抗单、双相抑郁症药物对星形胶质细胞作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗单、双相抑郁症药物对星形胶质细胞作用的研究
     前言
     单相和双相抑郁症均是常见的精神疾病,其中单相抑郁症就是通常所说的抑郁症,而双相抑郁症又称为躁狂抑郁症。目前临床上,治疗单相抑郁症的主要药物是以氟西汀为代表的五羟色胺特异性再摄取抑制剂(SSRIs),治疗双相抑郁症的药物主要有碳酸锂、丙戊酸钠和卡马西平三种。但是,这些药物的确切药理机制还都有待进一步研究。
     磷脂酶A_2功能学上主要分为三类:分泌型磷脂酶A_2(sPLA_2),非钙离子依赖型磷脂酶A_2(iPLA_2),细胞溶质型磷脂酶A_2(cPLA_2)。它们能水解细胞膜磷脂中sn-2位点的酰酯键,产生溶血磷脂和游离的脂肪酸(例如花生四烯酸)。其中,cPLA_2的活化和花生四烯酸的释放,通过不同机制分别与多巴胺、谷氨酸、五羟色胺等受体发生联系,而这些作用又与第二信使水平的调控有关。cPLA_(2a)亚型是cPLA_2在星形胶质细胞中的主要表达类型。在整体实验中,以临床治疗相关浓度分别喂食大鼠锂盐、卡马西平六周或者丙戊酸30天后,每种药物都可以减少体内甘油磷脂脱酰基转变为花生四烯酸的过程,进而影响随后的再酰化进程。锂盐或卡马西平慢性处理六周可以减少大鼠脑内cPLA_(2a)的表达。
     五羟色胺(5-HT)是一种重要的神经递质,其受体有7种。5-HT_2受体分为5-HT_(2A),5-HT_(2B)和5-HT_(2C)三种亚型,在原代培养的星形胶质细胞上均有表达。三种5-HT_2受体均为G(q/11)蛋白偶联受体,它们能活化磷脂酶C(PLC),后者可分解磷脂酰肌醇二磷酸(PIP2)产生二脂酰甘油(DAG)和三磷酸肌醇(IP_3),此反应导致细胞内游离钙离子浓度增加。在星形胶质细胞中,氟西汀可通过5-HT_2受体增加细胞内钙离子浓度。
     研究表明细胞外信号调控激酶(ERK)在中枢神经系统中发挥重要作用,例如在突触可塑性和记忆形成等方面起到关键作用。据报道在星形胶质细胞中,氟西汀刺激ERK_(1/2)磷酸化,从而诱导基因表达。Fos蛋白家族是一组转录因子,包括c-Fos、FosB、Fra-1、Fra-2和delta-FosB(为FosB的剪接变体)。很多磷酸化的蛋白激酶可以影响Fos蛋白表达,例如有丝分裂活化蛋白激酶(MAPK)、蛋白激酶A(PKA)、PKC。Fos蛋白可以影响蛋白稳定性、蛋白结合活力、一些转录因子的间接激活潜力等。
     原代培养的星形胶质细胞不含有五羟色胺转载体。本课题主要在原代培养的星形胶质细胞中,研究抗双相抑郁症药物和氟西汀对星形胶质细胞的作用及机制。即:①三种抗双相抑郁症药物对PLA_2的长期作用;②氟西汀是否通过5-HT_(2B)受体引起ERK磷酸化,进而影响转录因子的表达(以c-Fos和FosB为检测指标)。
     方法
     采用原代培养的小鼠星形胶质细胞。①分别用碳酸锂、丙戊酸钠、卡马西平和托吡酯处理细胞1-4周,用RT-PCR和免疫印迹方法检测药物对PLA_2三种亚型的作用;②在正常或经5-HT_(2B)受体siRNA干扰后的细胞中,氟西汀处理20分钟观察ERK_(1/2)磷酸化水平,再用氟西汀处理正常细胞1或4小时后,观察c-Fos和FosB mRNA或蛋白表达水平,并且检测这一作用是否可被5-HT_(2B)受体抑制剂SB204741,或ERK_(1/2)磷酸化抑制剂U0126所抑制。使用SPSS12.0软件进行统计学分析,多组资料用one-way ANOVA方法进行比较,P<0.05表示差异具有统计学意义。
     结果
     1、三种抗双相抑郁症药物长期作用的酶特异性
     药物处理2周后,0.25 mM,0.5 mM和1mM碳酸锂,25μM和50μM卡马西平,100μM和1mM丙戊酸钠均可使cPLA_(2a)mRNA和蛋白表达发生上调,仅持续时间不同。但是这三种药物对sPLA_2和iPLA_2表达没有影响。表明三种抗双相抑郁症药物长期作用具有cPLA_(2a)特异性。
     2、三种抗双相抑郁症药物对cPLA_(2a)调节具有药物特异性
     与卡马西平和丙戊酸钠一样,托吡酯也为抗癫痫药物,但没有抗双相抑郁症作用,100μM托吡酯对cPLA_(2a)表达1-4周没有作用。表明三种抗双相抑郁症药物对cPLA_(2a)长期作用具有抗双相抑郁症药物特异性。
     3、氟西汀通过5-HT_(2B)受体引起ERK_(1/2)磷酸化
     在正常培养的星形胶质细胞中,10μM氟西汀20分钟可以使ERK_(1/2)磷酸化水平增高。但在5-HT_(2B)受体成功沉默后的星形胶质细胞中,氟西汀的这一作用消失。氟西汀的作用还可被蛋白激酶C(PKC)抑制剂GF109203X和钙离子螯合剂所抑制。
     4、氟西汀可增加c-Fos和FosB表达
     10μM氟西汀在1小时和4小时分别增加c-Fos和FosB mRNA和蛋白表达水平。此作用可被SB204741和U0126抑制。表明氟西汀是通过5-HT_(2B)受体,引起ERK_(1/2)磷酸化后,进一步调节c-Fos和FosB表达。
     讨论
     1、三种抗双相抑郁症药物对cPLA_(2a)的调节
     低浓度的碳酸锂在研究时期内仅对cPLA_(2a)有上调作用,高浓度的碳酸锂作用长时间后有下调作用。长期处理影响表达水平的理论还在卡马西平和丙戊酸的结果中得到应证,二者高浓度(50μM和1 mM)的作用在处理2-3周后达到峰值,在4周后上调幅度消除或者迅速下降,然而二者低浓度(25μM和100μM)的作用在4周后更为显著,且发展的更慢。相反的是,无抗双相精神障碍疗效的托吡酯没有影响cPLA_(2a)的表达,并且三种抗双相精神障碍药物对iPLA_2和sPLA_2mRNA表达没有改变。以上观察(上调和下调)均表明了酶的特异性和药物的特异性,这些作用均有赖于药物的浓度和处理时间。在本实验中所使用的药物浓度与临床药物浓度具有相关性。
     在本实验中,cPLA_(2a)是PLA_2中唯一对磷脂底物(可转化为花生四烯酸)有特异作用的。在星形胶质细胞内,花生四烯酸以复杂的方式干扰细胞内游离钙离子浓度。钙离子在自身细胞内,以及在星形胶质细胞同神经元之间均有信号传导功能。并且,释放的花生四烯酸能进一步氧化为类花生酸类物质,转化为内源性大麻素或者在细胞膜上再酰化,此过程在过去被大大低估了。
     2、氟西汀对c-Fos和FosB的作用机制
     RNA沉默实验表明,在分化后的星形胶质细胞中氟西汀选择性地作用于5-HT_(2B)受体。氟西汀对ERK_(1/2)的作用与以前报道的氟西汀对细胞内钙离子的作用相似。在本实验中,我们发现氟西汀对c-Fos和FosB表达的上调作用可以被U0126抑制,提示在星形胶质细胞中氟西汀对基因的调控作用是由5-HT_(2B)受体引起的ERK磷酸化所介导的。此作用是否为五羟色胺再摄取抑制剂(SSRIs)治疗作用的关键,还有赖于检验其它SSRIs药物是否也刺激5-HT_(2B)受体。氟西汀和帕罗西汀有相似的治疗作用,近期实验我们还发现帕罗西汀诱导ERK磷酸化的浓度依赖性与氟西汀的作用完全一致。
     结论
     1、碳酸锂、丙戊酸钠和卡马西平三种抗双相精神障碍药物对cPLA_(2a)mRNA和蛋白表达的长期调节存在共同趋势,并且这一作用具有cPLA_(2a)酶特异性及抗双相精神障碍类药物特异性。
     2、氟西汀通过5-HT_(2B)受体诱导c-Fos和FosB mRNA和蛋白表达增加,此过程依赖ERK_(1/2)磷酸化。
Introduction
     Unipolar depression and bipolar depression are both common mental disorders, and unipolar depression is usually called depression,and bipolar depression is also called manic-depressive illness.Clinically,anti-unipolar depression drugs are mainly serotonin-specific reuptake inhibitors(SSRIs),fluoxetine as represented,and lithium salts(Li~+),valproic acid(VPA),and carbamaze-pine(CBZ)are the three classical anti-bipolar drugs.But the accurate pharmacological mechanisms of these drugs have not been clear and need to be further investigated.
     In brain tissue,phospholipases A_2(PLA_2)mainly includes three subtypes: secretory phospholipase A_2(sPLA_2),cytosolic phospholipase A_2(cPLA_2),and calcium-independent phospholipase A_2(iPLA_2).These PLA_2 could specifically hydrolyze the acyl ester bond at the sn-2 position of glycerol in membrane phospholipids to produce lysophospholipids and free fatty acids(such as arachidonic acid,AA).cPLA_2 activity and arachidonic acid release is linked to dopamine, glutamate,serotonin receptors through different coupling mechanisms.These mechanisms modulate the release of arachidonic acid and levels of second messengers in brain tissue.The majority of cPLA_2 in astrocytes is cPLA_(2a).In intact brain, scientists have established that after 6 weeks(Li~+ and CBZ)or 30 days(VPA)of treatment in rats with doses leading to therapeutically relevant drug levels,each drug decreased the in vivo turnover of arachidonic acid by deacylation from glycerophospholipids followed by re-acylation.Chronic treatment with Li~+ for 6 weeks decreased the expression of cPLA_(2a)in rat brain.
     Serotonin[5-hydroxytryptamine(5-HT)]is an important neurotransmitter in the CNS that has seven subtypes of receptors termed 5-HT_1 through 5-HT_7.5-HT_2 receptor comprises of 5-HT_(2A),5-HT_(2B)and 5-HT_(2C)receptors which all express on astrocytes.All three 5-HT_2 receptors are Gq/11 protein-coupled and their stimulation activates phospholipase C(PLC),generating diacylglycerol(DAG)and inositol 1,4,5-trisphosphate(IP3)by hydrolysis of phosphatidyl-inositol 4,5-bisphosphate(PIP2) and leading to an increase of free cytosolic calcium concentration[Ca~(2+)]_i.Acute exposure to fluoxetine similarly increases[Ca~(2+)]_i in astrocytes by a direct 5-HT_2 receptor action.
     Recently some reports shows that extracellular-signal regulated kinases(ERK) plays an important role in CNS,for example,in synaptic plasticity and memory formation.Fluoxetine causes ERK phosphorylation,followed by inducing expressions of certain genes.The Fos family of transcription factors includes c-Fos,FosB,Fra-1 and Fra-2 as well as smaller FosB(splice variants of FosB).The activity of all Fos family members is modulated by different kinases,i.e.,MAPK,PKA or PKC,and then Fos protein influences protein stability,DNA-binding activity and the transactivating potential of the transcription factors.
     In primary cultured astrocytes with dibutyryl cyclic AMP(dBcAMP),there is no serotonin transporter.In the present work,we studied of fluoxetine and anti-bipolar drugs:①the regulation of cPLA_2 by chronic treatment with three anti-bipolar drugs;②whether fluoxetine-mediated 5-HT_(2B)receptor stimulation in astrocytes caused by ERK phosphorylation,followed by effecting the expressions of transcription factors (c-Fos and FosB).
     Methods
     Primary cultured of mouse astrocytes.①After treating with lithium carbonate, valproate sodium and carbamazepine for 1-4 weeks,measuring the mRNA and protein expressions of three PLA_2 subtypes by RT-PCR and Western blot;②In astrocytes control or RNA interfered with 5-HT_(2B)receptor siRNA,determining the phosphorylation level of ERK_(1/2)with fluoxetine for 20 min,then checking the mRNA and protein expressions of c-Fos and FosB with fluoxetine for 1 or 4 hours,in the absence or presence of SB204741(5-HT_(2B)receptor antagonist)or U0126(an inhibitor of ERK phosphorylation).The results are analysised with one-way ANOVA by SPSS12.0 software.P<0.05 indicates the statically significant difference.
     Results
     1、The chronic effect of three anti-bipolar drugs is enzyme-specific
     After 2 weeks,lithium carbonate(0.25 mM,0.5 mM and 1 mM),carbamazepine (25μM and 50μM),valproate sodium(100μM and 1 mM)could upregulate the mRNA and protein of cPLA_(2a),only the time duration was different.But these drugs had non-function to sPLA_2 and iPLA_2,indicating the prolonged treatment with three bipolar drugs having cPLA_(2a)enzyme-specificity.
     2、The chronic effect of anti-bipolar drugs to cPLA_(2a)is drug-specific
     Topiramate,an anticonvulsant as well as CBZ and VPA,but,which has no anti-bipolar effect.The expression of cPLA_(2a)could not be regulated by 100μM topiramate for 1-4 weeks.Suggesting the chronic regulation of cPLA_(2a)with three bipolar drugs being drug-specificity.
     3、ERK phosphorylation induced by fluoxetine via 5-HT_(2B)receptor
     In common cultured astrocytes,fluoxetine could increase the phosphorylation level of ERK_(1/2)in 20 min,but this function was abolished in astrocytes RNA interfered with 5-HT_(2B)receptor siRNA.And ERK phosphorylation induced by fluoxetine could be inhibited by GF109203X(PKC inhibition)or BAPTA/AM(a chelator of intracellular Ca~(2+)).
     4、The expression of c-Fos and FosB increased by fluoxetine
     10μM fluoxetine could respectively increase the mRNA and protein expressions of c-Fos and FosB,which could be inhibited by SB204741 or U0126.Indicating the regulation of c-Fos and FosB by fluoxetine via 5-HT_(2B)receptor,and dependenting on ERK phosphorylation mediated by fluoxetine.
     Discussion
     1、The expression of PLA_2 regulated by three anti-bipolar drugs
     Lower concentrations of lithium carbonate led within the period studied only to an up-regulation,but it is possible that longer exposure times might have resulted in a down-regulation.The concept that the length of the treatment period may affect the response is supported by the findings with carbamazepine and valproic acid where the effect of higher concentrations(50μM;1 mM)peaked after 2-3 weeks of treatment and was abolished or greatly reduced after 4 weeks,whereas that to the lower concentration(25μM;100μM)was pronounced after 4 weeks,but also developed more slowly.In contrast,topiramate,which has no anti-bipolar effect had no effect on cPLA_(2a)expression,and mRNA expression of iPLA_2 and sPLA_2 was unaltered by Li+, VPA,and CBZ.Thus,the observed effects(up-regulation and down-regulation)show both enzyme specificity and drug specificity,and it was in a systematic fashion dependent upon drug concentration and the length of the treatment period.The concentrations used in the present study are probably pharmacologically relevant.
     In the present context,it is of interest that cPLA_(2a)is the only PLA_2 that has specificity for phospholipid substrates containing arachidonic acid(AA).Moreover,the released arachidonic acid can be further oxidized to eicosanoids,converted to endocannabinoids or re-acylated in the membrane,a process that in the past has been quantitatively greatly underestimated.
     2、The mechanism of c-Fos and FosB expression regulated by fluoxetine
     RNA interference experiments showed that fluoxetine in cultures of well-differentiated astrocytes exclusively acts on 5-HT_(2B)receptors.The potency of fluoxetine in the induction of ERK_(1/2)transactivation was similar to that previously reported for its effect on[Ca~(2+)]i and in agreement with its affinity for the 5-HT_(2B) receptor.In the present work,we demonstrated that the upregulation of c-Fos and FosB expression by fluoxetine in astrocytes was inhibited by U0126,suggesting that the effects of fluoxetine on gene regulation in astrocytes were induced by 5-HT_(2B) receptor-mediated ERK_(1/2)phosphorylation.Whether or not such an effect might be of importance for the therapeutic effect of serotonin-specific uptake inhibitors(SSRIs), depends upon whether other SSRIs also stimulate 5-HT_(2B)receptors at realistic extracellular brain concentrations.Fluoxetine and paroxetine have approximately similar therapeutic potency and recent preliminary experiments have shown that the concentration dependence for paroxetine-mediated ERK phosphorylation is virtually identical to that found for fluoxetine.
     Conclusion
     1、The expression of cPLA_(2a)mRNA and protein regulated by lithium carbonate, CBZ and VPA had similar trend,and this function was anti-bipolar drug-specific and enzyme-specific.
     2、Fluoxetine up-regulated the expression of c-Fos and FosB by stimulation of 5-HT_(2B)receptor and ERK phosphorylation.
引文
1 Kaufman J,Martin A,King RA,et al.Are child-,adolescent-,and adult-onset depression one and the same disorder?.Biological Psychiatry.2001;49:980-1001.
    2 Pine DS,Cohen P,Gurley D,et al.The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders.Archives of General Psychiatry.1998;55:56-64.
    3 Benfield P,Heel RC,Lewis SP.A review of its pharmacodynamic and pharmacokinetic properties,and therapeutic efficacy in depressive illness.Drugs.1986;32:481-508.
    4 Boyer WF,Feighner JP.An overview of paroxetine.J Clin Psychiatry.1992;53:3-6.
    5 Nierenberg AA,Farabaugh AH,Alpert JE,et al.Timing of onset of antidepressant response with fluoxetine treatment.Am J Psychiatry.2000;157:1423-1428.
    6 Beyer CE,Cremers TI.Do selective serotonin reuptake inhibitors acutely increase frontal cortex levels of serotonin? Eur J Pharmacol.2008;580:350-354.
    7 Angold A.Childhood and adolescent depression Ⅱ:Research in clinical populations.British Journal of Psychiatry.1988;153:476-492.
    8 Essau CF,Petermann F,ReynoldsWM.Depressive Disorders in Children and Adolescents.In:Essau FPCA.Epidemiology,Risk Factors and Treatment.USA:Jason Aronson Inc,1999.p326.
    9 Bond L,Toumbourou JW,Thomas L,et al.Individual,family,school,and community risk and protective factors for depressive symptoms in adolescents:a comparison of risk profiles for substance use and depressive symptoms.Prevention Science.2005;6:73-88.
    10 Flament MF,Cohen D,Choquet M,et al.Phenomenology,psychosocial correlates and treatment seeking in major depression and dysthmia of adolescence.Journal of the American Academy of Child and Adolescent Psychiatry.2001;40:1070-1078.
    11 Lewinsohn PM,Rohde P,Seeley JR.Major depressive disorder in older adolescents:prevalence,risk factors and clinical implications.Clinical Psychology Review.1998;18:765-794.
    12 Schou M.Lithium treatment at 52.J Affect Disord.2001;67:21-32.
    13 Goodnick PJ.Anticonvulsants in the treatment of bipolar mania.Expert Opin Pharmacother.2006;7:401^10.
    14 Temple S.The Devel opment of Neural Stem Cells.Nature.2001;414:1122-1127.
    15 Sradling A,Drummond,Barbosa D,et al Stem Cells Find Their Niche.Nature.2001;414:982-1104
    16 McFarland KN,Wilkes SR,Koss SE,et al.Neural specific Inactivati on of ShcA Results in Increased Embryonic Neural Progenit or Apoptosis and Micr oencephaly.J Neurosci.2006;26:78852-7897.
    17 Molofsky AV,Pardal R,Morrison SJ.Diverse Mechanisms Regulate Stem Cell Self2renewal.Curr Op in Cell Biol.2004;16:7002-7007.
    18 Adams JG,Watt FM.Fibronectin Inhibits the Terminal Differential on of Human Keratinocytes.Nature.1989;340:3072-3091.
    19 Xu C,Inokuma MS,Denham J,et al.Feeder free Growth of Undifferentiated Human Embryonicstem Cells.Nat Biotechnol.2001;19:9712-9742.
    20 Mercier F,Kitasako JT,Hatt on GI.Anat omy of the Brain Neurogenic Zones Revisited:Fract ones and the Fibroblast /Macrophage Net work.J Comp Neurol.2002;451:1702-1881.
    21 Farooqui AA,Rosenberger TA,Honocks LA.Arachidonic acid neurotrauma and neurodegenerative diseases.In:Yehuda S.Handbook of Essential Fatty Acid Biology.Humana:Press Totowa NJ,1997.pp 277.
    22 Matsuzawa A,Murakami M,Atsumi G,et al.Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion.Biochem.J.1996;318:701-709.
    23 Kim D.K,Rordorf G,Nemenoff R.A,et al.Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures.Biochem.J.1995;310:83-90.
    24 Moskowitz N,Schook W,Puszkin S.Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A2.Science.1982;216:305-307.
    25 Matsuzawa A,Murakami M,Atsumi G,et al.Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion.Biochem. J.1996;318:701-709.
    26 Wei S,Ong W.Y,Thwin M.M,et al.Differential activities of secretory phospholipase A2 (sPLA2)in rat brain and effects of sPLA2 non neurotransmitter release.Neuroscience.2003;21:891-898.
    27 Wolf M J,Gross R.W.Expression,purification,and kinetic characterization of a recombinant 80-kDa intracellular calcium-dependent phospholipase A2.J.Biol.Chem.1996;271:30879-30885.
    28 Williams S.D,Gottlieb R.A.Inhibition of mitochondrial calcium-independent phospholipase A2 (iPLA2)attenuates mitochondrial phospholipid loss and is cardioprotective,Biochem.J.2002;362:23-32.
    29 Farooqui A.A,Horrocks L.A.Plasmalogens:workhorse lipids of membranes in normal and injured neurons and glia.Neuroscientist.2001;7:232-245.
    30 DeCoster M.A,Lambeau G,Lazdunski M,et al.Secreted phospholipase A2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures.J.Neurosci.Res.2002;67:634-645.
    31 Stephenson D.T,Manetta J.V,White D.L,et al.Calcium-sensitive cytosolic phospholipase A2(cPLA2)is expressed in human brain astrocytes.Brain Res.1994;637:97-105.
    32 Strokin M,Sergeeva M,Reiser G Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+.Br.J.Pharmacol.2003;139:1014-1022.
    33 Williams RS,Cheng L,Mudge AW,et al.A common mechanism of action for three mood-stabilizing drugs.Nature.2002;417:292-295.
    34 Di Daniel E,Cheng L,Maycox PR,et al.The common inositol-reversible effect of mood stabilizers on neurons does not involve GSK3 inhibition,myo-inositol-1-phosphate synthase or the sodium-dependent myo-inositol transporters.Mol Cell Neurosci.2006;32:27-36.
    35 Chang MC,Grange E,Rabin O,et al.Lithium decreases turnover of arachidonate in several brain phospholipids.Neurosci Lett.1996;220:171-174.
    36 Chang MC,Contreras MA,Rosenberger TA,et al.Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids:a possible common effect of mood stabilizers.J Neurochem.2001;77:796-803.
    37 Bazinet RP,Rao JS,Chang L,et al.Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat:relevance to bipolar disorder.Biol Psychiatry.2006;59:401-407.
    38 Rapoport SI,Bosetti F.Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry.2002;59:592-596.
    39 Bazinet RP,Rao JS,Chang L,et al.Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat.Psychopharmacol (Berl).2005;182:180-185.
    40 Rintala J,Seemann R,Chandrasekaran K,et al.85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain.Neuroreport.1999;10:3887-3890.
    41 Weerasinghe GR,Rapoport SI,Bosetti F.The effect of chronic lithium on arachidonic acid release and metabolism in rat brain does not involve secretory phospholipase A2 or lipoxygenase/cytochrome P450 pathways.Brain Res Bull.2004;63:485-489.
    42 Basselin M,Chang L,Seemann R,et al.Chronic lithium administration to rats selectively modifies 5-HT_(2A/2C)receptor-mediated brain signaling via arachidonic acid.Neuropsychopharmacol.2005;30:461-472.
    43 Ghosh M,Tucker DE,Burchett SA,et al.Properties of the Group TV phospholipase A2 family.Prog Lipid Res.2006;45:487-510.
    44 Ghelardoni S,Tomita YA,Bell JM,et al.Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain.Biol Psychiatry.2004;56:248-254.
    45 Langer SZ.Presynaptic regulation of the release of catecholamines.Pharmacol Rev.1980;32:337-362.
    46 Hoyer D,Clarke DE,Fozard JR,et al.International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin).Pharmacol Rev.1994;46:157-203.
    47 Baumgarten HG,Gothert M.Serotoninergic Neurons and 5-HT Receptors in the CNS Handbook of Experimental Pharmacology.Springer.1997;129.
    48 Barnes NM,Sharp T.A review of central 5-HT receptors and their function.Neuropharmacology.1999;38:1083-1152.
    49 Sari Y.SerotoninlB receptors:from protein to physiological function and behavior.Neurosci Biobehav Rev.2004;28:565-582.
    50 Bockaert J,Claeysen S,Becamel C,et al.Neuronal 5-HT metabotropic receptors:fine-tuning of their structure,signaling,and roles in synaptic modulation.Cell Tissue Res.2006;326:353-372.
    51 Deecher DC,Wilcox BD,Dave V,et al.Detection of 5-hydroxytryptamine2 receptors by radio-ligand binding,northern blot analysis,and Ca2+ responses in rat primary astrocyte cultures.J Neurosci Res.1993;35:246-256.
    52 Porter RH,Benwell KR,Lamb H,et al.Functional characterization of agonists at recombinant human 5-HT2A,5-HT_(2B)and 5-HT_(2C)receptors in CHO-K1 cells.Br J Pharmacol.1999;128:13-20.
    53 Kong EK,Peng L,Chen Y,et al.Up-regulation of 5-HT_(2B)receptor density and receptor-mediated glycogenosis in mouse astrocytes by long-term fluoxetine administration.Neurochem Res.2002;27:113-120.
    54 Choi DS,Ward SJ,Messaddeq N,et al.5-HT_(2B)receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells.Development.1997;124:1745-1755.
    55 Bhasin N,LaMantia AS,Lauder JM.Opposing regulation of cell proliferation by retinoic acid and the serotonin_(2B)receptor in the mouse frontonasal mass.Anat Embryol (Berl).2004;208:135-143.
    56 Rothman RB,Baumann MH,Savage JE,et al.Evidence for possible involvement of 5-HT(2B)receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications.Circulation.2000;102:2836-2841.
    57 Nebigil CG,Maroteaux L.A novel role for serotonin in heart.Trends Cardiovasc Med.2001;11:329-335.
    58 Jaffre F,Callebert J,Sarre A,et al.Involvement of the serotonin 5-HT_(2B)receptor in cardiac hypertrophy linked to sympathetic stimulation:control of interleukin-6,interleukin-lbeta,and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts.Circulation.2004;110:969-974.
    59 Kursar J.D,Nelson D.L,Wainscott D.B,et al.Molecular cloning functional expression and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor.Mol.Pharmacol.1994;46:227-234.
    60 Baez M,Kursar J.D,Helton L.A,et al.Molecular biology of serotonin receptors.Obes.Res.1995;4:441S-447S.
    61 Bonhaus D.W,Bach C,DeSouza A,et al.The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT_(2B))receptor gene products:comparison with 5-HT_(2A)and 5-HT_(2C)receptors.Br.J.Pharmacol.1995;115:622-628.
    62 Choi D.S,Maroteaux L.Immunohistochemical localisation of the serotonin 5-HT_(2b)receptor in mouse gut,cardiovascular system,and brain.FEBS Lett.1996;391:45-51.
    63 Duxon M.S,Kennett G.A,Lightowler,S,et al.Activation of 5-HT_(2B)receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat.Neuropharmacol.1997;6:601-608.
    64 Deecher DC,Wilcox BD,Dave V,et al.Detection of 5-hydroxytryptamine2 receptors by radio-ligand binding,northern blot analysis,and Ca2+ responses in rat primary astrocyte cultures.J Neurosci Res.1993;35:246-256.
    65 Merzak A,Koochekpour S,Fillion MP,et al.Expression of serotonin receptors in human fetal astrocytes and glioma cell lines:a possible role in glioma cell proliferation and migration.Mol Brain Res.1996;41:1-7.
    66 Hirst WD,Cheung NY,Rattray M,et al.Cultured astrocytes express messenger RNA for multiple serotonin receptor subtypes,without functional coupling of 5-HT1 receptor subtypes to adenylyl cyclase.Mol Brain Res.1998;61:90-99.
    67 Sanden N,Thorlin T,Blomstrand F,et al.5-Hydroxytryptamine2B receptors stimulate Ca2+increases in cultured astrocytes from three different brain regions.Neurochem Int.2000; 36:427-434.
    68 Chen Y,Peng L,Zhang X,et al.Further evidence that fluoxetine interacts with a 5-HT_(2C)receptor in glial cells.Brain Res Bull.1995;38:153-159.
    69 Bishayee S.Role of conformational alteration in the epidermal growth factor receptor (EGFR)function.Biochem Pharmacol.2000;60:1217-1223.
    70 Cussac D,Schaak S,Gales C,et al.alpha (2B)-Adrenergic receptors activate MAPK and modulate proliferation of primary cultured proximal tubule cells.Am J Physiol Renal Physiol.2002;282:F943-952.
    71 Thiels E,Kanterewicz BI,Norman ED,et al.Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of Elk-1.J Neurosci.2002;22:2054-2062.
    72 Xiong W,Ferrell JE.A positive-feedback-based bistable memory module' that governs a cell fate decision.Nature.2003;426:460-465.
    73 Yasuda H,Barth AL,Stellwagen D,et al.A developmental switch in the signaling cascades for LTP induction.Nat Neurosci.2003;6:15-16.
    74 Zhang JJ,Okutani F,Inoue S,et al.Activation of the mitogenactivated protein kinase/extracellular signal-regulated kinase signaling pathway leading to cyclic AMP response elementbinding protein phosphorylation is required for the long-term facilitation process of aversive olfactory learning in young rats.Neuroscience.2003;121:9-16.
    75 Costa RM,Yang T,Huynh DP,et al.Learning deficits,but normal development and tumor predisposition,in mice lacking exon 23a of Nfl.Nat Genet.2001;27:399405.
    76 Costa RM,Federov NB,Kogan JH,et al.Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1.Nature.2002;415:526-530.
    77 Impey S,Obrietan K,Wong ST,et al.Cross talk between ERK and PKA is required for Ca2R stimulation of CREB-dependent transcription and ERK nuclear translocation.Neuron.1998;21:869-883.
    78 Roberson ED,English JD,Adams JP,et al.The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus.J Neurosci.1999;19:4337-4348.
    79 Martin KC,Michael D,Rose JC,et al.MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia.Neuron.1997;18:899-912.
    80 Impey S,Smith DM,Obrietan K,et al.Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning.Nat Neurosci.1998;1:595-601.
    81 Patterson SL,Pittenger C,Morozov A,et al.Some forms of cAMP-mediated longlasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase.Neuron.2001;32:123-140.
    82 Waltereit R,Dammermann B,Wulff P,et al.Arg3.1/Arc mRNA induction by Ca2R and cAMP requires protein kinase A and mitogen activated protein kinase/extracellular regulated kinase activation.J Neurosci.2001;21:5484-5493.
    83 Davis S,Vanhoutte P,Pages C,et al.The MAPK/ERK cascade targets both Elk-1 and cAMP response elementbinding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo.J Neurosci.2000;20:4563-4572.
    84 Cowen DS.Serotonin and neuronal growth factors-a convergence of signaling pathways.J.Neurochem.2007;101:1161-1171.
    85 Mercier G,Lennon AM,Renouf B,et al.MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes.J Mol Neurosci.2004;4:207-216.
    86 Pierce KL,Luttrell LM,Lefkowitz RJ.New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades.Oncogene.2001;20:1532-1539.
    87 Peng L.Transactivation in astrocytes as a novel mechanism of neuroprotection.In:Hertz L.Non-neuronal cells of the nervous system:function and dysfunction.Amsterdam:Elsevier,2004.pp 503.
    88 Lamph WW,Wamsley P,Sassone-Corsi P,et al.Induction of proto-oncogene JUN/AP-1 by serum andTPA.Nature.1988;334:629-631.
    89 Wisdom R,Verma IM.Transformation by fos proteins requires a C-terminal transactivation domain.Mol Cell Biol.1993;13:7429-7438.
    90 Tulchinsky E.Fos family members:regulation,structure and role in oncogenic transformation.Histol Histopathol.2000;15:921-928.
    91 Gruda MC,Kovary K,Metz R,et al.Regulation of fra-1 and fra-2 phosphorylation differs during the cell cycle of fibroblasts and phosphorylation in vitro by MAP kinase affects DNA binding activity.Oncogene.1994;9:2537-2547.
    92 Hurd TW,Culbert AA,Webster KJ,et al.Dual role for mitogen-activated protein kinase(Erk)in insulin-dependent regulation of Fral(fos-related antigen-1)transcription and phosphorylation.Biochem J.2002;368:573-580.
    93 Rosenberger SF,Finch JS,Gupta A,et al.Extracellular sigual-regulated kinase 1/2-mediated phosphorylation of JUnD and FosB is required for ocadaic acid-induced activator protein 1activation.J Biol Chem.1999;274:1124-1130.
    94 Meier E,Hertz L,Schousboe A.Neurotransmitters as developmental signals.Neurochem Int.1991;19:1-15.
    95 Ivanov A,Pero RS,Scheck A,et al.Prostaglandin E2-synthesizing enzymes in fever:differential transcriptional regulation.Am J Physiol Regul Integr Comp Physiol.2002;283:R1104-R1117.
    96 Lindbom J,Ljungman AG,Lindahl M,et al.Expression of members of the phospholipase A2family of enzymes in human nasal mucosa.Eur Respir J.2001;18:130-138.
    97 Kennedy BP,Payette P,Mudgett J,et al.A natural disruption of the secretory group Ⅱphospholipase A2 gene in inbred mouse strains.J Biol Chem.1995;22:22378-22385.
    98 El Marjou M,Montalescot V,Buzyn A,et al.Modifications in phospholipase D activity and isoform expression occur upon maturation and differentiation in vivo and in vitro in human myeloid cells.Leukemia.2000.14:2118-2127.
    99 Hertz L,Peng L,Lai JC.Functional studies in cultured astrocytes.Methods.1998;16:293-310.
    100 Peng LA,Juurlink BH,Hertz L.Differences in transmitter release,morphology,and ischemia-induced cell injury between cerebellar granule cell cultures developing in the presence and in the absence of a depolarizing potassium concentration.Brain Res Dev Brain Res.1991;63:1-12.
    101 Hogstad S,Svenneby G,Torgner IA,et al.Glutaminase in neurons and astrocytes cultured from mouse brain:kinetic properties and effects of phosphate,glutamate,and ammonia.Neurochem Res.1988;13:383-388.
    102 Lowry OH,Rosebrough NJ,Farr AL,et al.Protein measurement with the Folin phenol reagent.J Biol Chem.1951;193:265-275.
    103 Rintala J,Seemann R,Chandrasekaran K,et al.85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain.Neuroreport.1999;10:3887-3890.
    104 Weerasinghe GR,Rapoport SI,Bosetti F.The effect of chronic lithium on arachidonic acid release and metabolism in rat brain does not involve secretory phospholipase A2 or lipoxygenase/cytochrome P450 pathways.Brain Res Bui.2004;163:485-489.
    105 Basselin M,Chang L,Seemann R,et al.Chronic lithium administration to rats selectively modifies 5-HT_(2A/2C)receptor-mediated brain signaling via arachidonic acid.Neuropsychopharmacol.2005;30:461-472.
    106 Ghelardoni S,Tomita YA,Bell JM,et al.Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain.Biol Psychiatry.2004;56:248-254.
    107 Chang MC,Contreras MA,Rosenberger TA,et al.Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids:a possible common effect of mood stabilizers.J Neurochem.2001;77:796-803.
    108 Soares JC,Boada F,Spencer S,et al.Brain lithium concentrations in bipolar disorder patients:preliminary (7)Li magnetic resonance studies at 3 T.Biol Psychiatry.2001;49:437-443.
    109 Sproule B.Lithium in bipolar disorder:can drug concentrations predict therapeutic effect? Clin Pharmacokinet.2002;41:639-660.
    110 Moore CM,Demopulos CM,Henry ME,et al.Brain-to-serum lithium ratio and age:an in vivo magnetic resonance spectroscopy study.Am J Psychiatry.2002;159:1240-1242.
    111 Vajda FJ,Donnan GA,Phillips J,et al.Human brain,plasma,and cerebrospinal fluid concentration of sodium valproate after 72 h of therapy.Neurology.1981;31:86-487.
    112 Wieser HG.Comparison of valproate level in human plasma,cerebrospinal fluid and brain tissue following administration of various preparations of valproate and valpromide.Schweiz Rundsch Med Prax.1994;83:1111-1116.
    113 Friis ML,Christiansen J,Hvidberg EF.Brain concentrations of carbamazepine and carbamazepine-10,ll-epoxide in epileptic patients.Eur J Clin Pharmacol.1978;14:47-51.
    114 Petit P,Lonjon R,Cociglio M,et al.Carbamazepine and its 10,11-epoxide metabolite in acute mania:clinical and pharmacokinetic correlates.Eur J Clin Pharmacol.1991;41:541-546.
    115 Bialer M,Levy RH,Perucca E.Does carbamazepine have a narrow therapeutic plasma concentration range? Ther Drug Monit.1998;20:56-59.
    116 Stephenson DT,Manetta JV,White DL,et al.Phospholipase A2 in the central nervous system:implication for neurodegeneration diseases.J Lipid Res.2004;46:205-213.
    117 Lautens LL,Chiou XG,Sharp JD,et al.Cytosolic phospholipase A2 (cPLA2)distribution in murine brain and functional studies indicate that cPLA2 does not participate in muscarinic receptor-mediated signaling in neurons.Brain Res.1998;809:18-30.
    118 Balboa MA,Varela-Nieto I,Lucas KK,et al.Expression and function of phospholipase A2 in brain.FEBS Lett.2002;531:12-17.
    119 Ghosh M,Tucker DE,Burchett SA,et al.Properties of the Group IV phospholipase A2 family.Prog Lipid Res.2006;45:487-510.
    120 Sergeeva M,Strokin M,Wang H,et al.Arachidonic acid in astrocytes blocks Ca(2+)oscillations by inhibiting store-operated Ca(2+)entry,and causes delayed Ca(2+)influx.Cell Calcium.2003;33:283-292.
    121 Yang KT,Chen WP,Chang WL,et al.Arachidonic acid inhibits capacitative Ca2+ entry and activates non-capacitative Ca2+ entry in cultured astrocytes.Biochem Biophys Res Commun.2005;331:603-613.
    122 Alloisio S,Aiello R,Ferroni S,et al.Potentiation of native and recombinant P2X7-mediated calcium signaling by arachidonic acid in cultured cortical astrocytes and human embryonic kidney 293 cells.Mol Pharmacol.2006;69:1975-1983.
    123 Cornell-Bell AH,Jung P,Trinkaus-Randall V.Decoding calcium wave signaling.In:Hertz L. Non-neuronal cells of the nervous system:function and dysfunction.Amsterdam:Elsevier,2004.pp 661.
    124 Haas B,Schipke CG,Peters O,et al.Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.Cereb Cortex.2006;16:237-246.
    125 Scemes E,Giaume C.Astrocyte calcium waves:what they are and what they do.Glia.2006;54:716-725.
    126 Purdon AD,Rosenberger TA,Shetty HU,et al.Energy consumption by phospholipid metabolism in mammalian brain.Neurochem Res.2002;27:1641-1647.
    127 Hewett SJ.Interferon-gamma reduces cyclooxygenase-2-mediated prostaglandin E2 production from primary mouse astrocytes independent of nitric oxide formation.J Neuroimmunol.1999;94:134-143.
    128 Maida ME,Hurley SD,Daeschner J A,et al.Cytosolic prostaglandin E2 synthase (cPGES)expression is decreased in discrete cortical regions in psychiatric disease.Brain Res.2006;1103:164-172.
    129 Elkeles A,Juven-Gershon T,Israeli D,et al.The c-fos proto-oncogene is a target for transactivation by the p53 tumor suppressor.Mol Cell Biol.1999;19:2594-2600.
    130 Inoue D,Kido S,Matsumoto T.Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts.J Biol Chem.2004;279:49795-49803.
    131 Zhang X,Peng L,Chen Y,et al.Stimulation of glycogenosis in astrocytes by fluoxetine,an antidepressant acting like 5-HT.Neuroreport.1993;4:1235-1238.
    132 Palvimaki EP,Roth BL,Majasuo H,et al.Interactions of selective serotonin reuptake inhibitors with the serotonin 5-HT2c receptor.Psychopharmacol.1996;126:234-240.
    133 Sanchez C,Hyttel J.Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding.Cell Mol Neurobiol.1999;19:467-489.
    134 Koch S,Perry KW,Nelson DL,et al.R-fluoxetine increases extracellular DA,NE,as well as 5-HT in rat prefrontal cortex and hypothalamus:an in vivo microdialysis and receptor binding study.Neuro-psychopharmacol.2002;27:949-959.
    135 Hisaoka K,Takebayashi M,Tsuchioka M,et al.Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells.J Pharmacol Exp Ther.2007;321:148-157.
    136 Bolo NR,Hode Y,Nedelec JF,et al.Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy.Neuropsychopharmacol.2000;23:428-438.
    137 Henry ME,Schmidt ME,Hennen J,et al.A comparison of brain and serum pharmacokinetics of R-fluoxetine and racemic fluoxetine:a 19-F MRS study.Neuropsychopharmacol.2005;30:1576-1583.
    138 Martensson B,Nyberg S,Toresson G,et al.Fluoxetine treatment of depression.Clinical effects,drug concentrations and monoamine metabolites and N-terminally extended substance P in cerebrospinal fluid.Acta Psychiatr Scand.1989;79:586-596.
    139 Henry ME,Moore CM,Kaufman MJ,et al.Brain kinetics of paroxetine and fluoxetine on the third day of placebo substitution:a fluorine MRS study.Am J Psychiatry.2000;157:1506-1508.
    140 Merrier G,Lennon AM,Renouf B,et al.MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes.J Mol Neurosci.2004;4:207-216.
    141 Wong DT,Threlkeld PG,Robertson DW.Affinities of fluoxetine,its enantiomers,and other inhibitors of serotonin uptake for subtypes of serotonin receptors.Neuropsychopharmacol.1991;5:43-^7.
    142 Zazpe A,Artaiz I,Labeaga L,et al.Reversal of learned helplessness by selective serotonin reuptake inhibitors in rats is not dependent on 5-HT availability.Neuropharmacol.2007;52:975-984.
    143 Roth BL.Drugs and valvular heart disease.N Engl Med.2007;356:6-9.
    1 Healy D.The creation of psychopharmacology.Trends Pharmacol Sci.2004;18:81-92.
    2 Mikoshiba K.Inositol 1,4,5-trisphosphate receptor.Trends Pharmacol Sci.1993;14:86-89.
    3 Sasakawa N,Sharif M,Hanley MR.Metabolism and biologicalactivities of inositol pentakis phosphate and inositol hexakisphosphate.Biochem Pharmacol.1995;50:137-146.
    4 Maeda T,Eisenberg JF.Purification,structure,and catalytic properties of L-myo-inositol-1-phosphate synthase from rat testis.J Biol Chem.1980;255:8458-8464.
    5 Berridge MJ,Downes CP,Hanley MR.Neural and developmental actions of lithium:a unifying hypothesis.Cell.1989;59:411-419.
    6 Hallcher LM,Sherman WR.The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain.J Biol Chem.1980;255:10896-10901.
    7 Bone R,Springer JP,Atack JR.Structure of inositol monophosphatase,the putative target of lithium therapy.Proc Natl Acad Sci USA.1992;89:10031-10035.
    8 York JD,Ponder JW,Chen ZW,et al.Crystal structure of inositol polyphosphate 1-phosphatase at 2.3-A resolution.Biochemistry.1994;33:13164-13171.
    9 Patel S,Yenush L,Rodriguez PL,et al.Crystal structure of an enzyme displaying both inositol-polyphosphate-1-phosphatase and 30-phosphoadenosine-50-phosphate phosphatase activities:a novel target of lithium therapy.J Mol Biol.2002;315:677-685.
    10 Atack JR,Broughton HB,Pollack SJ.Structure and mechanism of inositol monophosphatase.FEBS Lett.1995;361:1-7.
    11 Allison JH,Stewart MA.Reduced brain inositol in lithium-treatedrats.Nat New Biol.1971;233:267-268.
    12 Naccarato WF,Ray RE,Wells WW.Biosynthesis of myo-inositol in rat mammary gland.Isolation and properties of the enzymes.Arch Biochem Biophys.1974;164:194-201.
    13 Inborn RC,Majerus PW Inositol polyphosphate 1-phosphatase from calf brain.Purification and inhibition by Lit,Ca2t,and Mn2t.J Biol Chem.1987;262:15946-15952.
    14 Emilien G,Maloteaux JM,Seghers A,et al.Lithium compared to valproic acid and carbamazepine in the treatment of mania:a statistical meta-analysis.Eur Neuropsychopharmacol.1996;6:245-252.
    15 O'Donnell T,Rotzinger S,Nakashima TT,et al.Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain.Brain Res.2005;880:84-91.
    16 Shaltiel G,Shamir A,Shapiro J,et al.Valproate decreases inositol biosynthesis.Biol Psychiatry.2004;881:85-91.
    17 Williams RS,Eames M,Ryves WJ,et al.Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5)trisphosphate.EMBO J.1999;18:2734-2745.
    18 Inoue K,Shimada S,Minami Y,et al.Cellular localization of Nat/MYO-inositol co-transporter mRNA in the rat brain.Neuroreport.1996;7:1195-1198.
    19 Lubrich B,Spleiss O,Gebicke-Haerter PJ,et al.Differential expression,activity and regulation of the sodium/myoinositol cotransporter in astrocyte cultures from different regions of the rat brain.Neuropharmacology.2000;39:680-690.
    20 Uldry M,Ibberson M,Horisberger JD,et al.Identification of a mammalian H(t)-myo-inositol symporter expressed predominantly in the brain.EMBO J.2001;20:4467-4477.
    21 Uldry M,Steiner P,Zurich MG,et al.Regulated exocytosis of an H(t)/myo-inositol symporter at synapses and growth cones.EMBO J.2004;23:531-540.
    22 Wolfson M,Bersudsky Y,Zinger E,et al.Chronic treatment of human astrocytoma cells with lithium,carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations.Brain Res.2000;855:158-161.
    23 Dubovsky SL,Thomas M,Hijazi A,et al.Intracellular calcium signalling in peripheral cells of patients with bipolar affective disorder.Eur Arch Psychiatry Clin Neurosci.1994;243:229-34.
    24 Williams RS,Cheng L,Mudge AW,et al.A common mechanism of action for three mood-stabilizing drugs.Nature.2002;417:292-295.
    25 Cohen P.Identification of a protein kinase cascade of major importance in insulin signal transduction.Philos Trans R Soc Lond B Biol Sci.2005;354:485-495.
    26 Woodgett JR.Molecular cloning and expression of glycogen synthase kinase-3/factor A.EMBO J.1990;9:2431-2438.
    27 Rodriguez-Gil JE,Guinovart J J,Bosch F.Lithium restores glycogen synthesis from glucose in hepatocytes from diabetic rats.Arch Biochem Biophys.1993;301:411-415.
    28 Doble B,Woodgett J.GSK-3:tricks of the trade for a multi-tasking kinase.J Cell Sci.2003;116:1175-1186.
    29 Harwood AJ.Regulation of GSK-3:a cellular multiprocessor.Cell.2001;105:821-824.
    30 Cadigan KM,Nusse R.Wnt signaling:a common theme in animal development.Genes Dev.1997;11:3286-3305.
    31 Wodarz A,Nusse R.Mechanisms of Wnt signaling in development.Annu Rev Cell Dev Biol.1998;14:59-88.
    32 Miller JR,Hocking AM,Brown JD,et al.Mechanism and function of signal transduction by the Wnt/b-catenin and Wnt/Ca2t pathways.Oncogene.1999;18:7860-7872.
    33 Eickholt BJ,Walsh FS,Doherty P.An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling.J Cell Biol.2002;157:211-217.
    34 Lucas FR,Goold RG,Gordon-Weeks PR,et al.Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium.J Cell Sci.1998;111:1351-1361.
    35 Ciani L,Krylova O,Smalley MJ,et al.A divergent canonical WNT-signaling pathway regulates microtubule dynamics:dishevelled signals locally to stabilize microtubules.J Cell Biol.2004;164:243-253.
    36 Garrity PA.Developmental biology:how neurons avoid derailment.Nature.2003;422:570-571.
    37 He X.Wnt signaling went derailed again:a new track via the LIN-18 receptor?Cell.2004;118:668-670.
    38 Lu W,Yamamoto V,Ortega B,et al.Mammalian ryk is a wnt coreceptor required for stimulation of neurite outgrowth.Cell.2004;119:97-108.
    39 Lucas J J,Hernandez F,Gomez-Ramos P,et al.Decreased nuclear beta-catenin,tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice.EMBO J.2001;20:27-39.
    40 King TD,Bijur GN,Jope RS.Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium.Brain Res.2001;919:106-114.
    41 Bijur GN,De Sarno P,Jope RS.Glycogen synthase kinase-3beta facilitates staurosporine-and heat shock-induced apoptosis.Protection by lithium.J Biol Chem.2000;275:7583-7590.
    42 Takashima A,Noguchi K,Sato K,Hoshino T,Imahori K.Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity.Proc Natl Acad Sci USA.2005;90:7789-7793.
    43 Takashima A,Noguchi K,Michel G,Mercken M,Hoshi M,Ishiguro K et al.Exposure of rat hippocampal neurons to amyloid beta peptide(25-35)induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta.Neurosci Lett.1996;203:33-36.
    44 Harwood AJ.Signal transduction:Life,the universe and development.Curr Biol.2000;10:R116-R119.
    45 Pap M,Cooper GM.Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway.J Biol Chem.2005;273:19929-19932.
    46 Bhat RV,Shanley J,Correll MP,et al.Regulation and localization of tyrosine216phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration.Proc Natl Acad Sci USA.2000;97:11074-11079.
    47 Coghlan MP,Culbert AA,Cross DA,Corcoran SL,Yates JW,Pearce NJ et al.Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription.Chem Biol.2000;7:793-803.
    48 O'Brien WT,Harper AD,Jove F,Woodgett JR,Maretto S,Piccolo Set al.Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium.J Neurosci.2004;24:6791-6798.
    49 Gould TD,Einat H,Bhat R,Manji HK.AR-A014418,a selective GSK-3 inhibitor,produces antidepressant-like effects in the forced swim test.Int J Neuropsychopharmacol.2004;15:1-4.
    50 Kaidanovich-Beilin O,Milman A,Weizman A,et al.Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus.Biol Psychiatry.2004;55:781-784.
    51 Chen G,Huang LD,Jiang YM,et al.The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3.J Neurochem.1999;72:1327-1330.
    52 Phiel CJ,Zhang F,Huang EY,et al.Histone deacetylase is a direct target of valproic acid,a potent anticonvulsant,mood stabilizer,and teratogen.J Biol Chem.2001;276:36734-36741.
    53 Hall AC,Brennan A,Goold RG et al.Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons.Mol Cell Neurosci.2002;20:257-270.
    54 Perucca E.Pharmacological and therapeutic properties of valproate:a summary after 35 years of clinical experience.CNS Drugs.2005;16:695-714.
    55 Li X,Bijur GN,Jope RS.Glycogen synthase kinase-3b,mood stabilizers,and neuroprotection.Bipolar Disord.2002;4:137-44.
    56 Gould TD,Chen G Manji HK.Mood stabilizer psychopharmacology.Clin Neurosci Res.2002;2:193-212.
    57 Manji HK,Chen G PKC,MAP kinases and the bcl-2 family of proteinsas long-term targets for mood stabilizers.Mol Psychiatry.2002;7:S46-S56.
    58 Yuan PX,Huang LD,Jiang YM,et al.The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth.J Biol Chem.2001;276:31674-31683.
    59 Huang EJ,Reichardt LF.Neurotrophins:roles in neuronal development and function.Annu Rev Neurosci.2005;24:677-736.
    60 Marinissen MJ,Gutkind JS.G-protein-coupled receptors and signaling networks:emerging paradigms.Trends Pharmacol Sci.2001;22:368-376.
    61 Dawson TM,Ginty DD.CREB family transcription factors inhibit neuronal suicide.Nat Med.2002;8:450-451.
    62 Weeber EJ,Sweatt JD.Molecular neurobiology of human cognition.Neuron.2002;33:845-848.
    63 Karin M.The regulation of AP-1 activity by mitogen-activated proteinkinases.Philos Trans R Soc Lond B Biol Sci.2002;351:127-134.
    64 Fukumoto T,Morinobu S,Okamoto Y,et al.Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain.Psychopharmacology (Berl).2006;158:100-106.
    65 Chuang DM,Chen R,Chalecka-Franaszek E,et al.Neuroprotective effects of lithium in cultured cells and animal model of diseases.BipolarDisord.2002;4:129-136.
    66 Selcher JC,Atkins CM,Trzaskos JM,et al.A necessityfor MAP kinase activation in mammalian spatial learning.Learn Mem.1999;6:478-490.
    67 Einat H,Kofman O,Behnaker RH.Animal models of bipolar disordenfrom a single episode to progressive cycling models.In:Myslobodsky M.Contemporary issues in modeling psychopharmacology.Boston:Kluwer Academic Publishers,2000.pp 165.
    68 Spiegelberg BD,Xiong JP,Smith JJ,et al..Cloning and characterization of a mammalian lithium-sensitive bisphosphate30-nucleotidase inhibited by inositol 1,4-bisphosphate.J BiolChem.1999;274:13619-13628.
    69 Yenush L,Belles JM,Lopez-Coronado JM,et al.A novel target of lithium therapy.FEBS Lett.2006;4671:321-325.
    70 Dichtl B,Stevens A,Tollervey D.Lithium toxicity in yeast isdue to the inhibition of RNA processing enzymes.EMBO J.1997;16:7184-7195.
    71 Muhlrad D,Decker CJ,Parker R.Deadenylation of the unstablem RNA encoded by the yeast MFA2 gene leads to decapping followedby 5'-)3' digestion of the transcript.Genes Dev.2006;8:855-866.
    72 Jope RS.Anti-bipolar therapy:mechanism of action of lithium.Mol Psychiatry.2005;11:117-128.
    73 Shaltiel G,Kozlovsky N,Behnaker RH,et al.3'(2')-phosphoadenosine 5'-phosphate phosphatase is reduced in postmortem frontalcortex of bipolar patients.Bipolar Disord.2002;4:302-306.
    74 Altar CA.Neurotrophins and depression.Trends Pharmacol Sci.2006;20:59-61.
    75 Duman RS,Synaptic plasticity and mood disorders.Mol Psychiatry.2005;7:S29-S34.
    76 Duman RS,Henninger GR,Nestler EJ.A molecular and cellular theory of depression.Arch Gen Psychiatry.1997;54:597-606.
    77 Nestler EJ,Barrot M,DiLeone RJ,et al.Neurobiology of depression.Neuron.2004;34:13-25.
    78 Nestler EJ,Gould E,Manji H.et al.Preclinical models:status of basic research in depression.Biol Psychiatry.2002;52:503-528.
    79 Nibuya M,Morinobu S,Duman RS.Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.J Neurosci.2005;15:7539-7547.
    80 Nibuya M,Morinobu S,Duman RS.Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB)in rat hippocampus.J Neurosci.1996;16:2365-2372.
    81 Russo-Neustadt A,Beard RC,Cotman CW.Exercise,antidepressant medications,and enhanced brain derived neurotrophic factor expression.Neuropsychopharmacology.1999;21:679-682.
    82 Okamoto H,Shino Y,Hashimoto K,et al.Dynamic changes in AP-1 transcription factor DNA binding activity in rat brain following administration of antidepressant amitriptyline and brain-derived neurotrophic factor.Neuropharmacology.2003;45:251-259.
    83 Nibuya M,Takahashi M,Russell DS,et al.Repeated stress increases catalytic TrkB mRNA in rat hippocampus.Neurosci Lett.1999;267:81-84.
    84 Smith MA,Makino S,Kim SY,et al.Stress increases brain-derived neurotropic factor messenger ribonucleic acid in the hypothalamus and pituitary.Endocrinology.1995;136:3743-3750.
    85 Smith MA,Makino S,Kvetnansky R,et al.Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus.J..Neurosci.1995;15:1768-1777.
    86 Emmanuel RL,Adler GK,Kifor O,et al.Calcium-sensing receptor expression,and regulation by extracellular calcium in AtT-20 pituitary cell line.Mol Endocrinol.2004;10:555-565.
    87 Ferry S,Chatel B,Dodd RH,et al.Effects of divalent cations and of a calcimimetic on adrenocorticotrophic hormone release in pituitary tumor cells.Biochem Biophys Res Commun.1991;238:866-873.
    88 Reisine T,Zatz M.Interactions among lithium,calcium,diacylglycendes,and phorbol esters in the regulation of adrenocorticotropin hormone release from At-T20 cells.J Neurochem.1987;49:994-889.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.