A位Ag掺杂和自掺杂对La_(0.7)Sr_(0.3)MnO_3结构、磁性和结合能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有ABO3结构的钙钛矿锰氧化物RE1-xTxMnO3 ( RE为稀土元素,T为碱土元素)由于其庞大的磁电阻效应和广阔的应用前景,成为十几年来的一个研究热点。应用Zener提出的双交换机制可定性地解释这类化合物的电磁特性。
     在本论文中,我们主要对两个基本问题进行了探讨,结合理论计算和实验结果给出了满意的解释。
     1、钙钛矿结构中的A位究竟会不会存在空位。本文用溶胶-凝胶法制备了La0.7Sr0.3MnO3中A位高价和低价自掺杂的2个系列样品。使用X’pert Pro型X射线衍射仪测量了各系列样品的衍射谱,发现所制备样品多为复合材料。对于样品中的钙钛矿相,假设在样品中不存在空位,A位阳离子的不足,由Mn2+离子来弥补,所有样品都形成正分的ABO3结构,计算出了A、B和O位各种离子的比例,并直接用于XRD谱的Rietveld拟合,代表精修效果的误差参数Rp、Rwp、s都处于理想值范围内。验证了A位不存在空位。此外,利用我们提出的结合能计算方法计算了这2个系列样品中钙钛矿相的结合能随掺杂量变化的规律,其变化趋势分别与通过Rietveld拟合计算出的晶胞体积随掺杂量的变化趋势相同,从而说明晶胞体积随掺杂量的变化是由其结合能决定的。从而为我们提出的结合能计算方法提供了新的有力支持。采用Lake Shore M7310型振动样品磁强计(VSM)对样品进行磁性分析,结果发现:其室温磁化率和饱和磁化强度都随着自掺杂浓度增加而增大。居里温度TC随着样品钙钛矿相中Mn4+离子含量的变化基本符合La1-xSrxMnO3等二价掺杂系列材料的变化规律。从而得出结论:利用溶胶-凝胶法最终在800°C形成的复合体系的钙钛矿相中基本不存在A位空位,而是由二价Mn2+离子进入到A位,形成ABO3的稳定结构,其A、B和O位的离子数目比近似为标准的1 : 1 : 3。其中A位阳离子的不足,由Mn2+离子来弥补,正分氧含量是按A、B位阳离子的比例在样品成相之前的热处理过程中形成的。
     2、Ag究竟能不能进入到钙钛矿结构中。我们通过在母体材料La0.7Sr0.3MnO3中以Ag替代A位高价和低价离子,制备了2个系列样品,使用X’pert Pro型X射线衍射仪测量了各系列样品的衍射谱,得到由菱面体类钙钛矿相、金属Ag相和Mn3O4相组成的三相复合材料;假设样品的钙钛矿相中“基本不存在A位空位”,结合对样品成分的分析,计算出了A、B和O位各种离子的比例,并直接用于XRD谱的Rietveld拟合,代表精修效果的误差参数Rp、Rwp、s都处于理想值范围内。根据我们提出的结合能计算方法计算了钙钛矿相的结合能。计算结果显示,钙钛矿相的结合能随掺杂量变化的规律,与通过Rietveld拟合计算出的晶胞体积随掺杂量的变化趋势相同,从而说明晶胞体积随掺杂量的变化是由其结合能决定的。采用Lake Shore M7310型振动样品磁强计(VSM)对样品进行磁性分析,其室温磁化率和饱和磁化强度都随着Ag的掺杂浓度增加而增大。居里温度TC随着样品钙钛矿相中Mn4+离子含量的变化基本符合La1-xSrxMnO3等二价掺杂系列材料的变化规律。通过上述研究得出结论:利用溶胶-凝胶法最终在800°C形成的名义成分为La0.7Sr0.3MnO3的复合体系钙钛矿相中,部分Ag能够以离子形式进入到ABO3型钙钛矿结构中,其余Ag形成金属Ag相。
Perovskite manganite RE1-xTxMnO3 (RE for Rare earth element, T for alkaline-earth element) with ABO3 structure, has attracted much attention, because of its colossal magnetoresistance effect and broad application prospects for the past 10 years. The double exchange mechanism proposed by Zener can be used to explaine qualitatively the electromagnetic and magnetic properties of such compounds.
     In this paper, the two problems were discussed on the based of theoretical calculations and experimental results, and the satisfactory explanation was given.
     1. Whether there will be vacancies at A site in the perovskite structure. In this paper, the two series of samples were prepared using sol-gel method (the highest heat treatment temperature was at 800°C), in which La3+ and Sr2+ ions in perovskite La0.7Sr0.3MnO3 were substituted respectively by vacancies. It is found by X-ray diffraction results, that there are two phases in the samples: dominating perovskite phase and second Mn3O4 phase. For the perovskite phase in samples, assuming that there were no vacancies, the lacking cations at A site were filled by Mn2+ ions, and all the samples possessed standard ABO3 structure, calculated the ion ratios of at A, B and O sites. The ion ratios were used to the Rietveld fitting for XRD spectra, obtained error parameters Rp, Rwp and s were acceptable, and therefore our the above assumption were made sure. In addition, the dependences of the cohesive energies on the substitute level for the perovskite phase in the two series of samples were calculated using the method proposed by us, including the ionic cohesive energy and a small additional metallic cohesive energy. The dependences were similar to those of the unit cell volume on the substitute level, obtained by the Rietveld fitting. Therefore, the dependence of the unit cell volume changes on the substitute level was determined by the cohesive energy. It provides a new strong support for the cohesive energy calculation method propsoed by us.
     The magnetic properties of samples were measured by Lake Shore M7310 Vibrating Sample Magnetometer (VSM). The results showed that: magnetic susceptibility and saturation magnetization of the samples in the room temperature increase with substitute level increasing. The dependences of the Curie temperature TC on the content of Mn4 + ion at B site, are similar to those of the typical perovskite La1-xSrxMnO3. Thus , the author concludes that, because of Mn2+ entering into A site of the perovskite structure, the samples synthesized by sol-gel process form an ABO3 structure at 800°C, in which the ionic ratio of A、B and O site is approximately 1:1:3 and there is less vacancies.
     2. Whether Ag can enter into the perovskite structure. In this paper, the two series of samples were prepared using sol-gel method (the highest heat treatment temperature was at 800°C), in which La3+ and Sr2+ ions in perovskite La0.7Sr0.3MnO3 were substituted respectively by Ag. It is found by X-ray diffraction results, that there are three phases in the samples: dominating perovskite phase, second Mn3O4 phase and third metal Ag phase.
     For the perovskite phase in samples, assuming that there were no vacancies, the lacking cations at A site were filled by Mn2+ ions, and the perovskite phase in all the samples possessed standard ABO3 structure, calculated the ion ratios of at A, B and O sites. The ion ratios were used to the Rietveld fitting for XRD spectra, obtained error parameters Rp, Rwp and s were acceptable. The dependences of the cohesive energies on the Ag substitute level for the perovskite phase in the two series of samples were calculated using the method proposed by us, including the ionic cohesive energy and a small additional metallic cohesive energy. The dependences were similar to those of the unit cell volume on the Ag substitute level, obtained by the Rietveld fitting. Therefore, the dependence of the unit cell volume changes on the substitute level was determined by the cohesive energy.
     The magnetic properties of samples were measured by Lake Shore M7310 Vibrating Sample Magnetometer (VSM). The results showed that: magnetic susceptibility and saturation magnetization of the samples in the room temperature increase with substitute level increasing. The dependences of the Curie temperature TC on the content of Mn4+ ion at B site, are similar to those of the typical perovskite La1-xSrxMnO3. It could concluded through above study, for our samples prepared using sol-gel method at 800°C, that a part of Ag ions can enter into the ABO3 type perovskite structure, and the rest of the Ag were formed metal Ag phase.
引文
[1][9] Jonker G H, Van Santen J H. Ferromagnetic compounds of manganese with perovskite structure[J] .Physica, 1950, 16: 337-349.
    [2] Urushibara A, Moritomo Y, Arima T et al. Insulator-metal transition and giant magne toresistance in La1-xSrxMnO3 [J]. Phys Rev B, 1995, 51: 14103-14109.
    [3] Wollan E O, Koehler W C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compound La1-xCaxMnO3[J]. Phys Rev, 1955,100: 545- 563.
    [4] Zener C. Interaction between the d-shells in the transition metal ferromagnetic compounds of manganese with perovskite structure[J]. Phys Rev, 1951, 82: 403-405.
    [5] Chahara K, Ohno T, Kasai M et al. Magnetoresistance in magnetic oxide with intrinsic antiferromagnetic spin structure[J]. App Phys Lett, 1993, 63: 1990.
    [6][34] Ju H L, Kwon C, Li Qi et al. Gi- ant magnetoresistance in La1-xSrxMnOz films near room temperature[J]. Appl Phys Lett, 1994, 65: 2108-2110.
    [7] Jin S, Tiefel T H et al, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J].Science,1994, 264(15): 413-415.
    [8] Millis A J, Shraiman B I, Mueller R. Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrxMnO3[J]. Phys Rev Lett, 1996, 77: 175-178.
    [10] 戴道生,熊光成,吴思诚. RE1-xTxMnO3氧化物的结构,电磁特性和巨磁电阻[J]. 物理学进展, 1997, 17 :201-219.
    [11] Tokura Y, Tomioka Y. Colossal magnetoresistive manganites[J]. J Magn Magn Mater,1999, 200: 1-23.
    [12] Tokunaga M, Miura N, Tomioka Y et al. High-magnetic-field study of the phase transitions of R1-xCaxMnO3 (R=Pr, Nd)[J]. Phys Rev B, 1998, 57: 5259-5264.
    [13] Moritomo Y ,Kuwahara H, Tomioka Y et al. Pressure effects on charge-ordering transitions in Perovskite manganites[J]. Phys Rev B,1997, 55: 7549-7556.
    [14] Asamitsn A et al.Nature 1997, 388: 59.
    [15] Kuwashara H et al. Science 1996, 272: 80.
    [16] 蔡建旺, 赵见高,詹文山,沈保根,物理学进展,1997, 17(2): 119.
    [17] ?Colossal Magnetoresistive Oxides?,Edited by Yoshinori Tokura,Gordon and Breagh Science Publishers ,2000.
    [18] 汪世林,陈长乐,王跃龙等, La2/3Ca1/3MnO3薄膜的光致电阻率变化特性[J].物理学报,2004, 53: 587-591.
    [19] 夏正才,唐超群. La1-xSrxMnO3阴极材料的导电机理研究[J].物理学报,1999,48: 1518-1522.
    [20] 连贵君,李美亚,康晋峰等.钙钛矿结构氧化物薄膜的外延生长[J].物理学报,1999,48: 1917-1922.
    [21] McGuire T R, Gupta A, Duncombe P R et al. Magnetoresistance and magnetic properties of La1-x□xMnO3?δthin films[J]. J A Phys,1996, 79: 4549- 4552.
    [22] Sam J K, Chul S K, Seung-lel P et al. Influence of La defect on the magnetor- esistance and magnetic properties of La1-xMnO3[J]. J Appl Phys,2001, 89: 7416-7418.
    [23] Nakamura K and Ogawa K. Origin of contrasting effects of oxygen reduction on the transport properties of La1-ΔMnO3?δand La1-xMxMnO3±δ(M:Ca,Sr)[J]. J Appl Phys, 2002, 92(11): 6684-6692.
    [24] Dezanneau G et al. Structural characterization of La1-xMnO3±δ by X-ray diffraction and X-ray absorption spectroscopy[J]. Phys Rev B, 2004, 69: 01441(1-11).
    [25] 罗广圣,李小怡,吴小山.稀土空位锰氧化物(La1-x-yYy)2/3Ca1/3MnO3结构和输运性质[J].中国有色金属学报,2005,15:1968-1973.
    [26][39] Ellouze M, Boujelben W, Cheikh-Rouhou A et al. Structure,ferromagnetism and magnetotran- sport properties in the barium-deficient Pr0.7Ba0.2□0.1MnO3 manganite oxides[J]. J Magn Magn Matter. 2003, 257: 319-326.
    [27] Wad U P, Ogale A S, Ogale S B et al. Influence of near-surface nonstoichiometry on the surface magnetization of mixed-valent manganite: A computer simulation study[J]. Appl Phys Lett, 2002, 81: 3422- 3424.
    [28] Bagus P S, Ilton E S. Effects of covalency on the p-shell photoemission of transition metals:MnO[J]. Phys Rev B, 2006, 73: 155110 (1-14).
    [29] Sankar C R, Joy P A. Magnetic properties of the self-doped lanthanum manganites La1-xMnO3[J]. Phys Rev B, 2005, 72: 024405(1-9).
    [30] Kanki T, Yanagida T, Vilquin B et al. Hall effect in strained La0.85Ba0.15MnO3[J]. Phys Rev B, 2005, 71: 012403(1-3).
    [31] Wang Z L, Yin J S, Jiang Y D et al. Studies of Mn valence conversion and oxygen vacancies in La1-xCaxMnO3-y using electron energy-loss spectroscopy[J]. Appl Phys Lett, 1997, 70: 3362-3364.
    [32] Sun J R, Rao G H, Liang J K et al. Complex magnetic and electronic transport properties of (La,Gd)1-xSrxMnO3+δ perovskites[J]. Appl Phys Lett, 1997, 71: 3718-3720.
    [33] DeSilva P S I P N, Richards F M, Cohen L F et al. Effects of high vacancy concen- trations on the magnetic properties of La1-xMn1-yO3 (0.02≤x,y≤0.13) [J]. J Appl Phys,1998, 83: 394-399.
    [35] Boujelben W, Cheikh-Rouhou A, Ellouze M et al. Vacancy effects on the physical properties in lacunar Pr0.7-x □ xBa0.3MnO3 oxides[J]. J Magn Magn Matter, 2002,242-245, 662-664.
    [36] Boujelben W, Cheikh-Rouhou A, Roussel H. Ferromagnetism in deficient-neodymium Nd0.7-x□xSr0.3MnO3 manganite oxides[J]. J Magn Magn Matter ,290-291,2005,952-954.
    [37] Ellouze M, Boujelben W, Cheikh-Rouhou A et al. Structure, magnetic and electrical properties in the praseodymium deficient Pr0.8-x□xSr0.2MnO3 manganites oxides [J] , J Alloys and Compounds 352,2003,41-47.
    [38] Ellouze M, Boujelben W, Cheikh-Rouhou A et al. Vacancy effects on the crystallographic and magnetic properties in lacunar Pr0.7Ba0.3-xMnO3 oxides[J]. Solid State Communications 124 ,2002, 125–130.
    [40] Ye S L,Song W H, Dai J M et al. Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3[J]. J Magn Magn Mater, 2002, 248: 26-33.
    [41] Tang T, Cao Q Q, Gu K M et al, Giant magnetoresistance of the La1-xAgx MnO3 polycrystalline inhomogeneous granular system[J]. Appl Phys Lett, 2000, 77: 723-725.
    [42] Tang T, Gu K M, Cao Q Q et al, Magnetocaloric properties of Ag-substituted perovskite-type manganites[J]. J Magn MagnMater, 2000, 222: 110-114.
    [43] Joseph Joly V L, Joy P A, Date S K et al. Comment on ‘‘Giant magnetoresis- tance of the La1-xAgxMnO3 polycrystalline inhomogeneous granular system’’ [J]. Appl Phys Lett , 2001, 78 (26): 3747-3748.
    [44] Xu Q Y,Wang R P, Zhang Z. Role of Ag in La1-xAgxMnO3 manganite perovskite[J]. Phys Rev B, 2005,71: 092401(1-4).
    [45] Tang G D, Hou D L, ChenW, et al. Estimation of Mn4+ ion content ratio in self-doped compound La1?xMnO3?δ [J]. Appl Phys Lett, 2007,91, 152503.
    [46] 谢永怀.制备精细陶瓷粉末的有机 Sol-Gel工艺[J].核动力工程,1994,15(4): 365-369
    [47] 丁子上,翁文剑. 溶胶-凝胶技术制备材料进展[J].硅酸盐学报, 1993,21(5):443-450.
    [48] Tokunaga M, Miura N, Moritomo Y, et al. High-field magnetization and magnetoresistance of La0.5Sr1.5MnO4 [J]. Phys Rev B, 1999, 59: 11151-11154.
    [49] Liu J B,Wang H, Zhu M K et al. Synthesis of La0.15A0.15MnO3 (A = Sr, Ba) by a hydro thermal method at low temperature [J]. Materials Research Bulletin, 2003, 38: 817-822.
    [50] Tang G D, Hou D L, Li Z Z et al. Influence of cohesive energy on unit cell volume of perovskite manganites La1?xMxMnO3 [J]. APPL Phys Lett, 2006, 89:261919(1- 3) .
    [51] 刘友之, 聂向富, 蒋生蕊. 固体物理学习题指导[M].北京:高等教育出版社,1988:148-154.
    [52] Ashcroft N W. Mermin N D [M].Solid State Physics , 1976:402 -412.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.