随焊电磁冲击控制焊接热裂纹研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强铝合金薄板-壳结构焊接时,存在焊接热裂纹敏感性高的缺点。本文从力学角度出发,根据电磁感应原理提出了一种利用电磁力随焊控制焊接热裂纹的新方法。该方法不改变焊缝成分,能量易于控制,可实现无机械接触控制热裂纹,焊件表面无损伤,不影响接头疲劳性能。
     为满足研究需要,本文研制了一套脉冲电磁冲击装置,设计功率为10kW。该装置以电容为储能元件,充电电压在0~1000V之间灵活选择,可以产生9~90Hz的脉冲电磁力。通过计算机仿真验证了设计方案的可行性,并结合实际选择主要元件参数。实测结果表明该装置性能满足设计要求。
     为测量线圈与工件间隙之间的磁场分布,选择霍尔传感器AD22151和HGT-2100作为测量元件,分别设计检测电路,并测量了平板螺旋线圈、平板螺旋线圈加集磁器和铁芯线圈的磁场分布。结果表明,平板螺旋线圈加集磁器后,可将磁场集中分布在焊缝区域,对控制焊接热裂纹更为有利。
     采用平板螺旋线圈配合集磁器研究了随焊电磁冲击对焊接热裂纹的影响。试验发现,脉冲电容充电电压和脉冲电磁力频率对试件热裂纹率影响很大,电压和频率过大或过小均不利于热裂纹的抑制。最佳效果时,裂纹率由常规焊时的47.2%降至12.7%,采用规范为:脉冲电容充电电压200V,电磁力频率18Hz,集磁器与焊件距离2mm。
     金相分析表明,随焊电磁冲击改善了焊缝金属的结晶状态,细化了焊缝晶粒,减少了焊接缺欠,增强了抗热裂能力。同时,电磁力挤压脆性温度区间的焊缝金属,产生横向压缩应变抵消凝固过程中的致裂拉伸应变。随焊电磁冲击防止热裂纹的机理可以归结为冶金因素和力学因素共同作用的结果。
The high susceptibility to hot crack is a shortcoming with welding thin plate-shell structures of high strength aluminum alloy. Basing on the fundamental principle of electromagnetic induction, a new technology of controlling welding hot crack by electromagnetic forces during welding is put forward. It could control magnitude of energy easily and prevent welding hot crack without mechanical contact, without changing components of weld bead and damaging surface layer and affecting fatigue performance.
     A pulse electromagnetic force device was first developed in this thesis. A electric capacitor was chose to accumulate energy, and the charging voltage could be changed between 0~1000V. The frequency of electromagnetic forces could be set between 9Hz~90Hz. Computer simulation proved the feasibility of design, and the parameters of main elements was selected appropriately. The experiment of the waveform indicated that the device can satisfy the design specification very much.
     Hall sensor AD22151 and HGT-2100 were employed in order to measure gap magnetic field between coil and workpiece. The measuring circuits were designed respectively. In virtue of them, the magnetic fields of a plane spiral coil, a plane spiral coil with field shaper and a coil with silicon-steel plate were obtained. The measurement results indicated that the magnetic field distribution of the plane spiral coil with field shaper became more concentrative, which contributed to controlling welding hot crack.
     The plane spiral coil with field shaper was used to study the influence of pulse electromagnetic force on welding hot crack. The results showed that the charging voltage and the frequency of electromagnetic force had great influence on welding hot crack. The technology could prevent welding hot cracking well only when the charging voltage and the frequency of electromagnetic force were in the appropriate range. Under the best condition, the hot crack rate decreased from 47.2% of the conventional weldment to 12.7% with the follow parameters: charging voltage of 200V, frequency of 18Hz and clearance distance of 2 mm between the field shaper and the weldment.
     Metallographic analysis indicated that pulse electromagnetic force improved the crystalline state of weld bead, refined the grain size and decreased the weld discontinuity . These all contribute to inhibit welding hot crack. Electromagnetic force generated the compression strain on the weld metal in the brittle temperature range, which counteracted the tensile strain leading to hot crack. It can be concluded that the two factors, mechanics and metallurgy, co-work to prevent hot crack.
引文
1张文钺.焊接冶金学.机械工业出版社, 2002:221~224
    2 S.Q. Guo, X.H. Li. Welding Distortion Control of Thin Aluminum Alloy Plate by Static Thermal Tensioning. Journal of Material Science & Technology. 2001, 17(1):163~164
    3 Q. Guan, D.L. Guo. Low Stress Non-Distortion(LSND)Welding—A New Technique for Thin Material. Welding in the World. 1994, 33(3): 160~167
    4李廷举,温斌,张志峰等.电磁场作用下的材料加工新技术.大连理工大学学报. 2000, 40(1):61~64
    5 G. Martin, J. Frohberg. Thirty Years of Levitation Melting Calorimetry a Balance. Thermochimica Acta. 1999, 337:7~17
    6 X.S. Zheng, Z.X. Li and Y.C. Wang. Experimental Study of Concavity of Large EMC Slab. Science and Technology of Advanced Materials. 2001, (2):113~116
    7任忠鸣,董华锋,邓康等.软接触结晶器电磁连铸中初始凝固的基础研究.金属学报. 1999, 35(8):851~855
    8 Z.M. Xu, T.X. Li and Y.H. Zhou. Elimination of Fe in Al-Si Cast Alloy Scrap by Electromagnetic Filtration. Journal of Materials Science. 2003, 38:1~9
    9 Z.M. Xu, T.X. Li and Y.H. Zhou. Application of Electromagnetic Separation of Phase in Alloy Melt to Produce In-situ Surface and Functionally Gradient Composites. Metallurgical and Materials Transactions. 2003, 34A: 1719~1725
    10贺幼良,杨院生,胡壮麟.电磁作用下的金属凝固与成型.材料导报. 2000, 14(7):3~7
    11于洋,李宝宽.钢连铸电磁搅拌工艺中电磁力的计算.金属学报. 2006, 42, (5):540~544
    12杨应平,黄尚宇.电磁成形的物理学原理.工科物理. 1999, l9(5):35~36
    13韩非,莫健华.电磁成形技术理论与应用的研究进展.锻压技术. 2006, (6): 4~7
    14 E. Anter, G. Mark. Modeling of the Electromagnetic Forming of Sheet Metals: State-of-art and Future Needs. Journal of Materials Processing Technology.2003, 142(3): 744~754
    15 X. Zhang, Z.R. Wang and F.M. Song. Finite Element Simulation of the Electromagnetic Piercing of Sheet Metal. Journal of Materials Processing Technology. 2004, 151(13):350~354
    16 C.F. Li, Z.H. Zhao and J.H. Li. The Effect of Tube Length of on Magnetic Pressure in Tube Electromagnetic Bulging. Journal of Materials Processing Technology. 2005, 166(3):381~386
    17 D.A. Olivera, M.J. Worswick and M. Finn. Electromagnetic Forming of Aluminum Alloy Sheet:Free-form and Cavity Fill Experiments and Model. Journal of Materials Processing Technology. 2005, 170(12):350~362
    18李春峰,于海平.电磁成形技术理论研究进展.塑性工程学报. 2005, 12(5):1~7
    19 C.F. Li, Z.H. Zhao and J.H. Li. Numerical Simulation of the Magnetic Pressure in Tube Electromagnetic Bulging. Journal of Materials Processing Technology. 2002, 123:225~228
    20张守彬.电磁成形设备研制及工艺参数的实验研究.哈尔滨工业大学硕士学位论文. 1986:4~5
    21 R.W. Davies, S. Olovashchenk and A. Oseph. Electromagnetic Forming of Aluminum Sheet. Automotive Light Weighting Materials. FY 2004 Progress Report:31~38
    22 O. R. Hachkevych, R. S. Musii and H. B. Stasyuk. Thermo-elastic State of a Conducting Plate under the Action of an Electromagnetic Field in the Form of Damped Sinusoid. Materials Science. 2003, 39(6):780~787
    23罗健,贾昌申.外加纵向磁场GTAW焊接机理.金属学报. 2001, 37(2):212~216
    24 Tse, Man H C and Yue H C. Effect of Electric and Magnetic Fields on Plasma Control during CO2 Laser Welding. Optics and Lasers in Engineering. 1999, 32(1):55~63
    25罗健,贾昌申.外加纵向磁场GTAW焊缝成形机理.焊接学报. 2001, 22(3):17~20
    26 Kou S, Le Y. Improve Weld Quality by Low Frequency Arc Oscillation. Welding Journal. 1985, 64(3):51~55
    27 J.C. Vlillafuerte, H.W. Kerr. Electromagnetic Stirring and Grain Refinementin Stainless GTA Welds. Welding Journal. 1990, 69(1):1~13
    28 G.M. Reddy, A.A. Gokhale and K. Rao. Welding Microstructure Refinement in a 1441 Grade Aluminum-lithium Alloy. Journal of Materials Science. 1997, (32):4117~4126
    29贾昌申,罗健,贾涛等.外加间歇交变纵向磁场对GTAW焊缝中气孔的抑制.航空工艺技术. 1999, 42(3):26~28
    30卢烨.磁控电弧摆动对铝合金焊缝结晶裂纹的影响.焊接学报. 1991, 12(2):65~71
    31殷咸青,李海刚,罗健.用电磁搅拌抑制LD10CS铝合金焊缝热裂纹的研究.西安交通大学学报. 1998, 32(5):91~95
    32 G.D. Janaki Ram, T.K. Mitra and M.K. Raju. Use of Inoculants to Refine Weld Solidification Structure and Improve Weld Ability in Type 2090 Al-Li Alloy. Materials Science and Engineering. 2000, 276 A:48~57
    33高大路,贺运佳,王引真.铈含量对2090合金焊缝结晶裂纹倾向的影响.第七届全国焊接学术会议论文集.青岛, 1993:295~299
    34张文钺,魏祚伟. 8090铝锂合金热裂敏感性的研究.焊接. 1992, (3):8~12
    35王者昌,崔岩.局部快冷减小焊接热裂纹的研究.焊接学报. 1995, 16(3):135~138
    36王者昌.局部快冷在熔化焊接中的应用.机械科学与技术. 2000, 19(6):970~974
    37田锡唐,杨愉平,张忠.随焊激冷防止焊接热裂纹新方法的研究.材料科学与工艺. 1994, 2 (1):69~73
    38田锡唐,郭绍庆,徐文立.随焊激冷对LY12CZ铝合金焊接热裂纹倾向影响的研究.宇航材料工艺. 1998, 28(5):48~52
    39郭绍庆,徐文立,李晓红等.随焊激冷防止高强铝合金焊接热裂纹的数值模拟研究.材料科学与工艺. 1999, (7):116~120
    40 E. Hernandez, D.H. North. The Influence of External Local Heating in Preventing Cracking during Welding of Aluminum Alloy Sheet. Welding Journal. 1984, (3):84~90
    41 V. Petzet, C. Buskens and H. Pesch. Elimination of Hot Cracking in Laser Beam Welding. Proc. Appl. Math. Mech. 2004, (4):580~581
    42 V. Petzet, H. Pesch. Different Optimization Models for Crack-free Laser Welding. Proc. Appl. Math. Mech. 2005, (5):755~756
    43刘伟平,田锡唐,张修智.一种防止高强铝合金焊接热裂纹产生的新方法.焊接学报. 1995, 16(2):106~111
    44徐文立,田锡唐.随焊锤击防止高强铝合金薄板焊接热裂纹的研究.第十次全国焊接会议论文集.天津, 2001:221~224
    45范成磊,方洪渊,陶军等.随焊冲击碾压控制焊接应力变形防止热裂纹机理.清华大学学报. 2005, 45(2):159~162
    46范成磊,方洪渊,陶军.随焊冲击碾压减小应力变形防止热裂纹应变场分析.焊接学报. 2004, 25(6):47~51
    47裴元庆,姜桂宾,王兆安. LC滤波的三相桥式整流电路网侧谐波分析.电力电子技术. 2003, 37(3):34~36
    48李序葆,赵永健.电力电子器件及应用.机械工业出版社, 2006:350~356
    49贾贵玺,徐欣东. IGBT缓冲电路的设计.电力传动. 1998, (3):54~55
    50赛尔吉欧.佛朗哥.基于运算放大器和模拟集成电路的电路设计.刘树棠等译.西安交通大学出版社, 2004:60~96
    51张婧.基于电磁力的焊接热裂纹随焊控制新方法.哈尔滨工业大学硕士学位论文. 2006:35~55
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.