电沉积纳米粒子修饰电极的制备及其在药物分子检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米技术在电分析化学领域成为了备受瞩目的热点话题。由于它具有相当小的粒径,展现出独特的化学,物理和电学性质故而被广泛的应用于多种分析方法。本论文主要是将纳米技术与电化学分析技术相结合,研制了以电沉积铂、金纳米粒子修饰电极为基础的具有高灵敏度、高选择性的维生素药物分子传感器。论文主要包括五章:
     前言:主要是综述了纳米材料的性质和研究,尤其是贵金属纳米粒子的性质及应用;同时也探讨了化学修饰电极的制备、碳纳米管和石墨烯的性质及其修饰电极在电分析化学领域的应用。
     第二章:我们通过电沉积的方法将铂纳米粒子沉积在多壁碳纳米管修饰的玻碳电极表面,用于研究芦丁(rutin)的电化学性质,并成功的应用于市售复方芦丁片中芦丁含量的测定,效果良好,灵敏度较高。
     第三章:我们利用多壁碳纳米管的良好特性并通过电沉积的方法将金纳米粒子沉积在多壁碳纳米管修饰的玻碳电极表面,用于研究维生素B_6(VB_6)的电化学性质,并成功的应用于市售维生素B_6片及注射液中维生素B_6含量的测定,检测准确,且灵敏度较高。
     第四章:我们将金纳米粒子通过电沉积的方式沉积在多壁碳纳米管修饰的玻碳电极表面,用于研究维生素B_2(VB_2)的电化学性质,该实验操作简单,耗时短,且效果良好。
     第五章:我们利用石墨烯的良好的性能并将金纳米粒子电沉积在功能化的石墨烯修饰的玻碳电极表面,用于研究VB_6的电化学性质,实验结果比较理想,并有望用于实际样品的检测。
This dissertation focus on fully utilizing the unique characteristics of nano-materials and modern electrochemical technology conclude electrodepostion to prepare several novel small biomolecules electrochemical biosensors, developing sensitive, selective detection methods. The dissertation includes four chapters:
     Chapter 1 introduces the properties and research of nano-materials and the preparation of nanometer materials modified electrodes. A review is given on the electrochemical study of platinum and gold nanoparticles biosensors, including their importance and development. Puting forward the idea of this paper.
     Chapter 2: platinum nanoparticles (Pt NPs) were electrodeposited on the surface of MWCNTs modified glassy carbon electrode (GCE). Then the prepared electrode was applied for the determination of rutin. In addition, the Pt NPs / MWCNTs modified electrode had been applied to the determination of rutin in real samples.
     Chapter 3: gold nanoparticles (Au NPs) were electrodeposited on the surface of MWCNTs modified GCE. Then the Au NPs / MWCNTs modified electrode had been successfully applied for the determination of vitamin B_6 (VB_6). And the Au NPs / MWCNTs modified electrode had been applied to the determination of VB_6 in real samples.
     Chapter 4: Au NPs were electrodeposited on the surface of MWCNTs modified GCE. Then the prepared electrode was applied for the determination of vitamin B_2 (VB_2). It exhibited excellent voltammetric response for VB_2.
     Chapter 5: Au NPs were electrodeposited on the surface of graphene modified GCE by electrodeposition. Then the prepared electrode was applied for the determination of VB_6. The experimental results are good, and the prepared electrodes are expected to be applied to real sample examination.
引文
[1] National Science and Technology Council. National Nanotechnology Initiative: Leading to the Next Industrial Revolution, Washington DC, 2000.
    [2]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001.
    [3] A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933 - 937.
    [4]朱静等.纳米材料与器件.北京:清华大学出版社,2003.
    [5] C. B. Murray, D. J. Norris, M. G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semieonductor nanocrystallites. Joumal of the American Chemical Soeiety, 1993, 115(19): 8706 - 8715.
    [6] A. P. Alivisators. Perspective on the physical chemistry of semiconductor nanocrystals. Joumal of Physical Chemistry, 1996, 100(31): 13226 - 13232.
    [7] Eran Rabani, David R. Reichman, Phillip L. Geissler, Louis E. Brus. Dying-mediated self-assembly of nanoparticles. Nature, 2003, 426: 271 - 274.
    [8] Lianhua Qu, Xiaogang Peng. Control of photoluminescence properties of CdSe nanocrystals in growth. Joumal of the American Chemical Society, 2002, 124(9): 2049 - 2055.
    [9] Rongchao Jin, Y. Charles Cao, Encai Hao, Gabriella S. Métraux, George C. Schatz, Chad A. Mirkin. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425: 487 - 490.
    [10] M. G. Lines. Nanomaterials for practical functional uses. Journal of Alloys and Compounds, 2008, 449(1-2): 242 - 245.
    [11] Yuezhong Xian, Yi Hu, Fang Liu, Yang Xian, Haiting Wang, Litong Jin. Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite. Biosensors and Bioelectronics, 2006, 21(10): 1996 - 2000.
    [12] Xiliang Luo, Jingjuan Xu, Ying Du, Hongyuan Chen. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Analytical Biochemistry, 2004, 334(2): 284 - 289.
    [13] Minhua Xue, Qin Xu, Mi Zhou, Junjie Zhu. In situ immobilization of glucose oxidase in chitosan–gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Electrochemistry Communication, 2006, 8: 1468 - 1474.
    [14] Yu Bai, Hua Yang, Weiwei Yang, Yancai Li, Changqing Sun. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensorconstruction. Sensors and Actuators B: Chemistry, 2007, 124(1): 179 - 186.
    [15] Pratik Shah, Yannis Kevrekidis, Jay Benziger. Ink-Jet printing of catalyst patterns for electroless metal deposition. Langmuir, 1999, 15(4): 1584 - 1587.
    [16] D. Neil Furlong, Anton Launikonis, Wolfgang H. F. Sasse, John V. Sanders. Colloidal platinum sols. Preparation, characterization and stability towards salt. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984, 80: 571 - 588.
    [17] Hubert A. Gasteiger, Shyam S. Kocha, Bhaskar Sompalli, Frederick T. Wagner. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005, 56: 9 - 35.
    [18] G. A. Somorjai. Chemistry in two dimensions: Surfaces. Cornell University Press, Ithaca, N Y, 1981.
    [19] G. A. Somorjai, F. Zaera. Heterogeneous catalysis on the molecular scale. The Journal of Physical Chemistry, 1982, 86(16): 3070 - 3078.
    [20] Tao Li, Yan Du, Erkang Wang. Polyethyleneimine-functionalized platinum nanoparticles with high electrochemiluminescence activity and their applications to amplified analysis of biomolecules. Chemistry– An Asian Journal, 2008, 3(3): 1942 - 1948.
    [21] Minghui Yang, Yu Yang, Haifeng Yang, Guoli Shen, Ruqin Yu. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum namoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials, 2006, 27(4): 246 - 255.
    [22] John Turkevich, Peter Cooper Stevenson, James Hillier. A study of the nucleation and growth processes in the synthesis of colloidal gold . Discussions of the Faraday Society, 1951, 11: 55 - 75.
    [23] Anantha Iyengar Gopalan, Kwang-Pill Lee, Kalayil Manian Manesh, Padmanabhan Santhosh, Jun Heon Kim, Jae Soo Kang. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta, 2007, 71(4): 1774 - 1781
    [24] Md. Harunar Rashid, Rama Ranjan Bhattacharjee, Atanu Kotal, Tarun K. Mandal. Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir, 2006, 22 (17): 7141– 7143.
    [25] Weiwei Yang, Jinxing Wang, Shuang Zhao, Yingying Sun, Changqing Sun. Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochemistry Communications, 2006, 8(4): 665 - 672.
    [26] Sumio Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56 - 58.
    [27] Mustafa Musameh, Joseph Wang, Arben Merkoci, Yuehe Lin. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications, 2002, 4: 743 - 746.
    [28] Qiang Zhao, Zhenhai Gan, Qiankun Zhuang. Electrochemical sensors based on carbon nanotubes. Electroanalysis, 2002, 14: 1609 - 1613.
    [29] María D. Rubianes, Gustavo A. Rivas. Carbon nanotubes paste electrode. Electrochemistry Communications, 2003, 5: 689-694.
    [30] G. A. Rivas, M. D. Rubianes, M. L. Pedano, N. F. Ferreyra, G. L. Luque, M. C. Rodríguez, S. A. Miscoria. Carbon nanotubes paste electrodes. A new alternative for the development of electrochemical sensors. Electroanalysis, 2007, 19: 823 - 831.
    [31] Jason J. Davis, Richard J. Coles, H. Allen, O. Hill. Protein electrochemistry at carbon nanotube electrodes. Journal of Electroanalytical Chemistry, 1997, 440: 279 - 282.
    [32] Samuel Sánchez, Martin Pumera, Enric Cabruja, Esteve Fàbregas. Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors. Analyst, 2007, 132: 142 - 147.
    [33] Xuetong Zhang, Jin Zhang, Zhongfan Liu. Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon, 2005, 43: 2186 - 2191.
    [34] Huseyin Zengin, Wensheng Zhou, Jianyong Jin, Richard Czerw, Dennis W. Smith, Jr., Luis Echegoyen, David L. Carroll, Stephen H. Foulger, John Ballato. Carbon nanotube doped polyaniline. Advanced Materials, 2002, 14: 1480 - 1483.
    [35] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274: 1701 - 1703.
    [36] Konstantin B. Shelimov, Rinat O. Esenaliev, Andrew G. Rinzler, Chad B. Huffman, Richard E. Smalley. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chemical Physics Letters, 1998, 282: 429 - 434.
    [37] Alexander B. Artyukhin, Olgica Bakajin, Pieter Stroeve, Aleksandr Noy. Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates. Langmuir, 2004, 20: 1442 - 1448.
    [38] Yuzhong Zhang, Yan Pan, Shao Su, Liping Zhang, Shuping Li, Mingwang Shao. A novel functionalized single-wall carbon nanotube modified electrode and itsapplication in determination of dopamine and uric acid in the presence of high concentrations of ascorbic acid. Electroanalysis, 2007, 16: 1695 - 1701.
    [39] Jianying Qu, Yan Shen, Xiaohu Qu, Shaojun Dong. Preparation of hybrid thin film modified carbon nanotubes on glassy carbon electrode and its electrocatalysis for oxygen reduction. Chemical Communications, 2004, 1: 34 - 35.
    [40] Yi Lin, Shelby Taylor, Huaping Li, K. A. Shiral Fernando, Liangwei Qu, Wei Wang, Lingrong Gu, Bing Zhou, Yaping Sun. Advances toward bioapplications of carbon nanotubes. Journal of Materials Chemistry, 2004, 14: 527 - 541.
    [41] Jianxiu Wang, Meixian Li, Zujin Shi, Nanqiang Li, Zhennan Gu. Direct electrochemistry of cytochrome C at a glassy carbon electrode modified with single-wall carbon nanotubes. Analytical Chemistry, 2002, 74: 1993 - 1997.
    [42] Joseph Wang, Mustafa Musameh, Yuehe Lin. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 2003, 125: 2408 - 2409.
    [43] Gustavo A. Rivas, Silvia A. Miscoria, Jacques Desbrieres, Gustavo D. Barrera. New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on nafion/carbon nanotubes-coated glassy carbon electrodes. Talanta, 2007, 71: 270 - 275.
    [44] Ryan R. Moore, Craig E. Banks, Richard G. Compton. Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Analytical Chemistry, 2004, 76: 2677 - 2682.
    [45] Chenxin Cai, Jing Chen. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry, 2004, 332: 75 - 83.
    [46]王宗花,罗国安.碳纳米管在分析化学领域的研究进展.分析化学,2003, 31(08): 1004 - 1009.
    [47]王宗花,刘军,颜流水,王义明,罗国安.碳纳米管修饰电极的孔性界面对电分离多巴胺和抗坏血酸的影响.高等学校化学学报,2003, 24(2): 236 - 240.
    [48] Zonghua Wang, Qionglin Liang, Yiming Wang, Guoan Luo. Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Electroanalytical Chemistry, 2003, 540: 129 - 134.
    [49] Zonghua Wang, Jun Liu, Qionglin Liang, Yiming Wang, Guoan Luo. Carbonnanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst, 2002, 127: 653 - 658.
    [50] Zonghua Wang, Yiming Wang, Guoan Luo. A selective voltammetric method for uric acid detection atβ-cyclodextrin modified electrode incorporating carbon nanotubes. Analyst, 2002, 127: 1353 - 1358.
    [51]罗红霞,施祖进,李南强,顾镇南,庄乾坤.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用.高等学校化学学报,2000, 21: 1372 - 1374.
    [52] Jianxiu Wang, Meixian Li, Zujin Shi, Nanqiang Li, Zhennan Gu. Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode. Microchemical Journal, 2002, 73: 325 - 333.
    [53] Zhibin He, Jinhua Chen, Dengyou Liu, Haihui Zhou, Yafei Kuang. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol eleetrooxidation. Diamond and Related Materials, 2004, 13: 1764 - 1770.
    [54] Lianqing Rong, Chen Yang, Qingyun Qian, Xinghua Xia. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta, 2007, 72: 819 - 824.
    [55] Mengyao Li, Guoqing Zhao, Zenglian Yue, Shasheng Huang. Sensor for traces of hydrogen peroxide using an electrode modified by multiwalled carbon nanotubes, a gold-chitosan colloid, and Prussian blue. Microchimica Acta, 2009, 167: 167 - 172.
    [56] Yuzhong Zhang, Haiyan Ma, Keying Zhang, Shaojun Zhang, JieWang. An improved DNA biosensor built by layer-by-layer covalent attachment of multi-walled carbon nanotubes and gold nanoparticles. Electrochimica Acta, 2009, 254: 385 - 2391.
    [57] Guohua Chen, Dajun Wu, Wengui Weng, Cuiling Wu. Exfoliation of graphite flake and its nanocomposites. Carbon, 2003, 41(3): 619 - 621.
    [58] Guohua Chen, Wengui Weng, Dajun Wu, Cuiling Wu, Jinrong Lu, Pingping Wang, Xiangfeng Chen. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon, 2004, 42(4): 753 - 759.
    [58] Lisa M. Viculis, Julia J. Mack, Oren M. Mayer, H. Thomas Hahn, Richard B. Kaner. Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry, 2005, 15(9): 974 - 978.
    [59] Hannes C. Schniepp, Je-Luen Li, Michael J. McAllister, Hiroaki Sai, Margarita Herrera-Alonso, Douglas H. Adamson, Robert K. Prud'homme, Roberto Car, Dudley A. Saville, Ilhan A. Aksay. Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 2006, 110(17): 8535 - 8539.
    [60] Shigeo Horiuchi, Takuya Gotou, Masahiro Fujiwara, Toru Asaka, Tadahiro Yokosawa, Yoshio Matsui. Single graphene sheet detected in a carbon nanofilm. Applied Physics Letters, 2004, 84(13): 2403 - 2405.
    [61] Sasha Stankovich, Richard D. Piner, SonBinh T. Nguyen, Rodney S. Ruoff. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006, 44(15): 3342 - 3347.
    [62] Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen, Rodney S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558 - 1565.
    [63] Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen, Rodney S. Ruoff. Graphene-based composite materials. Nature, 2006, 442(7100): 282 - 286.
    [64] Dan Li, Marc B. Muller, Scott Gilje, Richard B Kaner, Gordon G Wallace. Processable aqueous dispersion of graphene nanosheets. Nature, 2008, 3: 101 - 105.
    [65] Xuekun Lu, Minfeng Yu, Hui Huang, Rodney S. Ruoff. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 1999, 10: 269 - 272.
    [66]刘首鹏,周锋,金爱子,杨海方,马拥军,李辉,顾长志,吕力,姜博,郑泉水,王胜,彭练矛.人工裁剪制备石墨纳米结构.物理学报,2005, 54(9): 4251 - 4255.
    [67] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl. On the roughness of single- and bi-layer graphene membranes. Solid State Communications, 2007, 143(1-2): 101 - 109.
    [68] A. Fasolino, J. H. Los, M. I. Katsnelson. Intrinsic ripples in graphene. Nature Materials, 2007, 6(11): 858 - 861.
    [69] Phaedon Avouris, Zhihong Chen, Vasili Perebeinos. Carbon-basedelectronics.Nature Nanotechnology, 2007, 2(10): 605 - 615.
    [70] Gordon W. Semenoff. Condensed-matter simulation of a three-dimensional anomaly. Physical Review Letters, 1984, 53: 2449 - 2452.
    [71] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Two-dimensional gas of massless dirac fermions in graphene. Nature, 2005, 438(7065): 197 - 200.
    [72] Jeroen B. Oostinga, Hubert B. Heersche, Xinglan Liu, Alberto F. Morpurgo, Lieven M. K. Vandersypen. Gate-induced insulating state in bilayer graphene devices. Nature Materials, 2007, 7(2): 151 - 157.
    [73] D. M. Basko. Effect of inelastic collisions on multiphonon raman scattering in graphene. Physical Review B, 2007, 76: 081405 - 4.
    [74] Ming Zhou, Yueming Zhai, Shaojun Dong. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analatical Chemistry, 2009, 81: 5603 - 5613.
    [75] Yueming Li, Longhua Tang, Jinghong Li. Preparation and electrochemical performance for methanol oxidation of pt / graphene nanocomposites. Electrochemistry Communications, 2009, 11: 846–849.
    [76] Hungi Hong, Youngmin Kim. Electroehemical characteristic of an indium-tin oxide electrode modified with 2, 5-bis (phosphonomethyl) hydroquinone. Electrochimica Acta, 2001, 46: 2313 - 2319.
    [77]董绍俊,车广礼,谢远武.化学修饰电极.科学出版社,1995.
    [78] James H. Smith, Jeffry J. Sniegowski. Intelligent microsystems: strategy for the future. Semiconductor International, 1998, 4: 93 - 96.
    [79] Guodong Liu, Shawn Lee Riechers, Maria Consuelo Mellen, Yuehe Lin. Sensitive electrochemical detection of enzymatically generated thiocholine at carbon nanotube modified glassy carbon electrode. Electrochemistry Communications, 2005, 7: 1163–1169.
    [80] Yan Zhang, Tianfang Kang, Yiwen Wan, Shuiyuan Chen. Gold nanoparticles - carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchimica Acta, 2009, 165: 307 - 311.
    [81] Jan B. Talbot. Electrodeposition of nanocomposite films. Plating and Surface Finishing, 2004, 91(10): 60 - 65.
    [82] Ruizhi Chen, Dongsheng Xu, Guolin Guo. Electrodepositon of thin films andsingle-crystalline nanowires. Chemical Physics Letters, 2003, 377: 205 - 209.
    [83] Shuqing Wang, Xiangqin Lin. Electrodeposition of Pt–Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochimica Acta, 2005, 50: 2887 - 2891.
    [84] Xianwen Kan, Tingting Liu, Hong Zhou, Chen Li, Bin Fang. Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination. Microchimica Acta, 2010, 171: 423 - 429.
    [85] A. Walcarius, C. Despas, J. Bessiere. Selective monitoring of Cu(II) species using a silica modified carbon paste electrode. Analytica Chimica Acta, 1999, 385(1-3): 79 - 89.
    [86]兰雁华,陆光汉,姚胜来,宋丰.甲壳素修饰碳糊电极测定痕量铜.分析化学,1998, 26(10): 1192 - 1195.
    [87] D. Moscone, D. D'Ottavi, D. Compagnone, G. Palleschi. Construction and analytical characterization of prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Analytical Chemistry, 2001, 73(11): 2529 - 2535.
    [88] A. Walcarius, L. Lumberts, E. G. Derouane. Cation determination in aqueous solution using the methyl viologen-doped zeolite-modified carbon paste electrode. Electroanalysis, 1995, 7(2): 120 - 128.
    [89] K. Kalcher, J. M. Kauffmann, J. Wang, I. ?vancara, K. Vyt?as, C. Neuhold, Z. Yang. Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990-1993. Electroanalysis, 1995, 7(1): 5 - 22
    [90] Efstathios G. Cookeas, Constantinos E. Efstathiou. Flow injection-pulse amperometric detection of ephedrine at a cobalt phthalocyanine modified carbon paste electrode. Analyst, 2000, 125(6): 1147 - 1150.
    [91] Ana Cristina Franzoi, Almir Spinelli, Iolanda Cruz Vieira. Rutin determination in pharmaceutical formulations using a carbon paste electrode modified with poly(vinylpyrrolidone). Journal of Pharmaceutical and Biomedical Analysis, 2008, 47: 973–977.
    [92] Marcos F. S. Teixeira, Glimaldo Marino, Edward R. Dockal,éder T. G. Cavalheiro. Voltammetric determination of pyridoxine (vitamin B6) at a carbon paste electrode modified with vanadyl(IV)–salen complex. Analytica Chimica Acta, 2004, 508(1): 79 - 85.
    [93]黄泰康.常用中药成分与药理手册,北京:中国医药科技出版社,1994: 1702 - 1703.
    [94] Xiangjun Li, Yuping Zhang, Zhuobin Yuan. Determination of rutin and forsythin in fruit of forsythia suspense (Thunb.) Vahl by capillary electrophoresis - electrochemical detection. Chromatographia, 2002, 56(3/4): 171 - 174.
    [95] Shixin Deng, Brett J. West, C. Jarakae Jensen. Simultaneous characterisation and quantitation of flavonol glycosides and aglycones in noni leaves using a validated HPLC-UV/ MS method. Food Chemistry, 2008, 111 (2): 526 - 529.
    [96] Gang Chen, Hongwei Zhang, Jiannong Ye. Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection. Analytica Chimica Acta, 2000, 423(1): 69 - 76.
    [97] Zhenghua Song, Shuang Hou. Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents. Talanta, 2002, 57: 59 - 67.
    [98] Caixia He, Hua Cui, Xiaoyu Zhao, Huazhang Zhao, Guiwen Zhao. Detemination of rutin by flow injection with inhibited chemiluminesence detection. Analytical Letters, 1999, 32(14): 2751 - 2759.
    [99] Shaohua Wu, Jianjun Sun, Defeng Zhang, Zhibin Lin, Fahui Nie, Heyuan Qiu, Guonan Chen. Nanomolar detection of rutin based on adsorptive stripping analysis at single-sided heated graphite cylindrical electrodes with direct current heating. Electrochimica Acta, 2008, 53: 6596 - 6601.
    [100] Wei Sun, Maoxia Yang, Yinzhuo Li, Qiang Jiang, Shufeng Liu, Kui Jiao. Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48(5): 1326 - 1331.
    [101] V. Massey. The chemical and biological versatility of riboflavin. Biochemical Society Transactions, 2000, 28: 283 - 296.
    [102] Steinar Hustada, Per Magne Ueland, Stein Emil Vollset, Ying Zhang, Anne Lise Bj?rke-Monsen, J?rn Schneede. Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate reductase C677T polymorphism. Clinical Chemistry, 2000, 46: 1065 - 1071.
    [103] C. Bodson, W. Dewé, Ph. Hubertc, L. Delattre. Comparison of FT-NIR transmission and UV–vis spectrophotometry to follow the mixing kinetics and toassay low-dose tablets containing riboflavin. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(3): 783 - 790.
    [104] Otto A. Bessey, Oliver H. Lowry, Ruth H. Love. The fluorometric measurement of the nucleotides of riboflavin and their concentration in tissues. Journal of Biological Chemistry, 1949, 4: 755 - 769.
    [105] Ankai Su, Chenghuang Lin. Determination of riboflavin in urine by capillary electrophoresis–blue light emitting diode-induced fluorescence detection combined with a stacking technique. Journal of Chromatography B, 2003, 785(1): 39 - 46.
    [106] Gillian M. Greenway, Nsanyi Kometa. Online sample preparation for the determination of riboflavin and flavin mononucleotides in food stuffs. Analyst, 1994, 119(5): 929 - 935.
    [107] R. P. Goodrich. The use of riboflavin for the inactivation of pathogens in blood products. Congress of the International Society of Blood Transfusion, 2000, 78: 211 - 215.
    [108] A. Safavi, M. A. Karimi, M. R. Hormozi Nezhad. Flow injection analysis of riboflavin with chemiluminescence detection using a N-halo compoundsluminol system. Luminescence, 2005, 20(3): 170 - 175.
    [109] Chengxiao Zhang, Honglan Qi. Highly sensitive determination of riboflavin based on the enhanced electrogenerated chemiluminescence of lucigenin at a platinum electrode in a neutral aqueous solution. Analytical sciences, 2002, 18: 819 - 822.
    [110] Semiha ?akir, ?clal Atayman, Osman ?akir. Simultaneous square-wave voltammetric determination of riboflavin and folic acid in pharmaceutical preparations. Microchimica Acta, 1997, 126(3-4): 237 - 240.
    [111] G. Melentyeva, L. Antonova. Pharmaceutical Chemistry. Mir Publishers, Moscow, 1988: 375 - 393.
    [112]肖玉梅,李楠,傅滨.维生素B6-人体“建筑师”.大学化学,2010, 25(4): 57 - 61.
    [113] Mi Zhao, Jing Li, Guiyan Xu, Shouping Sun. Determination of vitamin B6 in compound isoniazid tablets using UV spectrophotometry. Heilongjiang Medicine and Pharmacy, 1999, 22(3): 13.
    [114] P. Ortega-Barrales, M. L. Fernández-de Córdova, A. Molina-Díaz.Microdetermination of vitamin B1 in the presence of vitamins B2, B6, and B12 by solid-phase UV spectrophotometry. Analytical Chemistry, 1998, 70(2): 271 - 275.
    [115] Alaa El-Gindy. Spectrophotometric and LC determination of two binary mixtures containing pyridoxine hydrochloride. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32(2): 277 - 286.
    [116] L. García, S. Blázquez, M. P. San Andrés, S. Vera. Determination of thiamine, riboflavin and pyridoxine in pharmaceuticals by synchronous fluorescence spectrometry in organized media. Analytica Chimica Acta, 2001, 434(2): 193 - 199.
    [117] P. S?derhjelm, J. Lindquist. Voltammetric determination of pyridoxine by use of a carbon paste electrode. Analyst, 1975, 100(1190): 349 - 354.
    [118] Solange M. Cottica, Jorge Nozaki, Helena S. Nakatani, Claudio C. Oliveira, Nilson E. de Souza, Jesui V. Visentainer. Voltammetric determination of pyridoxine (vitamin B6) in drugs using a glassy carbon electrode modified with chromium(III) hexacyanoferrate(II). Journal of Brazilian Chemistry Society, 2009, 20(3): 496 - 501.
    [119] Wanyun Qu, Kangbing Wu, Shengshui Hu. Voltammetric determination of pyridoxine (vitamin B6) by use of a chemically-modified glassy carbon electrode. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36: 631 - 635.
    [1]黄泰康.常用中药成分与药理手册.北京:中国医药科技出版社,1994: 1702 - 1703.
    [2] A. H. Abou-Donia, S. M. Toaima, H. M. Hammoda, E. Shawky. Determination of rutin in amaryllis belladonna L. flowers by HPTLC and spectrophotometry. Chromatography, 2006, 64(1/2): 109 - 112.
    [3] Kazuo Ishii, Takashi Furuta, Yasuji Kasuya. Determination of rutin in human plasma by high-performance liquid chromatography utilizing solidphase extraction and ultraviolet detection. Journal of Chromatography B, 2001, 759(1): 161 - 168.
    [4] Shixin Deng, Brett J. West, C. Jarakae Jensen. Simultaneous characterisation and quantitation of flavonol glycosides and aglycones in noni leaves using a validated HPLC - UV/ MS method. Food Chemistry, 2008, 111(2): 526 - 529.
    [5] Gang Chen, Hongwei Zhang, Jiannong Ye. Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection. Analytica Chimica Acta, 2000, 423(1): 69 - 76.
    [6] Gang Chen, Jianxia Zhang, Jiannong Ye. Determination of puerarin, daidzein and rutin in pueraria lobata (wild) ohwi by capillary electrophoresis with electrochemical detection. Journal of Chromatography A, 2001, 923: 255 - 262.
    [7] Shaohua Wu, Jianjun Sun, Defeng Zhang, Zhibin Lin, Fahui Nie, Heyuan Qiu, Guonan Chen. Nanomolar detection of rutin based on adsorptive stripping analysis at single-sided heated graphite cylindrical electrodes with direct current heating. Electrochimica Acta, 2008, 53: 6596 - 6601.
    [8] G. J. Volikakis, C. E. Efstathiou. Determination of rutin and other flavonoids by flow-injection: adsorptive stripping voltammetry using nujol–graphite and diphenylether-graphite paste electrodes. Talanta, 2000, 51(4): 775 - 785.
    [9] Zhenghua Song, Shuang Hou. Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents. Talanta, 2002, 57: 59 - 67.
    [10] Caixia He, Hua Cui, Xiaoyu Zhao, Huazhang Zhao, Guiwen Zhao. Detemination of rutin by flow injection with inhibited chemiluminesence detection. Anal. Lett., 1999, 32(14):2751 - 2759.
    [11] Z. Legnerova, D. Satinsky, P. Solich. Using on-line solid phase extraction forsimultaneous determination of ascorbic acid and rutin trihydrate by sequential injection analysis. Analytica Chimica Acta, 2003, 497(1-2): 165 - 174.
    [12] Xue Tian, Fengju Li, Lu Zhua, Baoxian Ye. Study on the electrochemical behavior of anticancer herbal drug rutin and its interaction with DNA. Journal of Electroanalytical Chemistry, 2008, 621: 1 - 6.
    [13] Shuyan Niu, Mingliang Wu, Lengzhi Hu, Zhenhua Mei, Shufeng Liu. Nucleic acid biosensor for DNA hybridization detection using rutin-Cu as an electrochemical indicator. Electrochimica Acta, 2009, 54: 1564 - 1569.
    [14] Shuyan Niu, Min Zhao, Lengzhi Hu, Shusheng Zhang. Carbon nanotube -enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator. Sensors and Actuators B, 2008, 135: 200–205.
    [15] Wei Sun, Maoxia Yang, Yinzhuo Li, Qiang Jiang, Shufeng Liu, Kui Jiao. Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48(5): 1326 - 1331.
    [16] Guangfeng Wang, Nianjun Hu, Wen Wang, Pengcheng Li, Haochen Gu, Bin Fang. Preparation of carbon nanotubes/neutral red composite film modified electrode and its catalysis on rutin. Electroanalysis, 2007, 19(22): 2329 - 2334.
    [17] Jinhua Huang, Qingji Xie, Yueming Tan, Yingchun Fu, Zhaohong Su, Yi Huang, Shouzhuo Yao. Preparation of Pt/multiwalled carbon nanotubes modified Au electrodes via Pt-Cu co-electrodeposition/Cu stripping protocol for high -performance electrocatalytic oxidation of methanol. Materials Chemistry and Physics, 2009, 118: 371–378.
    [18] Liang Wang, Shaojun Guo, Lijian Huang, Shaojun Dong. Alternate assemblies of polyelectrolyte functionalized carbon nanotubes and platinum nanoparticles as tunable electrocatalysts for dioxygen reduction. Electrochemistry Communications, 2007, 9: 827–832.
    [19] Yongjin Zou, Cuili Xiang, Lixian Sun, Fen Xu. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosensors and Bioelectronics, 2008, 23(7): 1010 - 1016.
    [20] Jing Yang, Renyi Zhang, Ying Xu, Pingang He, Yuzhi Fang. Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan-CdS and itsbiosensoring for glucose. Electrochemistry Communications, 2008, 10: 1889–1892.
    [21] Shuqing Wang, Xiangqin Lin. Electrodeposition of Pt–Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochimica Acta, 2005, 50: 2887 - 2891.
    [22] Jun Wang, Yuehe Lin. Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends in Analytical Chemistry, 2008, 27(7): 619 - 627.
    [23] Yuzhong Zhang, Haiyan Ma, Keying Zhang, Shaojun Zhang, Jie Wang. An improved DNA biosensor built by layer-by-layer covalent attachment of multi-walled carbon nanotubes and gold nanoparticles. Electrochimica Acta, 2009, 54: 2385 - 2391.
    [24] Guodong Liu, Shawn Lee Riechers, Maria Consuelo Mellen, Yuehe Lin. Sensitive electrochemical detection of enzymatically generated thiocholine at carbon nanotube modified glassy carbon electrode. Electrochemistry communications, 2005, 7(11): 1163– 1169.
    [25] P. J. Brito, K. S. V. Santhanam, P. M. Ajayan. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics, 1996, 41(1): 121 - 125.
    [1] G. Melentyeva, L. Antonova. Pharmaceutical Chemistry. Mir Publishers, Moscow, 1988, p 375 - 393.
    [2] Mi Zhao, Jing Li, Guiyan Xu, Shouping Sun. Determination of vitamin B6 in compound isoniazid tablets using UV spectrophotometry. Heilongjiang Medicine and Pharmacy, 1999, 22(3): 13.
    [3] P. Ortega-Barrales, M. L. Fernández-de Córdova, A. Molina-Díaz. Microdetermination of vitamin B1 in the presence of vitamins B2, B6, and B12 by solid-phase UV spectrophotometry. Analytical Chemistry, 1998, 70(2): 271 - 275.
    [4] Weiying Hou, Huamin Ji, Erkang Wang. Liquid chromatography of vitamin B6 with electrochemical detection using a carbon fibre electrode. Analytica Chimica Acta, 1990, 230: 207 - 211.
    [5] Gang Chen, Xianghuan Ding, Zhiguang Cao, Jiannong Ye. Determination of melatonin and pyridoxine in pharmaceutical preparations for health-caring purposes by capillary electrophoresis with electrochemical detection. Analytica Chimica Acta, 2000, 408(1-2): 249 - 256.
    [6] Alaa El-Gindy. Spectrophotometric and LC determination of two binary mixtures containing pyridoxine hydrochloride. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32(2): 277 - 286.
    [7] L. García, S. Blázquez, M. P. San Andrés, S. Vera. Determination of thiamine, riboflavin and pyridoxine in pharmaceuticals by synchronous fluorescence spectrometry in organized media. Analytica Chimica Acta, 2001, 434(2): 193 - 199.
    [8] Marcos F. S. Teixeira, Glimaldo Marino, R. Dockal Edward,éder T. G. Cavalheiro. Voltammetric determination of pyridoxine (vitamin B6) at a carbon paste electrode modified with vanadyl(IV)-salen complex. Analytica Chimica Acta, 2004, 508 (1): 79 - 85.
    [9] B. Habibi, H. Phezhhan, M. H. Pournaghi-Azar. Voltammetric determination of vitamin B6 (pyridoxine) using multi wall carbon nanotube modified carbon- ceramic electrode. Journal of Iranian Chemistry Society, 2010, 7: 103 - 112.
    [10] Rafael Jiménez-Prieto, Manuel Silva , Dolores Pérez-Bendito. Analytical assessment of the oscillating chemical reactions by use chemiluminescencedetection. Talanta, 1997, 44(8): 1463 - 1472.
    [11] Qin Hu, Tianshu Zhou, Lan Zhang, Hong Li, Yuzhi Fang. Separation and determination of three water-soluble vitamins in pharmaceutical preparations and food by micellar electrokinetic chromatography with amperometric electrochemical detection. Analytica Chimica Acta, 2001, 437(1): 123 - 129.
    [12] P. S?derhjelm, J. Lindquist. Voltammetric determination of pyridoxine by use of a carbon paste electrode. Analyst, 1975, 100(1190): 349 - 354.
    [13] Mengyao Li, Guoqing Zhao, Zenglian Yue, Shasheng Huang. Sensor for traces of hydrogen peroxide using an electrode modified by multiwalled carbon nanotubes, a gold-chitosan colloid, and prussian blue. Microchimica Acta, 2009, 167(2): 167 - 172.
    [14] Jinzhong Xu, Junjie Zhu, Qiang Wu, Zheng Hu, Hongyuan Chen. An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis, 2003, 15(3): 219 - 224.
    [15] Linqin Jiang, Lian Gao. Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles. Carbon, 2003, 41(15): 2923 - 2929.
    [16] Liang Wang, Shaojun Guo, Lijian Huang, Shaojun Dong. Alternate assemblies of polyelectrolyte functionalized carbon nanotubes and platinum nanoparticles as tunable electrocatalysts for dioxygen reduction. Electrochemistry Communications, 2007, 9(4): 827 - 832.
    [17] Ying Liu, Shuo Wu, Huangxian Ju, Li Xu. Amperometric glucose biosensing of gold nanoparticles and carbon nanotube multilayer membranes. Electroanalysis, 2007, 19(9): 986 - 992.
    [18] Ruifang Gao, Jianbin Zheng. Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase. Electrochemistry Communications, 2009, 11(3): 608 - 611.
    [19] Sanhua Lim, Ji Wei, Jianyi Lin. Electrochemical genosensing properties of gold nanoparticle-carbon nanotube hybrid. Chemical Physics Letters, 2004, 400(4-6): 578 - 582.
    [20] Haiyan Ma, Liping Zhang, Yan Pan, Keying Zhang, Yuzhong Zhang. A novel electrochemical DNA biosensor fabricated with layer-by-layer covalent attachment of multi-walled carbon nanotubes and gold nanoparticles. Electroanalysis, 2008, 20(11): 1220 - 1226.
    [21] Yan Zhang, Tianfang Kang, Yiwen Wan, Shuiyuan Chen. Gold nanoparticles- carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchimica Acta, 2009, 165(3-4): 307 - 311.
    [22] Shaojun Zhang, Minglu Xu, Yuzhong Zhang. Simultaneous voltammetric detection of salsolinol and uric acid in the presence of high concentration of ascorbic acid with gold nanoparticles/functionalized multiwalled carbon nanotubes composite film modified electrode. Electroanalysis, 2009, 21(23): 2607 - 2610.
    [23] Lei Xiao, Gregory G. Wildgoose, Richard G. Compton. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Analytica Chimica Acta, 2008, 620(1-2): 44 - 49.
    [24] Songqin Liu, Jiuhong Yu, Huangxian Ju. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. Journal of Electroanalytical Chemistry, 2003, 540: 61 - 67.
    [25] Songqin Liu, Huangxian Ju. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors and Bioelectronics, 2003, 19(3): 177 - 183.
    [26]周小平,余腊妹,郭乔辉,周政平,侯豪情.多壁碳纳米管的表面修饰及其在溶剂中的分散性.化工新型材料,2009, 37(6): 61 - 62.
    [27] Shuqing Wang, Xiangqin Lin. Electrodeposition of Pt–Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochimica Acta, 2005, 50: 2887 - 2891.
    [28] Editorial Committee of Pharmacopoeia of People’s Republicof China. People’s Republic of China Pharmacopoeia (Part II). Chemical Industry Press, Beijing, 2000: 789.
    [1] V. Massey. The chemical and biological versatility of riboflavin. Biochemical Society Transactions, 2000, 28: 283 - 296.
    [2] Steinar Hustada, Per Magne Ueland, Stein Emil Vollset, Ying Zhang, Anne Lise Bj?rke-Monsen, J?rn Schneede. Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate reductase C677T polymorphism. Clinical Chemistry. 2000, 46: 1065 - 1071.
    [3] C. Bodson, W. Dewé, Ph. Hubertc, L. Delattre. Comparison of FT-NIR transmission and UV–vis spectrophotometry to follow the mixing kinetics and to assay low-dose tablets containing riboflavin. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(3): 783 - 790.
    [4] Otto A. Bessey, Oliver H. Lowry, Ruth H. Love. The fluorometric measurement of the nucleotides of riboflavin and their concentration in tissues. Journal of Biological Chemistry, 1949, 4: 755 - 769.
    [5] Ankai Su, Chenghuang Lin. Determination of riboflavin in urine by capillary electrophoresis–blue light emitting diode-induced fluorescence detection combined with a stacking technique. Journal of Chromatography B, 2003, 785(1): 39 - 46.
    [6] J. K. Fellman, W. E. Artz, P. D. Tassinari, C. L. Cole, J. Augustin. Simultaneous determination of thiamin and riboflavin in selected foods by high-performance liquid chromatography. Journal of Food Science, 1982, 47(6): 2048 - 2050.
    [7] Gillian M. Greenway, Nsanyi Komet. Online sample preparation for the determination of riboflavin and flavin mononucleotides in food stuffs. Analyst, 1994, 119(5): 929 - 935.
    [8] R. P. Goodrich. The use of riboflavin for the inactivation of pathogens in blood products. Congress of the International Society of Blood Transfusion, 2000, 78: 211 - 215.
    [9] A. Safavi1, M. A. Karimi, M. R. Hormozi Nezhad. Flow injection analysis of riboflavin with chemiluminescence detection using a N-halo compoundsluminol system. Luminescence, 2005, 20(3): 170 - 175.
    [10] Chengxiao Zhang, Honglan Qi. Highly sensitive determination of riboflavin based on the enhanced electrogenerated chemiluminescence of lucigenin at a platinum electrode in a neutral aqueous solution. Analytical Sciences, 2002, 18:819 - 822.
    [11] Semiha ?akir, ?clal Atayman, Osman ?akir. Simultaneous square-wave voltammetric determination of riboflavin and folic acid in pharmaceutical preparations. Microchimica Acta, 1997, 126(3-4): 237 - 240.
    [12] M. J. F. Villamil, A. J. Miranda Ordieres, A. Costa García, P. Tu?ón Blanco. Simultaneous adsorptive stripping voltammetric determination of riboflavin and folic acid in multivitamin preparations. Analytica Chimica Acta, 1993, 273(1-2): 377 - 382.
    [13] Imrana Siddiqui, K. S. Pitre. Voltammetric determination of vitamins in a pharmaceutical formulation. Journal of Pharmaceutical and Biomedical Analysis, 2001, 26(5-6): 1009- 1015.
    [14] Anastasios Economou, Peter R. Fielden. A study of riboflavin determination by square wave adsorptive stripping voltammetry on mercury film electrodes. Electroanalysis, 1995, 7(5): 447 - 453.
    [15] Rahul M. Kotkar, Purvi B. Desai, Ashwini K. Srivastava. Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes. Sensors and Actuators B: Chemical, 2007, 124(1): 90 - 98.
    [16] L. S. Anisimova, E. V. Mikheeva, V. F. Slipchenko. Voltammetric determination of riboflavin in vitaminized supplements and feeds. Journal of Analytical Chemistry, 2000, 56(7): 658 - 662.
    [17] Kwokkeung Shiu, Kang Shi. Selective determination of riboflavin at electrochemically activated glassy carbon electrode. Electroanalysis, 2000, 12(2): 134 - 139.
    [18] Haiying Gu, Aimin Yu, Hongyuan Chen. Electrochemical behavior and simultaneous determination of vitamin B2, B6, and C at electrochemically pretreated glassy carbon electrode. Analytical Letters, 2001, 13: 2361 - 2374.
    [19] Meining Zhang, Lei Su, Lanqun Mao. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon, 2006, 44: 276–283.
    [20] Cuili Xiang, Yongjin Zou, Lixian Sun, Fen Xu. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan- carbon nanotubes modified electrode. Talanta, 2007, 74(2): 206 - 211.
    [21] Thomas O. Hutchinson, Yunping Liu, Carol Kiely, Christopher J. Kiely, Mathias Brust. Templated gold nanowire self-assembly on carbon substrates. AdvancedMaterials, 2001, 13: 1800 - 1803.
    [22] Sumio Iijima. Helical microtubles of graphitic carbon. Nature, 1991, 354: 56 - 58.
    [23] Yuzhong Zhang, Haiyan Ma, Keying Zhang, Shaojun Zhang, Jie Wang. An improved DNA biosensor built by layer-by-layer covalent attachment of multi-walled carbon nanotubes and gold nanoparticles. Electrochimica Acta, 2009, 54: 2385 - 2391.
    [24] Wei Xue, Tianhong Cui. Carbon nanotube micropatterns and cantilever arrays fabricated with layer-by-layer nano self-assembly. Sensors and Actuators A, 2007, 136: 510 - 517.
    [25] Hitoshi Mugurum, Yu Shibayam, Yasunori Matsui. An amperometric biosensor based on a composite of single-walled carbon nanotubes, plasma-polymerized thin film, and an enzyme. Biosensors and Bioelectronics, 2008, 23(6): 827 - 832.
    [26] Jinzhong Xu, Junjie Zhu, Qiang Wu, Zheng Hu, Hongyuan Chen. An amperometric biosensor based on the coimmobilization of Horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis, 2003, 15(3): 219 - 224.
    [27] Umasankar Yogeswaran, Shenming Chen. Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid. Sensors and Actuators B: Chemical, 2008, 130: 739 - 749.
    [28] Shuqing Wang, Xiangqin Lin. Electrodeposition of Pt–Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochimica Acta, 2005, 50: 2887 - 2891.
    [1] G. Melentyeva, L. Antonova. Pharmaceutical Chemistry. Mir Publishers, Moscow, 1988: 375 - 393.
    [2]肖玉梅,李楠,傅滨.维生素B6-人体“建筑师”.大学化学,2010, 25(4): 57 - 61.
    [3] Mi Zhao, Jing Li, Guiyan Xu, Shouping Sun. Determination of vitamin B6 in compound isoniazid tablets using UV spectrophotometry. Heilongjiang Medicine and Pharmacy, 1999, 22(3): 13.
    [4] P. Ortega-Barrales, M. L. Fernández-de Córdova, A. Molina-Díaz. Microdetermination of vitamin B1 in the presence of vitamins B2, B6, and B12 by solid-phase UV spectrophotometry. Analytical Chemistry, 1998, 70(2): 271 - 275.
    [5] Alaa El-Gindy. Spectrophotometric and LC determination of two binary mixtures containing pyridoxine hydrochloride. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32(2): 277 - 286.
    [6] L. García, S. Blázquez, M. P. San Andrés, S. Vera. Determination of thiamine, riboflavin and pyridoxine in pharmaceuticals by synchronous fluorescence spectrometry in organized media. Analytica Chimica Acta, 2001, 434(2): 193 - 199.
    [7] B. Habibi, H. Phezhhan, M. H. Pournaghi-Azar. Voltammetric determination of vitamin B6 (pyridoxine) using multi wall carbon nanotube modified carbon-ceramic electrode. Journal of Iran Chemistry Society, 2010, 7: 103 - 112.
    [8] Marcos F. S. Teixeira, Glimaldo Marino, R. Dockal Edward,éder T. G. Cavalheiro. Voltammetric determination of pyridoxine (vitamin B6) at a carbon paste electrode modified with vanadyl(IV)-salen complex. Analytica Chimica Acta, 2004, 508 (1): 79 - 85.
    [9] Solange M. Cottica, Jorge Nozaki, Helena S. Nakatani, Claudio C. Oliveira, Nilson E. de Souza, Jesui V. Visentainer. Voltammetric determination of pyridoxine (vitamin B6) in drugs using a glassy carbon electrode modified with chromium(III) hexacyanoferrate(II). Journal of Brazilian Chemistry Society, 2009, 20(3): 496 - 501.
    [10] P. S?derhjelm, J. Lindquist. Voltammetric determination of pyridoxine by use of a carbon paste electrode. Analyst, 1975, 100 (1190): 349 - 354.
    [11] Purvi B. Desai, Rahul M. Kotkar, Ashwini K. Srivastava. Electrochemical behaviour of pyridoxine hydrochloride (vitamin B6) at carbon paste electrode modified with crown ethers. Journal of Solid State Electrochemistry, 2008, 12: 1067–1075.
    [12] M. H. Pournaghi-Azar, H. Dastangoo, M. Ziaei. Electrocatalytic oxidation of pyridoxine (vitamin B6) on aluminum electrode modified by metallic palladium particles/iron (III) hexacyanoferrate (II) film. Journal of Solid State Electrochemistry, 2008, 11: 1221–1227.
    [13] Wei Sun, Maoxia Yang, Yinzhuo Li, Qiang Jiang, Shufeng Liu, Kui Jiao. Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48(5): 1326 - 1331.
    [14] Xiangqin Lin, Jianbo He, Zhenggen Zha. Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sensors and Actuators B: Chemical, 2006, 119: 608 - 614.
    [15] Wanyun Qu, Kangbing Wu, Shengshui Hu. Voltammetric determination of pyridoxine (vitamin B6) by use of a chemically-modified glassy carbon electrode. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36: 631 - 635.
    [16] Songqin Liu, Jiuhong Yu, Huangxian Ju. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. Electroanalytical Chemistry, 2003, 540: 61 - 67.
    [17] Songqin Liu, Huangxian Ju. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors and Bioelectronics, 2003, 19(3): 177 - 183.
    [18] Xuan Dai, Gregory G. Wildgoose, Chris Salter, Alison Crossley, Richard G. Compton. Electroanalysis using macro-, micro-, and nanochemical Architectures on electrode surfaces. bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. Analytical Chemistry, 2006, 78: 6102– 6108.
    [19] Ryan Muszynski, Brian Seger, Prashant V. Kamat. Decorating graphene sheets with gold nanoparticles. Journal of Physics Chemistry C, 2008, 112(14): 5263– 5266.
    [20] A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Materials, 2007, 6:183 - 191.
    [21] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109 - 162.
    [22]胡耀娟,金娟,张卉,吴萍,蔡称心.石墨烯的制备、功能化及在化学中的应用.物理化学学报,2010, 26(8): 2073 - 2086.
    [23]许春萱,吴志伟,曹凤枝,高滢滢.羧基化石墨烯修饰玻碳电极测定水样中的痕量铅和镉.冶金分析,2010, 30(8): 302 - 304.
    [24] Ming Zhou, Yueming Zhai, Shaojun Dong. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 2009, 81: 5603 - 5613.
    [25] Shengliang Hu, Peikang Bai, Jing Sun, Shirui Cao. Fluorescent carbon nanoparticles: recent achievements and technical challenges. Progress in Chemistry, 2010, 25(4): 317 - 320.
    [26] Shuqing Wang, Xiangqin Lin. Electrodeposition of Pt–Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochimica Acta, 2005, 50: 2887 - 2891.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.