锂离子电池正极材料FeF_3的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型锂离子电池正极材料,氟化铁(FeF3)因具有高比容量、低成本、安全和对环境友好等优点而备受关注。但FeF3极差的导电性严重影响其电化学性能,并阻碍了其应用。本论文主要围绕提高FeF3电子电导率从而提高其电化学性能展开研究,通过添加五氧化二钒(V2O5)、乙炔黑和二硫化钼(MoS2)等导电性物质对FeF3进行改性研究。主要研究内容为:
     (1)采用液相法制备了FeF3(H2O)4.5前驱体,并在惰性气体保护下,500℃加热前驱体,合成了锂离子电池正极材料FeF3。利用傅里叶红外光谱(FT-IR)、X-射线衍射(XRD)、扫描电镜(SEM)和电化学测试等技术,研究了材料的物理化学性能和电化学性能。结果表明:FeF3具有典型的正交晶系结构,并且所制备的材料粒径均匀,在0.1C倍率和电压范围为2.0~4.5 V下的首次放电比容量为115.7 mAh·g-1,经过30个循环后放电比容量降至67.7 mAh·g-1,容量保持率仅为58.5%。
     (2)通过球磨混合FeF3与乙炔黑,合成了FeF3/C复合正极材料。测试结果表明:添加乙炔黑并未改变FeF3的晶体结构,但FeF3的放电比容量、循环性能及大倍率充放电性能得到了显著改善。以0.1C倍率充放电,球磨3h的样品首次放电比容量高达206.4 mAh·g-1,30个充放电循环后仍保持有179.2 mAh·g-1,容量保持率高达86.8%。以3C高倍率充放电,放电比容量仍有109 mAh·g-1。
     (3)通过球磨混合FeF3与V2O5,合成了具有比FeF3电化学性能更好的FeF3/V2O5复合正极材料。其中球磨3h的样品具有最好的电化学性能,在0.1C倍率下首次放电比容量高达219 mAh·g-1,30个充放电循环后仍保持有192 mAh·g-1,容量保持率高达87.7%。
     (4)通过球磨混合FeF3与MoS2,合成了FeF3/MoS2复合正极材料。测试结果表明:MoS2的添加并没有改变FeF3正极材料的电化学反应机理,对晶体结构也没有影响,但MoS2添加能显著提高FeF3的电子导电率,以0.1C放电倍率下,首次放电比容量为169.6 mAh·g-1,30个充放电循环后仍保持有141 mAh·g-1,容量保持率为83.1%。
FeF3, as a new cathode material for lithium-ion battery, has been attractive for its high capacity, low cost, safe and environmental benignity. However, its low electron conductivity impairs its electrochemical performance and prevents its applications. Therefore, improving the electron conductivity of FeF3 to enhance its electrochemical performance is the focus of the study. In this paper, the composite cathode materials of FeF3 and conductive reagents were prepared by addition of acetylene black, V2O5 and MoS2, respectively, and the physical and electrochemical performance of composites were investigated.
     (1) Precursor FeF3(H2O)4.5, which was synthesized by a liquid phase reaction method, was heated in tube furnace at 500℃in inert gas to obtain FeF3. The physical and electrochemical performances of FeF3 were investigated by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical tests. The results showed that FeF3 had a typical orthorhombic structure and uniform particle size, and the FeF3 electrode delivered an initial discharge capacity of 115.7 mAh·g-1 and the capacity retention at the 30th cycle was only 58.5% (67.7 mAh·g-1) at a rate of 0.1C in the voltage range of 2.0~4.5 V.
     (2) The FeF3/C composites were prepared by milling the mixture of FeF3 and the conductive acetylene black. The addition of carbon did not change the crystal structure of FeF3. The discharge capacity, cycle capability and high-rate charge-discharge capability of FeF3 were all greatly improved. The FeF3/C composite milled for 3h exhibited best discharge capacity retention and highest discharge capacity in the voltage range of 2.0~4.5 V, and delivered an initial discharge capacity of 206.4 mAh·g-1 and the capacity retention at the 30th cycle was 86.8% at a rate of 0.1C. Moreover, the initial discharge capacity can reach 109 mAh·g-1 at a rate of 3C.
     (3) The FeF3/V2O5 composites were prepared by milling the mixture of FeF3 and V2O5. The FeF3/V2O5 composites showed much better electrochemical performance than that of FeF3, and the FeF3/V2O5 composite milled for 3h exhibited the best electrochemical performance and highest discharge voltage plateau, highest capacity of 219 mAh·g-1 and highest capacity retention rate of about 87.7% after 30 cycles at a rate of 0.1C in the voltage range of 2.0~4.5 V.
     (4) The effect of the content of molybdenum disulfide (MoS2) on the electrochemical properties of FeF3/MoS2 composite was also studied in detail. The results indicated that addition of MoS2 did not change the structure and electrochemical reaction mechanism of FeF3, and MoS2 can increase the electronic conductivity of the composites, hence to improve the electrochemical performance of FeF3. The initial discharge capacity of FeF3/MoS2 was 169.6 mAh·g-1 between 2.0~4.5 V at a rate of 0.1C, and the capacity remained as 141 mAh·g-1 after 30 cycles.
引文
[1]杨林.中日韩三国锂离子电池发展概况[J].电池工业, 2003, 8(3): 137-139.
    [2]汪继强,陈立泉.新能源材料[M].天津:天津大学出版社, 2000: 30-97.
    [3]郭炳焜,李新海,杨松青.化学电源-电池原理及制造技术[M].长沙:中南大学出版社, 2003: 288-300.
    [4]吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社, 1992: 258-297.
    [5] Bruno S. Recent advances in lithium ion battery materials[J]. Electrochimica Acta, 2000, 45(15-16): 2461-2466.
    [6] Whitingham M.S. Lithium Batteries and Cathode Materials[J]. Chem. Rev., 2004, 104(10): 4271-4302.
    [7] Murphy D.W, Christian P.A. Solid State Electrodes for High Energy Batteries[J]. Science, 1979, 205(4407): 651-656.
    [8]史鹏飞.化学电源工艺学[M].哈尔滨:哈尔滨工业大学出版社, 2006: 176-180.
    [9]郭炳焜,徐徽,王先友,等.锂离子电池[M].长沙:中南大学出版社, 2002: 93-140.
    [10]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社, 2002: 5-6.
    [11]蔡克群.次世代二次电池——锂金属二次电池开发展望[J].工业材料, 1999, 146(1): 127-133.
    [12]李景虹.先进电池材料[M].北京:化学工业出版社, 2004: 257-271.
    [13] Tarascon J.M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(15): 359-367.
    [14] Armand M. Material for advanced batteries[M]. New York: Plenum press, 1980: 145-176.
    [15] Nagaura T.D. Batteries col cells[J]. 4th International Rechargeable Battery Seminar, Florida, 1990(1): 20-56.
    [16] Whitingham M.S. Electrical Energy Storage and Intercalation Chemistry[J]. Science, 1976, (192): 1126-1128.
    [17] Yoshio Nishi. Lithium ion secondary batteries: past 10 years and the future[J]. J. Power Sources, 2001, 100(1-2): 101-106.
    [18] Ritchie A.G. Recent developments and future prospects for lithium rechargeable batteries[J]. J. Power Sources, 2000, 96(1): 1-4.
    [19] Marsh R.A, Vukson S, Surampudi S. Li ion batteries for aerospace applications[J]. J. Power Souces, 2001, 97/98(1): 25-27.
    [20]李建保,李敬锋.新能源材料及其应用技术[M].北京:清华大学出版社, 2005: 3-175.
    [21]薛文娟,张世超,翁党生.锂离子电池性能研究现状与进展[J].新材料产业, 2004, 129(8): 36-39.
    [22] Nagaura T, Tozawa T. Lithium ion rechargeable battery[J]. Prog. Batts. Sol. Cells., 1990, 9(1): 209-217.
    [23] Scrosati B, Armand M, Nagaura T. Development of rechargeable lithium battery:Ⅱ, lithium ion rechargeable batteries[J]. Prog. Bat. Soc. Cells, 1991, 10(1): 218-226.
    [24] Koksbang R, Barker J, Saidi M.Y. Cathode Materials for Lithium Rocking Chair Batteries[J]. Solid State Ionics, 1996, 84(1-2): 1-21.
    [25] Majima M, Ujiie S, Yagasaki E. Development of long life lithium ion battery for power storage[J]. J. Power Sources, 2001, 101(1): 53-59.
    [26] Masataka, Wakihara. Recent developments in lithium ion batteries[J]. Material science and Engineering, 2001, 33(1): 109-134.
    [27] Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ion batteries[J]. Carbon, 2000, 38(2): 183-197.
    [28]张世超.锂离子电池关键材料的现状与发展[J].新材料产业, 2004, 123(2): 32-35.
    [29]胡绍杰,徐保伯.锂离子电池工业的发展与展望[J].电池, 2000, 30(4): 171-174.
    [30]刘建睿.锂离子电池正极材料-(锂)钒氧化物的制备研究[博士学位论文].西北工业大学, 2001: 3-37.
    [31] Brodd R.J, Bullock K.R, Leising R.A, et al. Batteries, 1977 to 2002[J]. J. Electrochem. Soc., 2004, 151(3): K1-K11.
    [32] Winter M, Brodd R.J. What Are Batteries, Fuel Cells, and Supercapacitors[J]. Chem. Rev., 2004, 104(10): 4245-4269.
    [33] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(28): 496-499.
    [34]张胜利,余仲宝,韩周祥.锂离子电池的研究与发展[J].电池工业, 1999, 4(1): 26-28.
    [35]姜军,项金钟,李锡力,等.锂离子电池正极材料研究进展[J].云南大学学报(自然科学版), 2005, 27(5A): 621-625.
    [36] Broussely M, Biensan P, Simon B. Lithium insertion into best materials: the key to success for Li ion batteries[J]. Electrochimica Acta, 1999, 45(1-2): 7-12.
    [37]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展, 1998, 10(1): 85-94.
    [38] Mizushima K, Jones P.C, Wiseman P.J, et al. LixCoO2(0    [39] Thackeray M.M. Handbook of Battery Materials[M]. John Wiley&Sons Inc., New York, 1999: 293-350.
    [40] Antolini E. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties[J]. Solid State Ionics, 2004, 170(1-2): 159-171.
    [41] Julien C.M. Lithium intercalated compounds: Charge transfer and related properties[J]. Materials Sience and Engineering, 2003, 31(2): 47-102.
    [42] Thackeray M.M, Rossouw M.H, Gummow R.J, et al. Ramsdellite-MnO2 for lithium batteries: the ramsdellite to spinel transformation[J]. Electrochimica Acta, 1993, 38(9): 1259-1267.
    [43] Jaephil Cho, HyunSook Jung, YoungChul Park, et al. Electrochemical properties and Thermalstability of LiaNi1-xCoxO2 cathode materials[J]. J. Electrochem. Soc., 2000, 147(1): 15-20.
    [44]杨晓蝉,日本开发出高安全性的高放电容量镍酸锂正极材料[J].现代材料动态, 2005, 3(1): 8-8.
    [45] Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells[J]. Electrochimica Acta, 1993, 38(9): 1159-1167.
    [46] Tsutomu O, Atsushi U, Masatoshi N. Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells[J]. J. Electrochem Soc., 1993, 140(7): 1862-1870.
    [47] Arai H, Tsuda M, Saito K, et al. Structural and thermal characteristics of nickel dioxide derived from LiNiO2[J]. J. Solid State Chem., 2002, 163(1): 340-349.
    [48] Broussely M. Recent development on lithium ion batteries at SAFT[J]. J. Power Souces, 1999, 81-82(1): 140-143.
    [49]解晶莹,尹鸽平,史鹏飞.锂镍氧化物的合成和电化学行为研究[J].电源技术, 1997, 21(5): 185-189.
    [50] Armstrong A.R, Bruce P.G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J]. Nature 1996, 381(6): 499-500.
    [51] Croguennec L, Deniard P, Brec R. Electrochemical cyclability of orthorhombic LiMnO2 characterization of cycled materials[J]. J. Electrochem Soc., 1997, 144(9): 2672-2677.
    [52] Gummow R.J, Thackeray M.M. An investigation of spinel-related and orthombic LiMnO2 cathodes for rechargeable lithium batteries[J]. J. Electrochem. Soc., 1994, 141(5): 1178-1182.
    [53]杨书廷,岳红云,尹艳红,等.微波-固相复合加热技术合成LiNi0.5Co0.5O2及其性能研究[J].高等学校化学学报, 2006, 27(11): 2017-2021.
    [54] Yabuuchi N, Koyama Y, Nakayama N, et al. Solid-State Chemistry and Electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-Ion Batteries[J]. J. Electrochem Soc., 2005, 152(7): A1434?A1440.
    [55]王希敏,王先友,罗旭芳,等.锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2[J].化学进展, 2006, 18(12): 1720-1724.
    [56] Gao Y, Dahn J.R. Synyhesis and characterization of Li1+xMn2-xO4 for lithium ion battery application[J]. J. Electrochem. Soc., 1996, 143(1): 100-144.
    [57] Kumagai N, Fujiwara T, Tanno K, et al. Physical and electrochemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries[J]. J. Electrochem. Soc., 1996, 143(3): 1007-1013.
    [58] Piszora P. Temperature dependence of the order and distribution of Mn3+ and Mn4+ cations in orthorhombic LiMn2O4[J]. J. Alloys and Compounds, 2004, 382(1-2): 112-118.
    [59] Piszora P, Paszkowicz W, Baehtz C, et al. X-ray diffraction studies on the nature of the phase transition in the stoichiometric LiMn2O4[J]. J. Alloys and Compounds, 2004, 382(1-2): 119-122.
    [60] Ma S, Noguchi H, Yoshio M. An observation of peak split in high temperature CV studies on Li-stoichiometric spinel LiMn2O4 electrode[J]. J. Power Sources, 2004, 125(2): 228-235.
    [61]贺慧,程璇,张颖,等.锂离子电池正极材料的研究进展[J].功能材料, 2004, 35(6): 667-671.
    [62]徐茶清,田彦文,翟玉春.锂离子电池正极材料LiMn2O4的研究现状[J].材料与冶金学报, 2002, 1(4): 244-251.
    [63] Kim S.W, Pyun S.I. Thermodynamic and kinetic approaches to lithium intercalation into a Li1+xMn2O4 electrode using Monte Carlo simulation[J]. Electrochimica Acta, 2001, 46(3): 987-997.
    [64] Thackeray M, Shao-Horn Y, Kahaian A.J, et al. Structural fatigue in spinel electrodes in high voltage (4V) Li/LixMn2O4 cells[J]. Electrochem. Solid State Lett., 1998, 1(1): 7-9.
    [65] Wang X, Nakamura H, Yoshio M. Capacity fading mechanism of oxygen defect spinel as a 4V cathode material in Li-ion batteries[J]. J. Power Sources, 2002, 110(1): 19-26.
    [66] Padhi A.K, Nanjundaswamy K.S, Masquelier C, et al. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates[J]. J. Electrochem. Soc., 1997, 144(5): 1609-1613.
    [67] Kim H-S, Cho B-W, Cho W-II. Cycling performance of LiFePO4 cathode material for lithium secondary batteries[J]. J. Power Sources, 2004, 132(1-2): 235-239.
    [68] Kwon S.J, Kim C.W, Jeong W.T, et al. Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying[J]. J. Power Sources, 2004, 137(1): 93-99.
    [69] Bewlay S.L, Konstantinov K, Wang G.X, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source[J]. Materials Letters, 2004, 58(11): 1788-1791.
    [70] Zane D, Carewska M, Scaccia S, et al. Factor affecting rate performance of undoped LiFePO4[J]. Electrochimica Acta, 2004, 49(25): 4259-4271.
    [71] Andersson A.S, Thomas J.O. The source of first-cycle capacity loss in LiFePO4[J]. J. Powers Sources, 2001, 97-98(1): 498-502.
    [72] Yamada A, Chung S.C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. J. Electrochem. Soc., 2001, 148(3): A224-A229.
    [73] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J]. J. Powers Sources, 2001, 97-98(1): 508-511.
    [74]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展, 2005, 17(4): 604-613.
    [75]倪江锋,苏光耀,周恒辉,等.锂离子电池正极材料LiMPO4的研究进展[J].化学进展, 2004, 16(4): 554-560.
    [76] Lemordant D, Blanchard F, Bosser G, et al. Fluorinated Materials for Energy Conversion[M]. Amsterdam, USA:Elsevier Press, 2005: 137–171.
    [77] Nolan B G, Tsujioka S, Strauss S H, et al. Fluorinated Materials for Energy Conversion [M]. Amsterdam, USA: Elsevier Press, 2005: 195–222.
    [78] Jow R, Xu K, Zhang S, et al. Nonflammable non-aqueous electrolyte and non-aqueous electrolyte cells comprising the same[P]. US 6924061, 2005.
    [79] Abraham K M. Recent developments in secondary lithium battery technology[J] Journal of Power Sources, 1985, 14(1): 179-191.
    [80] Wantanabe N. Two types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics and mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries[J].Solid State Ionics, 1980, 1(1-2): 87-110.
    [81] Watanabe N, Hagiwara R, Nakajima T. On the Relation Between the Overpotentials and Structures of Graphite Fluoride Electrode in Nonaqueous Lithium Cell[J]. Journal of the Electrochemical Society, 1984, 131(9): 980-1984.
    [82] Nakajima T, Koh M, Gupta V, et al. Electrochemical behavior of graphite highly fluorinated by high oxidation state complex fluorides and elemental fluorine[J]. Electrochimica Acta, 2000, 45(10): 1655-1661.
    [83] Delmas C, Saadoune I, Rougier A. The cycling properties of the LixNi1?yCoyO2 electrode[J]. Journal of Power Sources, 1993, 43-44(1): 595-602.
    [84] Rougier A, Saadoune I, Gravereau P, et al. Effect of cobalt substitution on cationic distribution in LiNi1 ? y CoyO2 electrode materials[J]. Solid State Ionics, 1996, 90(1): 83-90.
    [85] Kubo K, Arai S, Yamada S, et al. Synthesis and charge–discharge properties of Li1+xNi1?x?yCoyO2?zFz[J]. Journal of Power Sources, 1999, 81/82(1): 599-603.
    [86] Naghash A R, Lee J Y. Lithium nickel oxyfluoride (Li1?zNi1+zFyO2?y) and lithium magnesium nickel oxide (Li1?z(MgxNi1?x)1+zO2) cathodes for lithium rechargeable batteries: II. Electrochemical investigations[J]. Electrochimica Acta, 2001, 46(1): 2293-2304
    [87] Naghash A R, Lee J Y. Lithium nickel oxyfluoride (Li1?zNi1+zFyO2?y) and lithium magnesium nickel oxide (Li1?z(MgxNi1?x)1+z O2) cathodes for lithium rechargeable batteries: Part I. Synthesis and characterization of bulk phases[J]. Electrochimica Acta, 2001, 46(1): 941-951
    [88] Lee M H, Kang Y J, Myung S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochimica Acta, 2004, 50(1): 939-948
    [89] He B L, Bao S J, Liang Y Y, et al. Electrochemical properties and synthesis of LiAl0.05Mn1.95O3.95F0.05 by a solution-based gel method for lithium secondary battery[J]. Journal of Solid State Chemistry, 2005, 178(2): 897-901.
    [90] Amatucci G G, Tarascon J.M. Optimization of Insertion Compounds Such as LiMn2O4 for Li-Ion Batteries[J]. Journal of the Electrochemical Society, 2002, 149(1): K31-K46.
    [91] Son J T, Kim H G. New investigation of fluorine-substituted spinel LiMn2O4?xFx by using sol–gel process[J]. Journal of Power Sources, 2005, 147(8): 220-226.
    [92] Amatucci G G, Pereira N, Zheng T, et al. Enhancement of the electrochemical properties of Li1Mn2O4 through chemical substitution[J]. Journal of Power Sources, 1999, 81/82(4): 39-43.
    [93] Amatucci G G, Tarascon J M. Lithium manganese oxy-fluorides for Li-ion rechargeable battery electrodes[P]. US, 5674645, 1997.
    [94] Choi W, Manthiram A. Superior Capacity Retention Spinal Oxyfluoride Cathodes for Lithium-Ion Batteries[J]. Electrochemical and Solid State Letters, 2006, 9(3): A245-A248.
    [95] Yonezawa S, Takashima M. Fluorinated Materials for Energy Conversion[M]. Amsterdam, USA:Elsevier Press, 2005, 125-236.
    [96] Yonezawa S, Yamasaki M, Takashima M. Surface fluorination of the cathode active materials for lithium secondary battery[J]. Journal of Fluorine Chemistry. 2004, 125(4): 1657-1661.
    [97] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high-capacity lithiumstorage material[J]. Science, 1997, 276(4):1395-1397.
    [98] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium ion batteries[J]. Nature, 2000, 407(8): 496-499.
    [99] Rowsell J L C, Pralong V, Nazar L F. Layered lithium iron nitride: a promising anode material for Li-ion batteries[J]. J. Am. Chem. Soc., 2001, 123(35): 8598-8599.
    [100] Pereire N, Klein L C, Amatucci G G, The electrochemistry of Zn3N and LiZnN, a lithium reaction mechanism for metal nitride electrodes[J]. J. Electrochem. Soc., 2002, 149(3): A262-271.
    [101] Oereira N, Dupont L, Tarascon J M, et al. Electrochemistry of Cu3N with lithium, a comples system with parallel processes[J]. J. Electrochem. Soc., 2002, 149(9): A1273-A1280.
    [102] Badway F, Cosandey F, Pereira N, et al. Carbon Metal Fluoride Nanocomposites High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries[J]. J. Electrochem. Soc., 2003, 150(10): A1318-A1327.
    [103] Li H, Richter G, Maier J. Reversible Formation Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries[J]. Adv. Mater., 2003, 15(9): 736-739.
    [104] Fu Z.W, Li C.L, Liu W.Y, et al. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode[J]. J. Electrochem. Soc., 2005, 152(2): E50-E55.
    [105] Arai H, Okada S, Sakurai Y, et al. Cathode performance and voltage estimation of metal trihalides[J]. J. Power Sources, 1997, 68(2): 716-719.
    [106] Briscoe J D, Gabriel G L. Transition metal fluoride cathodes for lithium thermal batteries[A] 1999 SAE Aerospace Power Systems Conference, Mesa, AZ, USA (1999.4), PP207-210
    [107] Badway F, Pereira N, Cosandey F, et al. Next Generation Positive Electrode Materials Enabled by Nanocomposites: Metal Fluorides[A]. 2002 MRS Fall Meeting, Boston, USA, 2002(12): 207-218.
    [108] Amatucci G.G, Badway F, DuPasquier A, et al. Next Generation Positive Electrode Materials Enabled by Nanocomposites: Metal Fluorides[A]. 1st International Energy Conversion Engineering Conference, Portsmouth, Virginia, 2003: 6606-6614.
    [109] Badway F, Pereira N, Cosandey F, et al. Carbon-Metal Fluoride Nanocomposites Structure and Electrochemistry of FeF3:C[J]. J. Electrochem. Soc., 2003, 150(9): A1209-A1218.
    [110] Amatuccia G.G. Transition metal fluoride: carbon nanoamalgam rechargeable battery cell electrode Material[P]. US 20040062994, 2004.4.
    [111] Amatuccia G.G. Metal fluorides as electrode materials[P]. US 20040121235, 2004.6.
    [112] Li H, Balaya P, Maier J. Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides[J]. J. Electrochem. Soc., 2004, 151(11): A1878-A1885.
    [113] Amatucci G.G, Pereira N. Fluoride based electode materials for advanced energy storage devices[J]. Journal of Fluorine Chemistry, 2007, 128(4): 243-262.
    [114] Zhou Yongning, Liu Wenyuan, Xue Mingzhe, et al. LiF/Co Nanocomposite as a New Li Storage Material[J]. Electrochemical and Solid-State Letters, 2006, 9(3): A147-A150.
    [115] Tarascon J.M, Grugeon S, Morcrette M, et al. New concepts for the search of betterelectrode materials for rechargeable lithium batteries[J]. Comptes Rendus Chimie, 2005, 8(1): 9-15.
    [116] Makimura Y, Rougier A, Tarascon. Pulsed laser deposited iron fluoride thin films for lithium-ion batteries[J]. Applied Surface Science, 2006, 252(3):4587-4592.
    [117] Makimura Y, Rougier A, Laffont L, et al. Electrochemical behavior of low temperature grown iron fluoride thin films [J]. Electrochemistry Communications, 2006, 8(5):1769-1774.
    [118] Plitz I, Badway F, Al-Sharab J, et al. Structure and Electrochemistry of Carbon-Metal Fluoride Nanocomposites Fabricated by Solid-State Redox Conversion Reaction[J]. J. Electrochem. Soc., 2005, 152(2): A307-A315.
    [119] Bervas M, Badway F, Klein L.C, et al. Bismuth Fluoride Nanocomposite as a Positive Electrode Material for Rechargeable Lithium Batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(4): A179-A183.
    [120] Bervas M, Mansour A.N, Yoon W.S, et al. Investigation of the Lithiation and Delithiation Conversion Mechanisms of Bismuth Fluoride Nanocomposites[J]. J. Electrochem. Soc., 2006, 153(4): A779-A808.
    [121] Bervas M, Klein L.C, Amatuccia G.G. Reversible Conversion Reactions with Lithium in Bismuth Oxyfluoride Nanocomposites[J]. J. Electrochem. Soc., 2006, 153(1): A159-A170.
    [122] Badway F, Mansour A.N, Pereira N, et al. Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices[J] Chem. Mater., 2007, 19(17): 4129-4141.
    [123]巴德,福克纳.电化学方法:原理及应用[M].北京:化学工业出版社, 1996: 25-320.
    [124]查全性.电极过程动力学导论[M].北京:科学出版社, 2004: 11-260.
    [125]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社, 2006: 42-310.
    [126]曹楚南,张鉴清.电化学阻抗导论[M].北京:科学出版社, 2002: 13-261.
    [127]项一非,李树家.中级物理化学实验[M].北京:高等教育出版社, 1988: 21-78.
    [128]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社, 1999: 7-96.
    [129]常铁军,祁欣.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社, 2000: 4-210.
    [130]伍文,王先友,王欣,等.锂二次电池新型正极材料FeF3(H2O)0.33的制备及电化学性能研究[J].功能材料, 2008, 11(39): 1824-1827.
    [131]伍文,王先友,杨顺毅,等.锂离子电池正极材料FeF3/C的电化学性能研究[J].功能材料与器件学报,已投稿.
    [132] Traversa, E, Armstrong T, Masquelier C, et al. Eds.: Materials Research Society Symposium Proceedings 972, Materials Research Society: Warrendale, PA, 2007.
    [133] Wu W, Wang Y, Wang X.Y, et al. Structure and electrochemical performance of FeF3/V2O5 composite cathode material for lithium-ion battery[J]. J. Alloys and Compounds, in press.
    [134] Wu W, Wang X.Y, Wang X, et al. Effects of MoS2 Doping on the Electrochemical Performance of FeF3 Cathode Materials for Lithium Ion Batteries[J]. Materials Letters, in press.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.