工程车辆传动系加载试验台研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于在工况恶劣的条件下运行的工程车辆来说,其工作性能和可靠性在很大程度上取决于它的传动系,而变速箱和驱动桥是传动系的重要部件,应用加载试验台在室内对变速箱和驱动桥进行加载试验,可进行性能测试、可靠性和质量的评估,能够降低变速箱和驱动桥的研制成本,缩短研制周期。本文所研究的“工程车辆传动系加载试验台”采用共直流母线工作方式驱动变频电机来实现功率输入,试验件输出端经扭矩传感器、减速箱驱动加载电机,加载电机产生的电能经逆变驱动器反馈给驱动端。
     本文首先对国内外在传动系试验台领域的研究做了详细的介绍,并对比了直流回馈式、交流回馈式、液压回馈式的优缺点。根据用户的需求确定本试验台采用共直流母线的工作方式,并对交流调速系统的发展做了介绍。
     其次进行了试验台的总体设计。基于厦门质检所提供的柴油发动机扭矩——转速曲线,依据功率匹配原则,配置了变速箱加载试验台的驱动电机和变速箱。依据所测变速箱的速比范围,配置了变速箱加载试验台的加载电机和变速箱。依据柴油发动机经被测变速箱的扭矩——转速曲线,配置了驱动桥加载试验台的驱动电机和减速箱。根据轮边的机械特性配置了驱动桥加载试验台的加载电机和减速箱。
     再次本文对交流伺服变频调速系统进行了研究,建立了交流伺服变频调速系统的数学模型。分别建立了变速箱和驱动桥加载系统的数学模型,在此基础上进行了仿真分析。利用传递函数方块图模型对驱动单元转速控制系统、加载单元转矩控制系统进行了频域分析,并通过仿真分析得出了柔性环节和负载惯量对加载系统特性的影响。并对驱动单元转速控制系统和加载单元转矩控制系统进行了时域分析,揭示了系统固有参数、控制器参数、驱动转速和加载转矩波动干扰(机械耦合)等对加载系统动态性能的影响规律,得到许多有参考价值的结论。为工程车辆传动系加载系统的设计,提供了可靠依据。研究了PI控制策略,设计的PI控制器提高了系统的动态特性,使系统具有较满意的控制结果。
As for the engineering vehicles running in poor condition, the working performance and reliability mainly depend on its transmission. Transmission and drive axle are important parts of the vehicle and their quality will certainly influence the engineering vehicle’s performance. Through application of simulation load test bed on the transmission and drive axle load test simulation, the performance can be tested, reliability and quality can be assessed, the development cost can be reduced and the development cycle can be shorten. The test bed adopting common DC Bus drives variable-frequency motor to achieve power input, output of test pieces by the torque sensor, gear box drives loading motor. The power generated by the motor feedback to the driver-side through inverter.
     Firstly, this article makes a detailed description on transmission test bed at home and abroad,and compares the DC feedback type, exchange feedback, hydraulic feedback type of advantages and disadvantages. Determined according to the needs of users of the test bed work with Common DC Bus and make a description on AC Speed Control System.
     Secondly, it has an overall design to the test bed, According to Xiamen quality testing institute provided diesel engine torque - speed curve, based on the principle of power matching, configure the drive motor and lift gear box of the transmission load test. According to the measured transmission ratio range, configure the load motor and gear box of the transmission load test. According to torque - speed curve of diesel engines through the measured transmission, configure drive motor and gear box of the drive axle load test bed. According to the mechanical characteristics of wheel-side, configure load motor and gear box of the drive axle load test bed.
     Once again, in this paper, AC servo frequency control system is studied. Establish the AC servo frequency control system model.Establish transmission and drive axle loading system mathematical model and block diagram, and based on this carry on the simulation analysis. Using the transfer function block diagram model, frequency domain analysis has been made for drive unit speed control system and loading unit torque control system. The influence of flexible loop and Load inertia on the loading system have also been studied by means of simulation analysis.Time domain analysis has been made for the system mentioned above and reveals the influence law of system inherent parameters, controller parameters,and mechanical coupling on dynamic performance of system. Many valuable conclusions have been drawn and supply dependable references to the design of the loading system.In-depth study of the PI control strategy, design of PI controller to improve the dynamic characteristics of the system, the system has a more satisfactory control.
引文
1董福庆.工程车辆CVT技术及其油门控制系统的研究.吉林大学硕士论文,2006:1~6
    2董学平.汽车传动系总成试验台电封闭试验台计算机控制系统.合肥工业大学学报.2001,24(1):136~138
    3蔡高坡. AMT变速箱同步换挡耐久试验台的研究.合肥工业大学硕士论文.2009:4~5
    4戴军康.汽车主减速器总成综合性能试验台的研究.合肥工业大学硕士论文.2008: 4~5
    5杨洪彬.汽车变速器加载试验台关键技术研究.合肥工业大学硕士学位论文. 2007:1~8
    6 Zhao Jianfeng, Pan Shifeng, Wang Xun. High power energy feedback AC electronic load and its application in power system dynamic physical simulation. Diangong Jishu Xuebao. 2006,21(12):35~39
    7王祖麟,张振利.电封闭式变速器加载试验台的设计研究.工程机械. 2005(2):24~26
    8陆贵友.电加载机械传动实验台的设计.吉林工业大学自然科学学报. 1999,29(3) :100~102
    9路波,石晓辉.传动系试验台动态性能的建模与仿真.重庆工学院学报. 2008,22(1):32~36
    10许红平,应富强,宋玲玲.机械传动系统多功能试验台的设计研究.机电工程. 2002,19 (3) :8 ~10.
    11罗豪.异步电机矢量控制系统设计及其PI控制器参数优化研究.湖南大学硕士论文. 2009:9~22
    12朱明,陈觉晓.交流异步电机数学模型的研究.微特电机. 1999(1):6~11
    13 Jaime Rodriguez Arribas, Carlos Mario Vega González.Optimal vector control ofpumping and ventilation induction motor drives, IEEE Transactions on Industrial Electronics. 2002,49(4):889~895
    14 Kumar. Rajesh, R.A. Gupta, S.V. Bhanqale. Indirect vector controlled induction motor drive with fuzzy logic based intelligent controller. IET Seminar Digest. 2007,2007(2):368~373
    15 A. Bedri ?ZER, Erhan Akin. Chaos control in vector-controlled induction motor drive. Electric Power Components and Systems.2008,36(7):733~740
    16 S. Drid, M. Tadjine. Robust backstepping vector control for the doubly fed induction motor. IET Control Theory and Applications.2007,1(4):861~868
    17 Kiyotake, Hirofumi, Shinohara, Katsuji, Yamamoto, Kichiro. Rotor speed detection method for vector control of induction motor without speed sensor utilizing slotharmonics.Electrical Engineering in Japan.2009,169(1):739~746
    18 S.H. Kia, H. Henao, G.A. Capolino. Torsional vibration effects on induction machine current and torque signatures in gearbox-based electromechanical system. IEEE Trans Ind Electron. 2009,56(11):4689~4699
    19 W. Backe, Ch. Koegl. Secondary Controlled Motors in Speed and Torque control. The Second International Symposium on Fluid Power, JHPS, Tokyo,September 1993: 241~248
    20唐经世.工程机械下册.中国铁道出版社,1995:10~11
    21 Yan Qingdong. Automatic control of automobile transmission performance test platform. Journal of Beijing Institute of Technology. 1998,7(2):178~183
    22 Haj -Fraj A, Pfeiffer F. Optimal control of gear shift operation in automatic transmission .Journal of the Franklin Institute - Engineering and Applied Mathematics. 2001, 338 :371~390
    23 Ge Nan, Yu Lin, Liu Hao. Gearbox loading test bench based on DC speed regulation. Beijing Ligong Daxue Xuebao. 2008,28(1):70~74
    24 Shen Jianqing, Wei Yongqing, Zhang Xiaofeng. Applications of doubly-fed machine in simulating load of marine electric propulsion. ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems. 2005,2:1377~1380
    25 Zhang Jie. High-frequency and precision three-phase sine/PWM controller with near-zero frequency of MPU intervention - Novel design supporting distributed AC drive systems. IEEE Transactions on Industrial Electronics. 2005,52(5):1286~1296
    26陈伯时.电力拖动自动控制系统.机械工业出版社, 2006.53~254
    27 R.K. Ursem, P. Vadstrup. Parameter identification of induction motors using differential evolution. Evolutionary Computation,2003,18(2):790-796
    28孟强.电动六自由度并联机器人的特性分析与控制.哈尔滨工业大学硕士论文,2008:29~35
    29 Zhang Changjun. Dynamic simulation for induction motor vector-controlsystem. Journal of University of Science and Technology Beijing. 2004,26(4):433~437
    30 Koetzle. Horst,Oelmann. Bernd. Operational load simulation in automotive engineering. Materialpruefung. 1989,31(1~2):9~13
    31方强.被动式力矩伺服控制系统设计方法及应用研究.哈尔滨工业大学博士论文,2006:16~22
    32 Sun Feng-Chun, Chen Shu-Yong, Guo Fen. Research on driving performances of electric transmission tracked vehicles based on torque control strategy. Binggong Xuebao. 2007:129~133
    33 Morales-Caporal, Roberto. Digital implementation of a Direct Mean Torque Control for AC servo drives based on a hybrid DSP/FPGA controller system. International Power Electronics Congress– CIEP. 2008:77~83
    34王望予.汽车设计.机械工业出版社,2005:79~85
    35顾柏良. BOSCH汽车工程手册.北京理工大学出版社,2004:679~692
    36李洪人.液压控制系统.国防工业出版社, 1990:239~262
    37 H?hn, Bernd-Robert, Pflaum, Hermann. The load switch process in the optimized continuously variable transmission (CVT) hybrid drive train. Konstruktion,2008:49~50
    38 Diao Lijun, Shen Maosheng, Lin Weili, Zhang Gang, Liu Zhigang. Principle analysis and realization of electric propulsion load simulation system. Diangong Jishu Xuebao. 2009,24(7):70~75
    39 J. DeCuper, D. Coppens, C. Liefooghe, J. Debille. Advanced system identification methods for improved service load simulation on multi axial test rigs. European Journal of Mechanical and Environmental Engineering. 1999,44(1):27~39
    40 J.M. Sinapius. Experimental dynamic load simulation by means of modal force combination. Aerospace Science and Technology. 1997,1(4):267~275
    41齐潘国.二次调节模拟加载系统动态特性分析与试验研究.哈尔滨工业大学硕士论文.2004:14~24
    42崔浏.电液负载模拟器的鲁棒控制策略研究.哈尔滨工业大学硕士论文,2006:
    43薛定宇.控制系统计算机辅助设计.清华大学出版社,2006:255~281
    44陶永华,尹怡欣,葛芦生.新型PID控制及其应用.机械工业出版社.1998:182~183
    45吴志军.汽车变速器试验台控制系统的研究.浙江大学硕士论文. 2006:5~25
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.