表明当掺杂量x=0.25时,在3-4.3V充放电条件下,首次放电容量为138.58 mAh/g,20周循环后的容量保持率为92.47% ,循环性能得到了很大提高。采用共沉淀法制备了阳离子掺杂型Li(Ni0.4Co0.2Mn0.4)1-yCryO2正极材料。结果表明当y=0.02时,在3-4.3V充放电条件下,20周循环后的容量保持率为90.35%,循环性能得到一定程度的改善。
Along with the increase of energy and environment problems, and the rapid development of modern science and technology, how to increase the performances of the lithium ion batteries becomes more and more important. The lithium-ion battery is the first choice for its high energy density, amity to the environment, long cycle life and the high working voltage. Researches on the new cathode materials with low cost and high capacity are the developing trend of conventional cathode materials. As a new generation cathode materials, LiNixCo1-2xMnxO2 cathode material has great potential for being a new kind of cathode candidate for its excellent electrochemical performance and low cost .
     Firstly, the LiNixCo1-2xMnxO2 cathode material for lithium-ion battery was synthesized by high temperature solid-state method. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the structure and appearance of the products.The effect of x values,Li/(Ni+Co+Mn) molar ratios,sintering temperatures and sintering times on performances of LiNixCo1-2xMnxO2 were studied, on this basis, the optimized flowsheet was obtained. The results showed that the cycling performance was improved with higher Co content. The cathode material with excellent electrochemical performance was obtained by sintering the mixed raw materials with n(Li)/n(M)=1.10 at 950℃for 20h.
     The effect of synthesis method, on surface topography, lattice parameter, particle size distribution, specific surface area and electrochemical performance were studied. It was found that the particle size and morphology can be controlled by co-precipitation method. Further studies with different precipitating agent on the performance of LiNi0.4Co0.2Mn0.4O2 had been made. The sample prepared by co-precipitation method with NaOH+NH3 and Na2CO3 as precipitating agent exhibited good properties and Na2CO3 as precipitating agent is more easily carried out for preparation.
     Layered cathode material was modified by doping method. The anion-doping LiNi0.45Co0.1Mn0.45O2-xFx cathode material was synthesized by high temperature solid-state method. The results showed that when x=0.25, LiNi0.45Co0.1Mn0.45O2-xFx exhibited the initial capacity of 138.58 mAh/g in the voltage range of 3-4.3V, its capacity retained 92.47% after 20 cycles. The cycling performance of LiNi0.45Co0.1Mn0.45O2-xFx had been improved significantly. The cation-doping Li(Ni0.4Co0.2Mn0.4)1-yCryO2 cathode material was synthesized by co-precipitation method. The results showed that when y=0.02, Li(Ni0.4Co0.2Mn0.4)1-yCryO2 exhibited that its capacity retained 90.35% after 20 cycles in the voltage range of 3-4.3V. The cycling performance of Li(Ni0.4Co0.2Mn0.4)1-yCryO2 had been improved.
引文
1.吴宇平,张汉平,吴锋等.聚合物锂离子电池[M].北京:化学工业出版社, 2006, 4-5.
    2.吕鸣祥,黄长保,宋玉谨等.化学电源[M].天津:天津大学出版社, 1992, 306-307.
    3.蔡克群.次世代二次电池-锂金属二次电池开发展望[J].工业材料, 1999, 146:127-133.
    4. D.W.Murphy, J.Broodhead, B.C.steel, et al. Materials for advanced batteries. [M]. Newyork: Plenum Press, 1980:145.
    5. A.G.Ritchie. Recent Developments and Future Prospects for Lithium Ion Batteries. [J]. J. Power Sources, 2001, 96:1-4.
    6. H.Katz, W.Bogel, J.P.Buchel, et al. Industrial awareness of lithium batteries in the world during the past two years. [J]. Electrochem Soc., 1998, 72:43-50.
    7.郭炳焜,徐微,王先友等.锂离子电池[M].中南大学出版社, 2002, 34-35.
    8.禹筱元.层状LiNi1/3Co1/3Mn1/3O2与改性尖晶石LiMn2O4的研究-锂离子电池正极材料深度研发之一[D]:[博士学位论文].长沙:中南大学冶金科学与工程学院, 2005.
    9. R.Koksbang, J.Barker, H.Shi, et al. Cathode materials for lithium rocking batteries. [J]. Solid State Ionics, 1996, 84(1-2):1-21.
    10. T.Ohzuku, A.Ueda, et al. Solid-state redox reactions of LiCoO2 for 4 volt secondary lithium cells. [J]. Electrochem Soc., 1994, 141:2973-2977.
    11. T.Ohzuku, A.Ueda, N.Nagayama, Y.Iwakoshi, H.Komori, et al. Comparative study of LiCoO2, LiCo1/2Ni1/2O2 and LiNiO2 for 4 volt secondary lithium cells. [J]. Electrochem Soc., 1993, 38:1159-1167.
    12. B.Garcia, J.Farcy, J.P.Pereira, et al. Electrochemical properties of low temperature crystallized LiCoO2. [J]. Electochem Soc., 1997, 144(4):1179-1184.
    13. W.S.Yoon, K.B.Kim, et al. Synthesis of LiCoO2 using acrylic acid and its electrochemical properties for Li secondary batteries. [J]. J. Power Sources, 1999, 81-82:517-523.
    14. B.Garcia, J.Farcy, et al. Low-temperatrue cobalt oxide as rechargeable cathode material for lithium batteries. [J]. J. Power Sources, 1995, 54:373-377.
    15. Y.X.Li, C.R.Wan, Y.P.Wu, C.Y.Jiang, Y.J.Zhu, et al. Synthesis and characterization of ultrafine LiCoO2 powders by a spray-dying method. [J]. J. Power Souces, 2000, 85:294-298.
    16. R.Yazami, N.Lebrun, M.Bonneau, M.Nolteli, et al. Performance of LiCoO2 positive electrode materials. [J]. J. Power Sources, 1995, 54(2):389-392.
    17. G.X.Wang, J.Horvat, D.H.Bradhurst, H.K.Liu, S.X.Dou, et al. Strctural physical and electrochemical characterization of LiNixiCo1-xO2 solutions. [J]. J. Power Sources, 2000, 85:279-283.
    18.吴宇平,方世壁,刘昌炎等.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997, 21(5):208-226.
    19.王志峰.锂离子电池层状结构阴极材料合成与改性研究[J].台湾:国立中央大学, 2003, 16:63-86.
    20. T.Ohzuku, T.Ueda, M.Nagayama, et al. Electrochemistry and structural chemistry of LiNiO2 for 4-volt secondary lithium cells. [J]. Electrochem Soc., 1993, 140(7):1862-1870.
    21. J.P.Peres, F.Weill, C.Delmas, et al. Transport properties of the LiNi1-yCoyO2 system. [J]. Solid State Ionics, 1999, 119:19-22.
    22.吴辉煌.电化学[M].北京:化学工业出版社,2004.
    23.叶乃清,刘长久,沈上越等.锂离子电池正极材料LiNiO2存在的问题与解决办法[J].无机材料报, 2004, 19(60):1217-1223.
    24. B.Ammundsen, J.Desilvestro, T.Groutso, et at. Formation and structural properties of layered LiMnO2 cathode materials. [J]. Electrochem Soc., 2000, 147(11):4078-4082.
    25. Z.P Guo, S.Zhong, C.X.Wang, et al. Synthesis of layered structure LiMn1-xCrxO2 by the Pechini method and characterization as a for rechargeable Li/LiMnO2 cells. [J]. Electrochem Soc., 2002, 149(6): A792-795.
    26. K.B.Richard, K.Ryoji, et al. The role of nickel on the structure and electrochemical properties of LixNiyCo1-yO2. [J]. J. Power Sources, 2001, 97-98: 316-324.
    27. C.Jaephil, P.Byungwoo, et al. Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. [J]. J. Power Sources, 2001, 92:35-39.
    28. T.K.Feyg, R.R.Shu, et al. LiNi0.8Co0.2O2 cathode synthesized by the malefic acid assisted sol-gel method for lithium batteries. [J]. J. Power Sources, 2002, 103:265-272.
    29. S.H.Kang, J.Kim, M.E.Stoll, et al.Li(Ni0.5-xMn0.5-xM2x)O2(M=Co,A1,Ti;x=0,0.025) Cathode materials for Li-ion rechangeable batteris.[J]. J. Power sources, 2002,112:41-48.
    30. S.Albrecht, J.Kumpers, M.Kruft, et al. J.Power Sources, 2003, l19-121:l78-183.
    31. Y.Makimura, T.Ohzuku, et al. Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. [J]. J. Power Sources, 2003, l19-121:156-l60.
    32. J.M.Paulsen, J.R.Dahn, et al. Electrochem Soc., 2000, 147(7):2478-2485.
    33. G.X.Wang, S.Bewlay, J.Yao, et al. Multiple-ion-doped lithium nickel oxide as cathode materials for lithium-ion batteries [J]. J.Power sources, 2003, 119-121:189-194.
    34.吴宇平,张汉平,吴锋等.物锂离子电池[M].化学工业出版社, 2006, 143.
    35. Y.Koyama, I.Tanaka, H.Adachi, et al. Crystal and electronic structures of super structural Li1-xNi1/3Co1/3Mn1/3O2. [J]. J. Power Sources, 2003, 119-121:644-648.
    36. D.C.Li, S.Yuki, K.Masaya, et al. Structure, morphology and electrochemical properties of LiNi0.5Mn0.5-xCoxO2 prepared by solid state reaction. [J]. J. Power Sources, 2005, 148:85-89.
    37. D.C.Li, T.Muta,L.Q.Zhang, et al. Effect of synthesis method on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2. [J]. J. Power Sources, 2004, 132:150-155.
    38. J.M.Kim, H.T.Chung, et al. Role of transition metals in layered L(iNi,Co,Mn)O2 under electrochemical operation. [J]. Electrochimica Acta, 2004, 49:3573-3580.
    39.唐致远等.锂离子电池的正极活性材料LiCoO2制备新方法[P].中国专利:99111157, 1999210220.
    40. M.H.Lee, Y.J.Kang, Y.K.Sun, et al. Synthetic optimization of LiNi1/3Co1/3Mn1/3O2 via co-precipitation. [J]. Electrochimica Acta, 2004, 50:939-948.
    41. T.H.Cho, S.M.Park, et al. Effect of synthesis condition on the strucutural an electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by carbonate co-precipitation method. [J]. J. Power Sources, 2005, 142:306-312.
    42. C.H.Chen, C.J.Wang, et al. Electrochemical performance of layered LiNixCo1-2xMnxO2 cathode materials synthesized by a sol–gel method. [J]. J. Power Sources, 2005, 146:626-629.
    43. K.I.S.Park,M.H.Cho, et al. Structural and Electrochemical Properties of Nanosize Layered Li(Li1/5Ni1/10Co1/5Mn1/2)O2. [J]. Electrochem. Solid-State Lett., 2004, 79(8):239-241.
    44.杨文胜.二次锂离子电池正极材料制备及其电化学性能研究[D].北京:北京科技大学,1997.
    45. G.H.Kim,S.T.Myung,H.S.Kim,et al.Synthesis of spherical LiNi(1/3?z)Co(1/3-z)Mn(1/3-z)MgzO2 positive electrode material for lithium-ion battery. [J]. Electrochimica Acta. 2006, 51:2447-2453.
    46. D.T.Liu, Z.X.Wang, L.Q.Chen, et al. Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2. [J]. Electrochimica Acta, 2006, 51(20):4199-4203.
    47. J.Guo, L.F.Jiao, H.T.Yuan, et al. Effect of structural and electrochemical properties of different Cr-doped contents of LiNi1/3Co1/3Mn1/3O2. [J]. Electrochimica Acta, 2006, 51:6275-6280.
    48. B.Lin, Z.Y.Wen, Z.H.Gu, et al. Preparation and electrochemical properties of LiNi1/3Co1/3Mn1?x/3Zrx/3O2 cathode materials for Li-ion batteries. [J]. J. Power Sources, 2007, 174:544-547.
    49. L.Q.Wang, L.F.Jiao, H.T.Yuan, et al. Synthesis and electrochemical properties of Mo-doped LiNi1/3Mn1/3Co1/3O2 cathode materials for Li-ion battery. [J]. J. Power Sources, 2006, 162:1367-1372.
    50. M.Kageyama, D.C.Li, K.Kobayakawa, et al. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2?xFx prepared by solid state reaction. [J]. J. Power Sources, 2006, 157(1):494-500.
    51. Y.S.He, L.Pei, X.Z.Liao, et al. Synthesis of LiNi1/3Co1/3Mn1/3O2?zFz cathode material from oxalate precursors for lithium ion battery. [J]. J. Fluorine Chem., 2007,128(2):139-143.
    52. K.H.Dai, Y.T.Xie, Y.J.Wang, et al. Effect of fluorine in the preparation of LiNi1/3Co1/3Mn1/3O2 via hydroxide co-precipitation [J]. Electrochimical Acta. 2008, 53:3257-3261.
    53. G.H.Kim, S.T.Myung, H.J.Bang, et al. Synthesis and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 via Coprecipitation. [J]. Electrochem. Solid-State Lett., 2004, 7:A477-480.
    54.苏继桃,苏玉长,赖智广等.共沉淀法制备镍、钴、锰复合碳酸盐的热力学分析[J].硅酸盐学报, 2006, 34(6):695-697.
    55. K.M.Shaju, G.V.R.Subba, B.V.R.Chowdari, et al. Performance of layered LiNi1/3Co1/3Mnl/3O2 as cathode for Li-ion batteries. [J]. Electrochimica Acta, 2002, 48(2):145-151.
    56. Y.C.Sun, C.Ouyang, Z.X.Wang, X.J.Huang, L.Q.Chen, et al. Effect of Co content on rate performance of LiMn0.5-xCo2xNi0.5-xO2 cathode materials for lithium-ion batteries. [J]. Electrochem Soc., 2004, 151: A 504-508.
    57. J.Choi, A.Manthiram, et al. Structural and electrochemical characterization of the layered LiNi0.5?yMn0.5?yCo2yO2 (0≤2y≤1) cathodes. [J]. Solid State Ionics, 2005, 176:2251-2256.
    58. L.Q.Zhang, X.Q.Wang, et al. The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2. [J]. J. Power Sources, 2006, 162:629-635.
    59.刘亚飞,陈彦彬,白厚善.固相法制备锂离子电池正极材料LiMn1/3Ni1/3Co1/3O2[J].电源技术, 2007, 31(9):690-692.
    60.胡学山,刘兴泉. LiNi1/3Co1/3Mn1/3O2的制备及电化学性能[J].电源技术, 2006, 30(3):183-186.
    61.李福燊.非金属导电功能材料[M].北京:化学工业出版社, 2006, 207.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.