氟喹诺酮药物对结核分枝杆菌深层次作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从科赫(Robert Koch)1882年确定结核分枝杆菌(Mycobacterium tuberculosis)是结核病的致病菌以来,全球结核病疫情似乎只是得到短暂的遏制。世界卫生组织预测2011年全球结核病新发病例为980万,创历年新高。严峻的疫情再次凸显了抗结核治疗手段的匮乏。尽管进行了长达半个世纪的化学治疗,世界上仍有三分之一的人口为结核分枝杆菌潜伏感染人群。此外,潜伏感染结核菌的重新激活对于其他疾病也是一个高风险因素,尤其是HIV病人以及糖尿病病人(进行抗肿瘤坏死因子治疗的病人)等免疫缺陷的个体[2]。多耐药以及广泛耐药结核病(Multi and extensively drug resistant tuberculosis, MDR-TB and XDR TB)的出现使结核病的疫情火上浇油,也使几十年以来一直延续的抗结核疗法更加捉襟见肘。
     一线抗结核药物包括异烟肼(Isoniazid, INH)、利福平(Rifampicin, RIF)、比嗪酰胺(Pyrazinamide, PZA)以及乙胺丁醇(Ethambutol, EMB)。多耐药结核菌指至少同时对异烟肼和利福平耐药的结核分枝杆菌。对MDR-TB的治疗主要依靠二线抗结核药物,主要有氨基糖苷类、多肽类、氟喹诺酮类等。氟喹诺酮药物因其低毒副作用以及充足的衍生物库而尤为受到重视。新一代氟喹诺酮药物莫西沙星和加替沙星与一线抗结核药物联用缩短结核病治疗时长的Ⅲ期临床试验也在进行中,这进一步提示氟喹诺酮药物在抗击结核病中的重要作用。
     氟喹诺酮药物主要靶向细菌的DNA旋转酶和拓扑异构酶Ⅳ。结核分枝杆菌中只有DNA旋转酶,该酶为氟喹诺酮药物的唯一靶点。结核分枝杆菌耐受氟喹诺酮药物主要也是因为DNA旋转酶相关区域的突变造成的。近年来,不同国家或地区的结核分枝杆菌耐受氟喹诺酮药物的分子特征被陆续报道,但这些研究所采用的样本量小,具有明显的地域局限性。为了解中国大陆地区的氟喹诺酮耐受的结核分枝杆菌的分子机理,我们收集了来自中国大陆各地的氟喹诺酮耐受的结核分枝杆菌临床菌株,对氟喹诺酮耐受决定区进行扩展测序,发现了若干新氟喹诺酮耐受相关位点和突变类型(GyrB:Glu498及Gly551, GyrA:Asp94Asn-Gly112His, GyrB:Thr539Asn-Gly551Arg),可以为结核分枝杆菌药敏芯片提供设计依据;采用数学方法对不同突变类型进行评价,确定了结核分枝杆菌氟喹诺酮耐受决定区中不同突变位点或者突变类型对耐药性的贡献,得到的结果提示该区域的双重突变与高水平药物耐受的相关性,提醒对氟喹诺酮药物的合理使用尤为重要。结合得到的氟喹诺酮药物的耐药位点,我们优化了氟喹诺酮药物作用于结核分枝杆菌DNA旋转酶结构学特征,为新型氟喹诺酮药物的开发提供支持。本研究中第一次对氧氟沙星和左氧氟沙星对多耐药结核分枝杆菌的杀伤效果进行了评价。到目前为止,该研究是样本量最大(177例),地域来源(中国大陆)最为广泛的结核分枝杆菌耐受喹诺酮药物分子特征的调查。
     在细菌自身进化史中,会发展一系列的抵御外界环境压力的武器,这类环境压力也包括抗生素压力。细菌抵御抗生素的机制包括药物代谢相关酶、药物外排系统以及靶点修饰相关基因等。目前开发新的抗痨药物进展缓慢,故我们尝试寻找分枝杆菌属细菌抵御氟喹诺酮药物的本底机制,将相关基因作为潜在的氟喹诺酮药物增效剂靶点。通过构建分枝杆菌突变库,筛选获得了对氟喹诺酮药物——莫西沙星超敏感的突变菌株,完成插入位点的鉴定以及功能验证,确定了若干分枝杆菌抵御氟喹诺酮药物基因。所获得的基因可以作为氟喹诺酮药物增效剂开发靶点,筛选获得的化合物可以与氟喹诺酮药物联用,提高氟喹诺酮药物使用效率,延长药物使用寿命。
     虽然喹诺酮药物靶点明确,不同喹诺酮药物杀伤细菌的特征迥异。主要以喹诺酮药物的杀菌作用是否受蛋白合成抑制剂氯霉素所抑制以及杀菌作用是否在低氧条件下消失来区分。不同喹诺酮药物在氯霉素和厌氧条件下的杀伤效果显著的不同。第一代化合物,比如萘啶酸(nalidixic)和奥索利酸(oxolinic acids)在氯霉素处理或者低氧条件下无致死活性,而第二代药物比如诺氟沙星(norfloxacin)虽在氯霉素存在情况下无杀伤活性,但其在高浓度下,却可以在低氧条件下杀伤细菌。第三代喹诺酮药物环丙沙星(ciprofloxacin),可以在氯霉素存在或者低氧条件下杀伤细菌(低氧条件下的杀菌作用需要高浓度药物);第四代C-8-甲氧基衍生物莫西沙星(moxifloxacin)的杀伤作用几乎不受氯霉素或者低氧条件的影响。这说明不同喹诺酮药物通过不同的途径完成对细菌的杀伤作用。前期研究证实喹诺酮的致死效应分两步进行,第一阶段是DNA-解旋酶-喹诺酮药物形成断裂复合体,该复合体的形成会阻止细菌DNA的复制,导致次级杀伤作用的出现;第二阶段是断裂DNA从断裂复合体中释放出来,形成大量的染色体碎片,导致细菌快速死亡快速杀伤性的氟喹诺酮药物比如莫西沙星的杀菌作用,可能是通过迅速破坏断裂复合体来实现的。研究者猜测细菌本身一些分子可能作为“自杀分子”参与破坏染色体复合体的功能,释放出断裂DNA,导致细菌快速死亡。我们通过实验首次证实:使用氯霉素阻止蛋白合成依赖性杀菌通路后,耻垢分枝杆菌RuvAB缺失菌株,可以明显的抵御莫西沙星的杀菌作用,这直接证明了RuvAB在非依赖蛋白质合成杀菌途径中的重要作用。
     在实验室直接使用结核分枝杆菌进行实验存在诸多的困难。首先,结核分枝杆菌菌属于3类人体致病菌,需要在3级生物安全实验室及相应动物设施中进行实验;其次,结核分枝杆菌生长缓慢,在液体培养基中倍增时间长达22小时,菌落的形成需要2-3个星期,导致实验时间花费巨大。故很多实验室采用其他一些分枝杆菌模型来研究结核分枝杆菌的致病机制。耻垢分枝杆菌(Mycobacterium smegmatis和结核病的致病菌——结核分枝杆菌(Mycobactreium tuberculosis)同为分枝杆菌属细菌,其生长快,无生物危害性,被广泛的用于结核分枝杆菌致病机制、结核菌疫苗、结核菌药物等方面的替代替代研究。为了更好的理解耻垢分枝杆菌模型在结核分枝杆菌替代研究中的替代性,我们使用系列的比较基因组学手段对耻垢分枝杆菌模型基因组进行了分析,发现耻垢分枝杆菌和结核分枝杆菌具有保守的转录机制、类似的sigma factors和双组分系统,可以使用耻垢分枝杆菌进行调控机制的早期研究;我们还发现耻垢分枝杆菌基因组中所富集的基因类目与其特别的生理特征相适应,比如其生存的腐生的环境、耐受高盐浓度及其相对短暂的代时。
Since Robert Koch identified Mycobacterium tuberculosis as the causative agent of TB in1882, a breakthrough in the fighting against this deadly pathogen, the global Tb epidemic seems unmitigated substantially. About a record9.8million new cases were noted in2011. This serious situation highlights the emergency of the newly and effective treatment strategies for TB. Although the anti-TB chemotherapy had lasted for half a century, one-third of the world's population still asymptomatically harbors a dormant or latent form of M. tuberculosis, with a life long risk of disease reactivation. The reactivation of latent TB represents high risk for other abnormalities, especially for the patient infected with human immunodeficiency viruses, or with diabetes and other disease need anti-tumour necrosis factor therapy. In recently years, the TB epidemic has been further fuelled by the multi and extensively drug resistant tuberculosis (MDR-TB and XDR TB), the classical anti-TB therapy is also undergoing acid test.
     The first-line anti-tuberculous drug including isoniazid(INH, H), rifampicin(RIF, R), pyramiznamide(PZA, Z) and ethambutol (EMB, E). The MDR-TB is defined as tuberculosis that is resistant at least to isoniazid (INH) and rifampicin (RIF), the two most powerful first-line anti-TB drugs. The treatment of MDR-TB largely relies on the second line anti-TB drugs, including aminoglycosides, polypeptides, thioamides and fluoroquinolones. The fluoroquinolones have bactericidal activity against M.tuberculosis, excellent oral bioavailability, favorable safety profiles, it's an important second line anti-TB drug. Data from phase Ⅱ trials of fluoroquinolones-containing regimens for shortening the duration of treatment for pulmonary TB are encouraging and phase Ⅲ trials are currently underway, also highlighted the importance of fluoroquinolones in anti-TB therapy.
     The target of fluoroquinolones in bacteria is DNA gyrase and topoisomerase Ⅳ. M.tuberculosis is unusual in possessing only one type Ⅱ topoisomerase, DNA gyrase. The amino acid substitutions within the quinolone resistance-determining region(QRDR) of GyrAB can dramatically reduce susceptibility to fluoroquinolones. Although a variety of mutation types have been reported in several countries and regions, epidemiologic information on fluoroquinolone-resistant M. tuberculosis in mainland China remains obscure. To investigate the mutation types of the genes encoding the A and B subunits of DNA gyrase (gyrA and gyrB, respectively) in ofloxacin-and levofloxacin-resistant M.tuberculosis strains prevalent in mainland China,177clinical drug-resistant isolates collected by the National Tuberculosis Reference Laboratory of China were analysed. The GyrB single mutations (Glu498and Gly551) and double mutation (Thr539Asn-Gly551Arg) as well as a GyrA double mutation (Asp94Asn-Gly112His) were reported to be involved in fluoroquinolone resistance for the first time. To simplify quantification of the contribution of each mutation type and mutation site to overall fluoroquinolone resistance, a mathematical method was established by assigning each resistance allele a numerical score between5and50(the larger the number, the higher the resistance level). The score of double mutants is the sum of the scores for the two single alleles. The double mutation types, including Asn538Ile(GyrB)-Asp94Ala(GyrA), Ala543Val(GyrB)-Asp94Asn(GyrA) and Ala543Val(GyrB)-Asp94Gly(GyrA) scored relatively high by this methodology, serve as a cautionary tale that it is imperative to use fluoroquinolones rationally.
     During millions of years of evolution, bacteria must have encountered a variety of stressful environment, including exposure to antibiotics. Thus, it is not surprising if bacteria have acquired genetic and biochemical systems that protect cells from antimicrobial lethality. Bacterial genes defining intrinsic resistance to antibiotics encode proteins that can be targeted by antibiotic potentiators. Fluoroquinolones is a type of second line anti-tuberculosis drugs, have been widely used in tuberculosis therapy. To find the intrinsic resistance related genes, a transposon inerstion library of Mycoabcterium.smegmatis was screened with subinhibitory concentration of moxifloxacin to find supersusceptible mutants. Transposon insertions3genes were found to cause at least twofold to8folds to moxifloxacin. These included mutants with disruption of genes encoding proteins involved in DNA damage repair (RuvA, Rv2593), FHA proteint(GarA, Rv1827) as well as a proteasome accessory factor (pafC,Rv2095). Electroproration of recombinant plasmids Palace+Rv2592-Rv2593, Palace+Rv1827to M136and M625respectively, partly reverse the fluoroquinolones resistance. The complement results help validate RuvAB as a potential antibiotic combination target for Mycobacterium, other hypersensitive phenotype related genes need further validation.
     Although the target of quinolones is clear, the killing pathways of different quinolones are strikingly different, distinguished by whether bactercidal effect are effected by the protein synthesis inhibitor(chloramphenicol) or the hypoxic condition. First-generation compounds, such as nalidixic and oxolinic acids, are not lethal in the presence of chloramphenicol or during anaerobic growth; the second-generation agent norfloxacin fails to kill bacterium in the presence of chloramphenicol, but at high concentrations it kills cells growing anaerobically. Ciprofloxacin, a third-generation compound, kills under both conditions but requires higher concentrations during anaerobiosis; the lethal activity of fourth generation C-8-methoxy derivatives, such as moxifloxacin, is affected little by chloramphenicol or anaerobic growth. The early experiment validated the bactericidal process of quinolone is a two steps characteristic. Step1:formed Quinolone-Topoisomerase-DNA complexes, rapid inhibition of DNA replication, bring secondary damage that might contribute to slowly quinolone-mediated cell death; Step2:broken DNA released from Quinolone-Topoisomerase-DNA complex, chromosome fragmentation that contribute to rapid cell death. Researchers are doubt there presence a sucide factor in step2that lead the cleaved complex collapsed. In our experiment, RuvAB mutant strain showed an obvious higher survival rate after moxifloxacin treatment when the protein synthesis depend killing pathway was blocked, suggested the helicase RuvAB is an important factors for protein independent killing pathway of quinolones.
     The high biosafety level III required to tackle its causative agent Mycobacterium tuberculosis seriously hinders the exploration of its biology and new countermeasures. M. smegmatis is a widely recognized good surrogate of M.tuberculosis, due to their conserved transcriptional machinery, sigma factors and two-component systems. However, their distinct lifestyles often confound the explanation of the results. M.tuberculosis leads both parasitic and free life, while M.smegmatis is largely saprophyte. To make full advantage of this model, it is helpful to discover the genome features associated with M. smegmatis unique niches, such as its saprophytic life, high salt tolerance and relative short generation time. We employed the gene ontology enrichment analysis to characterize the unique lifestyle of M.smegmatis. Gene ontology enrichment analysis provided24terms, most are relevant to the special lifestyle of M. smegmatis, especially the saprophytic niche, high salt tolerance adaptation and short generation time. In-depth functional characterization of these genes will shed new lights on the genetic basis of M.smegmatis saprophytic life and hasten the understanding of the unique biology of M.tuberculosis.
引文
[1]Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP.1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents. J Med Pharm Chem.1962;91:1063-5.
    [2]Hooper DC. Clinical applications of quinolones. Biochim Biophys Acta.1998; 1400:45-61.
    [3]Rohlfing SR, Gerster JR, Kvam DC. Bioevaluation of the antibacterial flumequine for urinary tract use. Antimicrob Agents Chemother.1976; 10:20-4.
    [4]Ball P, Fernald A, Tillotson G. Therapeutic advances of new fluoroquinolones. Expert Opin Investig Drugs.1998;7:761-83.
    [5]Ball P. New Fluoroquinolones:Real and Potential Roles. Curr Infect Dis Rep.1999; 1:470-9.
    [6]Weiss K, Laverdiere M, Restieri C. Comparative activity of trovafloxacin and Bay 12-8039 against 452 clinical isolates of Streptococcus pneumoniae. J Antimicrob Chemother. 1998;42:523-5.
    [7]Johnson DM, Jones RN, Erwin ME. Anti-streptococcal activity of SB-265805 (LB20304), a novel fluoronaphthyridone, compared with five other compounds, including quality control guidelines. Diagn Microbiol Infect Dis.1999;33:87-91.
    [8]Domagala JM. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother.1994;33:685-706.
    [9]Llorente B, Leclerc F, Cedergren R. Using SAR and QSAR analysis to model the activity and structure of the quinolone-DNA complex. Bioorg Med Chem.1996;4:61-71.
    [10]Morrissey I, Hoshino K, Sato K, Yoshida A, Hayakawa I, Bures MG, et al. Mechanism of differential activities of ofloxacin enantiomers. Antimicrob Agents Chemother. 1996;40:1775-84.
    [11]Tillotson GS. Quinolones:structure-activity relationships and future predictions. J Med Microbiol.1996;44:320-4.
    [12]Ma Z, Chu DT, Cooper CS, Li Q, Fung AK, Wang S, et al. Synthesis and antimicrobial activity of 4H-4-oxoquinolizine derivatives:consequences of structural modification at the C-8 position. J Med Chem.1999;42:4202-13.
    [13]Cecchetti V, Fravolini A, Lorenzini MC, Tabarrini O, Terni P, Xin T. Studies on 6-aminoquinolones:synthesis and antibacterial evaluation of 6-amino-8-methylquinolones. J Med Chem.1996;39:436-45.
    [14]Cecchetti V, Filipponi E, Fravolini A, Tabarrini O, Bonelli D, Clementi M, et al. Chemometric methodologies in a quantitative structure-activity relationship study:the antibacterial activity of 6-aminoquinolones. J Med Chem.1997;40:1698-706.
    [15]Piddock LJ, Johnson M, Ricci V, Hill SL. Activities of new fluoroquinolones against fluoroquinolone-resistant pathogens of the lower respiratory tract. Antimicrob Agents Chemother.1998;42:2956-60.
    [16]Bryskier A. Novelties in the field of anti-infectives in 1998. Clin Infect Dis.1999;29:632-58.
    [17]Pestova E, Millichap JJ, Noskin GA, Peterson LR. Intracellular targets of moxifloxacin:a comparison with other fluoroquinolones. J Antimicrob Chemother.2000;45:583-90.
    [18]Beyer R, Pestova E, Millichap JJ, Stosor V, Noskin GA, Peterson LR. A convenient assay for estimating the possible involvement of efflux of fluoroquinolones by Streptococcus pneumoniae and Staphylococcus aureus:evidence for diminished moxifloxacin, sparfloxacin, and trovafloxacin efflux. Antimicrob Agents Chemother.2000;44:798-801.
    [19]Davies TA, Kelly LM, Pankuch GA, Credito KL, Jacobs MR, Appelbaum PC. Antipneumococcal activities of gemifloxacin compared to those of nine other agents. Antimicrob Agents Chemother.2000;44:304-10.
    [20]Zhao X, Xu C, Domagala J, Drlica K. DNA topoisomerase targets of the fluoroquinolones:a strategy for avoiding bacterial resistance. Proc Natl Acad Sci U S A.1997;94:13991-6.
    [21]Dong Y, Xu C, Zhao X, Domagala J, Drlica K. Fluoroquinolone action against mycobacteria: effects of C-8 substituents on growth, survival, and resistance. Antimicrob Agents Chemother. 1998;42:2978-84.
    [22]Zhao X, Wang JY, Xu C, Dong Y, Zhou J, Domagala J, et al. Killing of Staphylococcus aureus by C-8-methoxy fluoroquinolones. Antimicrob Agents Chemother.1998;42:956-8.
    [23]Jorgensen JH, Weigel LM, Ferraro MJ, Swenson JM, Tenover FC. Activities of newer fluoroquinolones against Streptococcus pneumoniae clinical isolates including those with mutations in the gyrA, parC, and parE loci. Antimicrob Agents Chemother.1999;43:329-34.
    [24]Pan XS, Fisher LM. Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones. Antimicrob Agents Chemother.1997;41:471-4.
    [25]Davies TA, Pankuch GA, Dewasse BE, Jacobs MR, Appelbaum PC. In vitro development of resistance to five quinolones and amoxicillin-clavulanate in Streptococcus pneumoniae. Antimicrob Agents Chemother.1999;43:1177-82.
    [26]Pestova E, Beyer R, Cianciotto NP, Noskin GA, Peterson LR. Contribution of topoisomerase IV and DNA gyrase mutations in Streptococcus pneumoniae to resistance to novel fluoroquinolones. Antimicrob Agents Chemother.1999;43:2000-4.
    [27]Fukuda H, Kishii R, Takei M, Hosaka M. Contributions of the 8-methoxy group of gatifloxacin to resistance selectivity, target preference, and antibacterial activity against Streptococcus pneumoniae. Antimicrob Agents Chemother.2001;45:1649-53.
    [28]Fukuda H, Hiramatsu K. Primary targets of fluoroquinolones in Streptococcus pneumoniae. Antimicrob Agents Chemother.1999;43:410-2.
    [29]Owens RC, Jr., Ambrose PG. Antimicrobial safety:focus on fluoroquinolones. Clin Infect Dis. 2005;41 Suppl 2:S144-57.
    [30]Fung-Tomc JC, Minassian B, Kolek B, Huczko E, Aleksunes L, Stickle T, et al. Antibacterial spectrum of a novel des-fluoro(6) quinolone, BMS-284756. Antimicrob Agents Chemother. 2000;44:3351-6.
    [31]Marshall SA, Jones RN. In vitro activity of DU-6859a, a new fluorocyclopropyl quinolone. Antimicrob Agents Chemother.1993;37:2747-53.
    [32]Anderson DL. Sitafloxacin hydrate for bacterial infections. Drugs Today (Barc). 2008;44:489-501.
    [33]Bertino JS, Zhang JZ. Besifloxacin, a new ophthalmic fluoroquinolone for the treatment of bacterial conjunctivitis. Expert Opin Pharmacother.2009; 10:2545-54.
    [34]Xiao Y, Lu Y, Kang Z, Zhang M, Liu Y, Li T. Pharmacokinetics of antofloxacin hydrochloride, a new fluoroquinolone antibiotic, after single oral dose administration in Chinese healthy male volunteers. Biopharm Drug Dispos.2008;29:167-72.
    [35]de Almeida MV, Saraiva MF, de Souza MV, da Costa CF, Vicente FR, Lourenco MC. Synthesis and antitubercular activity of lipophilic moxifloxacin and gatifloxacin derivatives. Bioorg Med Chem Lett.2007; 17:5661-4.
    [36]Senthilkumar P, Dinakaran M, Banerjee D, Devakaram RV, Yogeeswari P, China A, et al. Synthesis and antimycobacterial evaluation of newer 1-cyclopropyl-1,4-dihydro-6-fluoro-7-(substituted secondary amino)-8-methoxy-5-(sub)-4-oxoquinoline-3-carboxylic acids. Bioorg Med Chem. 2008;16:2558-69.
    [37]Sriram D, Senthilkumar P, Dinakaran M, Yogeeswari P, China A, Nagaraja V. Antimycobacterial activities of novel 1-(cyclopropyl/tert-butyl/4-fluorophenyl)-1,4-dihydro-6-nitro-4-oxo-7-(substituted secondary amino)-1,8-naphthyridine-3-carboxylic acid. J Med Chem.2007;50:6232-9.
    [38]Shindikar AV, Viswanathan CL. Novel fluoroquinolones:design, synthesis, and in vivo activity in mice against Mycobacterium tuberculosis H37Rv. Bioorg Med Chem Lett.2005;15:1803-6.
    [39]Renau TE, Sanchez JP, Gage JW, Dever JA, Shapiro MA, Gracheck SJ, et al. Structure-activity relationships of the quinolone antibacterials against mycobacteria:effect of structural changes at N-1 and C-7. J Med Chem.1996;39:729-35.
    [40]Fitton A. The quinolones. An overview of their pharmacology. Clin Pharmacokinet.1992;22 Suppl 1:1-11.
    [41]Ball P, Mandell L, Niki Y, Tillotson G. Comparative tolerability of the newer fluoroquinolone antibacterials. Drug Saf.1999;21:407-21.
    [42]Blum MD, Graham DJ, McCloskey CA. Temafloxacin syndrome:review of 95 cases. Clin Infect Dis.1994; 18:946-50.
    [43]Ball P. Quinolone-induced QT interval prolongation:a not-so-unexpected class effect. J Antimicrob Chemother.2000;45:557-9.
    [44]Kresse H, Belsey MJ, Rovini H. The antibacterial drugs market. Nat Rev Drug Discov. 2007;6:19-20.
    [45]杨玉社;赵善荣;嵇汝运;陈凯先.喹诺酮化合物研究最新进展—-抗肿瘤喹诺酮.药学学报.1998:33:157-60.
    [46]Champoux JJ. DNA topoisomerases:structure, function, and mechanism. Annu Rev Biochem. 2001;70:369-413.
    [47]Buhler C, Gadelle D, Forterre P, Wang JC, Bergerat A. Reconstitution of DNA topoisomerase VI of the thermophilic archaeon Sulfolobus shibatae from subunits separately overexpressed in Escherichia coli. Nucleic Acids Res.1998;26:5157-62.
    [48]Gadelle D, Filee J, Buhler C, Forterre P. Phylogenomics of type Ⅱ DNA topoisomerases. Bioessays.2003;25:232-42.
    [49]Schoeffler AJ, Berger JM. Recent advances in understanding structure-function relationships in the type Ⅱ topoisomerase mechanism. Biochem Soc Trans.2005;33:1465-70.
    [50]Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV:biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta.1998; 1400:29-43.
    [51]Cole ST, Brosch R, Parkhill J, Gamier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537-44.
    [52]Aubry A, Fisher LM, Jarlier V, Cambau E. First functional characterization of a singly expressed bacterial type Ⅱ topoisomerase:the enzyme from Mycobacterium tuberculosis. Biochem Biophys Res Commun.2006;348:158-65.
    [53]李江波;林瑞森;俞庆森;朱龙观.喹诺酮类抗菌剂构效关系研究:母核变化对活性的影响.药学学报.1998;33:498-501.
    [54]Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother.2007;51:28-34.
    [55]Malik M, Drlica K. Moxifloxacin lethality against Mycobacterium tuberculosis in the presence and absence of chloramphenicol. Antimicrob Agents Chemother.2006;50:2842-4.
    [56]Hussain S, Malik M, Shi L, Gennaro ML, Drlica K. In vitro model of mycobacterial growth arrest using nitric oxide with limited air. Antimicrob Agents Chemother.2009;53:157-61.
    [57]Mizuuchi K, Fisher LM, O'Dea MH, Gellert M. DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc Natl Acad Sci U S A.1980;77:1847-51.
    [58]Morrison A, Higgins NP, Cozzarelli NR. Interaction between DNA gyrase and its cleavage site on DNA. J Biol Chem.1980;255:2211-9.
    [59]Critchlow SE, Maxwell A. DNA cleavage is not required for the binding of quinolone drugs to the DNA gyrase-DNA complex. Biochemistry.1996;35:7387-93.
    [60]Marians KJ, Hiasa H. Mechanism of quinolone action. A drug-induced structural perturbation of the DNA precedes strand cleavage by topoisomerase Ⅳ. J Biol Chem.1997;272:9401-9.
    [61]Anderson VE, Zaniewski RP, Kaczmarek FS, Gootz TD, Osheroff N. Quinolones inhibit DNA religation mediated by Staphylococcus aureus topoisomerase Ⅳ. Changes in drug mechanism across evolutionary boundaries. J Biol Chem.1999;274:35927-32.
    [62]Gellert M, Mizuuchi K, O'Dea MH, Itoh T, Tomizawa JI. Nalidixic acid resistance:a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A.1977;74:4772-6.
    [63]Malik M, Zhao X, Drlica K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol Microbiol.2006;61:810-25.
    [64]Pohlhaus JR, Kreuzer KN. Norfloxacin-induced DNA gyrase cleavage complexes block Escherichia coli replication forks, causing double-stranded breaks in vivo. Mol Microbiol. 2005;56:1416-29.
    [65]Snyder M, Drlica K. DNA gyrase on the bacterial chromosome:DNA cleavage induced by oxolinic acid. J Mol Biol.1979; 131:287-302.
    [66]Leo E, Gould KA, Pan XS, Capranico G, Sanderson MR, Palumbo M, et al. Novel symmetric and asymmetric DNA scission determinants for Streptococcus pneumoniae topoisomerase Ⅳ and gyrase are clustered at the DNA breakage site. J Biol Chem.2005;280:14252-63.
    [67]Hiasa H. The Glu-84 of the ParC subunit plays critical roles in both topoisomerase Ⅳ-quinolone and topoisomerase Ⅳ-DNA interactions. Biochemistry.2002;41:11779-85.
    [68]Kato J, Suzuki H, Ikeda H. Purification and characterization of DNA topoisomerase Ⅳ in Escherichia coli. J Biol Chem.1992;267:25676-84.
    [69]Khodursky AB, Zechiedrich EL, Cozzarelli NR. Topoisomerase Ⅳ is a target of quinolones in Escherichia coli. Proc Natl Acad Sci U S A.1995;92:11801-5.
    [70]Palmer SM, Rybak MJ. Pharmacodynamics of once-or twice-daily levofloxacin versus vancomycin, with or without rifampin, against Staphylococcus aureus in an in vitro model with infected platelet-fibrin clots. Antimicrob Agents Chemother.1996;40:701-5.
    [71]Morais Cabral JH, Jackson AP, Smith CV, Shikotra N, Maxwell A, Liddington RC. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature.1997;388:903-6.
    [72]Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother. 1990;34:1271-2.
    [73]Barnard FM, Maxwell A. Interaction between DNA gyrase and quinolones:effects of alanine mutations at GyrA subunit residues Ser(83) and Asp(87). Antimicrob Agents Chemother. 2001;45:1994-2000.
    [74]Sindelar G, Zhao X, Liew A, Dong Y, Lu T, Zhou J, et al. Mutant prevention concentration as a measure of fluoroquinolone potency against mycobacteria. Antimicrob Agents Chemother. 2000;44:3337-43.
    [75]Cambau E, Bordon F, Collatz E, Gutmann L. Novel gyrA point mutation in a strain of Escherichia coli resistant to fluoroquinolones but not to nalidixic acid. Antimicrob Agents Chemother.1993;37:1247-52.
    [76]Heddle J, Maxwell A. Quinolone-binding pocket of DNA gyrase:role of GyrB. Antimicrob Agents Chemother.2002;46:1805-15.
    [77]Kampranis SC, Maxwell A. Conformational changes in DNA gyrase revealed by limited proteolysis. J Biol Chem.1998;273:22606-14.
    [78]Quanxin Long WL, Qinglin Du, Yuhong Fu, Qian Liang, Hairong Huang, Jianping Xie. GyrA/B fluoroquinolone-resistant allele profiles among Mycobacterium tuberculosis isolates from Mainland China. International Journal of Antimicrobial Agents.2012.
    [79]Goss WA, Deitz WH, Cook TM. Mechanism of Action of Nalidixic Acid on Escherichia Coli.Ii. Inhibition of Deoxyribonucleic Acid Synthesis. J Bacteriol.1965;89:1068-74.
    [80]Wentzell LM, Maxwell A. The complex of DNA gyrase and quinolone drugs on DNA forms a barrier to the T7 DNA polymerase replication complex. J Mol Biol.2000;304:779-91.
    [81]Piddock LJ, Walters RN, Diver JM. Correlation of quinolone MIC and inhibition of DNA, RNA, and protein synthesis and induction of the SOS response in Escherichia coli. Antimicrob Agents Chemother.1990;34:2331-6.
    [82]Chen CR, Malik M, Snyder M, Drlica K. DNA gyrase and topoisomerase IV on the bacterial chromosome:quinolone-induced DNA cleavage. J Mol Biol.1996;258:627-37.
    [83]Malik M, Lu T, Zhao X, Singh A, Hattan CM, Domagala J, et al. Lethality of quinolones against Mycobacterium smegmatis in the presence or absence of chloramphenicol. Antimicrob Agents Chemother.2005;49:2008-14.
    [84]Zhao X, Malik M, Chan N, Drlica-Wagner A, Wang JY, Li X, et al. Lethal action of quinolones against a temperature-sensitive dnaB replication mutant of Escherichia coli. Antimicrob Agents Chemother.2006;50:362-4.
    [85]Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 1989;49:5077-82.
    [86]Tsao YP, Russo A, Nyamuswa G, Silber R, Liu LF. Interaction between replication forks and topoisomerase I-DNA cleavable complexes:studies in a cell-free SV40 DNA replication system. Cancer Res.1993;53:5908-14.
    [87]Shea ME, Hiasa H. Distinct effects of the UvrD helicase on topoisomerase-quinolone-DNA ternary complexes. J Biol Chem.2000;275:14649-58.
    [88]Shea ME, Hiasa H. Interactions between DNA helicases and frozen topoisomerase Ⅳ-quinolone-DNA ternary complexes. J Biol Chem.1999;274:22747-54.
    [89]Shea ME, Hiasa H. The RuvAB branch migration complex can displace topoisomerase IV.quinolone.DNA ternary complexes. J Biol Chem.2003;278:48485-90.
    [90]Kelley WL. Lex marks the spot:the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol.2006;62:1228-38.
    [91]Piddock LJ, Walters RN. Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrob Agents Chemother.1992;36:819-25.
    [92]Maguin E, Lutkenhaus J, D'Ari R. Reversibility of SOS-associated division inhibition in Escherichia coli. J Bacteriol.1986; 166:733-8.
    [93]Engelberg-Kulka H, Hazan R, Amitai S. mazEF:a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci.2005; 118:4327-32.
    [94]Gerdes K, Christensen SK, Lobner-Olesen A. Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol.2005;3:371-82.
    [95]Hazan R, Sat B, Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J Bacteriol.2004; 186:3663-9.
    [96]Sat B, Hazan R, Fisher T, Khaner H, Glaser G, Engelberg-Kulka H. Programmed cell death in Escherichia coli:some antibiotics can trigger mazEF lethality. J Bacteriol.2001; 183:2041-5.
    [97]Kolodkin-Gal I, Engelberg-Kulka H. Induction of Escherichia coli chromosomal mazEF by stressful conditions causes an irreversible loss of viability. J Bacteriol.2006;188:3420-3.
    [98]Deng S, Stein RA, Higgins NP. Organization of supercoil domains and their reorganization by transcription. Mol Microbiol.2005;57:1511-21.
    [99]Worcel A, Burgi E. On the structure of the folded chromosome of Escherichia coli. J Mol Biol. 1972;71:127-47.
    [100]Crumplin GC, Smith JT. Nalidixic acid:an antibacterial paradox. Antimicrob Agents Chemother.1975;8:251-61.
    [101]Lewin CS, Howard BM, Ratcliffe NT, Smith JT.4-quinolones and the SOS response. J Med Microbiol.1989;29:139-44.
    [102]Lewin CS, Howard BM, Smith JT. Protein- and RNA-synthesis independent bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase. J Med Microbiol. 1991;34:19-22.
    [103]Lewin CS, Morrissey I, Smith JT. The bactericidal activity of sparfloxacin. J Antimicrob Chemother.1992;30:625-32.
    [104]Ikeda H. Illegitimate recombination:role of type Ⅱ DNA topoisomerase. Adv Biophys. 1986;21:149-60.
    [105]Ikeda H, Shiraishi K, Ogata Y. Illegitimate recombination mediated by double-strand break and end-joining in Escherichia coli. Adv Biophys.2004;38:3-20.
    [106]Shanado Y, Kato J, Ikeda H. Escherichia coli HU protein suppresses DNA-gyrase-mediated illegitimate recombination and SOS induction. Genes Cells.1998;3:511-20.
    [107]Howard BM, Pinney RJ, Smith JT.4-Quinolone bactericidal mechanisms. Arzneimittelforschung.1993;43:1125-9.
    [108]Dwyer DJ, Kohanski MA, Hayete B, Collins JJ. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol.2007;3:91.
    [109]Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell.2007; 130:797-810.
    [110]Wang X, Zhao X. Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother.2009;53:1395-402.
    [111]Wang X, Zhao X, Malik M, Drlica K. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. Journal of Antimicrobial Chemotherapy. 2010;65:520-4.
    [112]Willmott CJ, Critchlow SE, Eperon IC, Maxwell A. The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol. 1994;242:351-63.
    [113]Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun.1996;64:2062-9.
    [114]Wetzstein HG, Schmeer N, Karl W. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum:identification of metabolites. Appl Environ Microbiol.1997;63:4272-81.
    [115]Takiff HE, Salazar L, Guerrero C, Philipp W, Huang WM, Kreiswirth B, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother.1994;38:773-80.
    [116]Chen JY, Siu LK, Chen YH, Lu PL, Ho M, Peng CF. Molecular epidemiology and mutations at gyrA and parC genes of ciprofloxacin-resistant Escherichia coli isolates from a Taiwan medical center. Microb Drug Resist.2001;7:47-53.
    [117]Ince D, Hooper DC. Quinolone resistance due to reduced target enzyme expression. J Bacteriol. 2003;185:6883-92.
    [118]Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat.1999;2:38-55.
    [119]Nikaido H, Thanassi DG. Penetration of lipophilic agents with multiple protonation sites into bacterial cells:tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother. 1993;37:1393-9.
    [120]Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs.2004;64:159-204.
    [121]Long QX, Zhou PF, Wu ZH, Wang HH, Xie JP. [Advances in the study of the microbial efflux pumps and its inhibitors development]. Yao Xue Xue Bao.2008;43:1082-8.
    [122]Normark BH, Normark S. Evolution and spread of antibiotic resistance. J Intern Med. 2002;252:91-106.
    [123]Munshi MH, Sack DA, Haider K, Ahmed ZU, Rahaman MM, Morshed MG. Plasmid-mediated resistance to nalidixic acid in Shigella dysenteriae type 1. Lancet.1987;2:419-21.
    [124]Oppegaard H, Steinum TM, Wasteson Y. Horizontal transfer of a multi-drug resistance plasmid between coliform bacteria of human and bovine origin in a farm environment. Appl Environ Microbiol.2001;67:3732-4.
    [125]Martinez-Martinez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet.1998;351:797-9.
    [126]Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, et al. Fluoroquinolone-modifying enzyme:a new adaptation of a common aminoglycoside acetyltransferase. Nat Med.2006;12:83-8.
    [127]Tolmasky ME, Roberts M, Woloj M, Crosa JH. Molecular cloning of amikacin resistance determinants from a Klebsiella pneumoniae plasmid. Antimicrob Agents Chemother. 1986;30:315-20.
    [128]Yamane K, Wachino J, Suzuki S, Arakawa Y. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother.2008;52:1564-6.
    [129]Hegde SS, Vetting MW, Roderick SL, Mitchenall LA, Maxwell A, Takiff HE, et al. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science.2005;308:1480-3.
    [130]Montero C, Mateu G, Rodriguez R, Takiff H. Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother.2001;45:3387-92.
    [131]Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother. 2005;49:3050-2.
    [132]Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother. 2005;49:118-25.
    [133]Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis.2006;6:629-40.
    [134]Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother.2007;51:2464-9.
    [135]Alvarez ET, E. Reche'rches sur le bacille'de Lustgarden. Archives de Physiologie Normal et Pathologique.1885;6:303-21.
    [136]GEORGE P. KUBICA VAS, JAMES O. KILBURN, RONALD W. SMITHWICK, R. EDWARD BEAM, WILBUR D. JONES, JR. and K. D. STOTTMEIER Differential identification of mycobacteria Ⅵ. Mycobacterium triviale Kubica sp. nov. international journal of systematic and evolutionary microbiology.1970;20:161-74.
    [137]Tyagi JS, Sharma D. Mycobacterium smegmatis and tuberculosis. Trends Microbiol. 2002; 10:68-9.
    [138]Wayne LG, Sohaskey CD. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol.2001;55:139-63.
    [139]Dick T, Lee BH, Murugasu-Oei B. Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett.1998; 163:159-64.
    [140]Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR, Jr. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990;4:1911-9.
    [141]van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods. 2007;4:147-52.
    [142]van Kessel JC, Hatfull GF. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering:characterization of antimycobacterial drug targets. Mol Microbiol. 2008;67:1094-107.
    [143]Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med.2007; 13:1515-20.
    [144]Guo XV, Monteleone M, Klotzsche M, Kamionka A, Hillen W, Braunstein M, et al. Silencing Mycobacterium smegmatis by using tetracycline repressors. J Bacteriol.2007; 189:4614-23.
    [145]Klotzsche M, Ehrt S, Schnappinger D. Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res.2009;37:1778-88.
    [146]Hou JM, D'Lima NG, Rigel NW, Gibbons HS, McCann JR, Braunstein M, et al. ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J Bacteriol.2008; 190:4880-7.
    [147]Rigel NW, Gibbons HS, McCann JR, McDonough JA, Kurtz S, Braunstein M. The Accessory SecA2 System of Mycobacteria Requires ATP Binding and the Canonical SecAl. J Biol Chem. 2009;284:9927-36.
    [148]Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol.2001;2:RESEARCH0044.
    [149]Coros A, Callahan B, Battaglioli E, Derbyshire KM. The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol Microbiol. 2008;69:794-808.
    [150]Flint JL, Kowalski JC, Karnati PK, Derbyshire KM. The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc Natl Acad Sci U S A.2004;101:12598-603.
    [151]Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng TY, Siddiqi N, et al. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A.2009; 106:18792-7.
    [152]Rustad TR, Sherrid AM, Minch KJ, Sherman DR. Hypoxia:a window into Mycobacterium tuberculosis latency. Cell Microbiol.2009; 11:1151-9.
    [153]Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med.2003;198:705-13.
    [154]Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe.2008;3:323-30.
    [155]Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan BS, Kramnik I, et al. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem.2008;283:18032-9.
    [156]Gupta RK, Thakur TS, Desiraju GR, Tyagi JS. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J Med Chem.2009;52:6324-34.
    [157]Alonso S, Pethe K, Russell DG, Purdy GE. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci U S A. 2007; 104:6031-6.
    [158]Purdy GE, Niederweis M, Russell DG Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol.2009;73:844-57.
    [159]Fabrino DL, Bleck CK, Anes E, Hasilik A, Melo RC, Niederweis M, et al. Porins facilitate nitric oxide-mediated killing of mycobacteria. Microbes Infect.2009; 11:868-75.
    [160]Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, et al. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nature Medicine.2011;17:1261-8.
    [161]Altaf M, Miller CH, Bellows DS, O'Toole R. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis. 2010;90:333-7.
    [162]Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223-7.
    [1]Alexeyenko A, Tamas I, Liu G, Sonnhammer EL. Automatic clustering of orthologs and inparalogs shared by multiple proteomes. Bioinformatics.2006;22:e9-15.
    [2]Bauer S, Grossmann S, Vingron M, Robinson PN. Ontologizer 2.0--a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics.2008;24:1650-1.
    [3]Cole ST, Brosch R, Parkhill J, Gamier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature.1998;393:537-44.
    [4]Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature.2001;409:1007-11.
    [5]Stinear TP, Seemann T, Pidot S, Frigui W, Reysset G, Gamier T, et al. Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res.2007; 17:192-200.
    [6]Tyagi JS, Sharma D. Mycobacterium smegmatis and tuberculosis. Trends Microbiol. 2002; 10:68-9.
    [7]Pelicic V, Reyrat JM, Gicquel B. Genetic advances for studying Mycobacterium tuberculosis pathogenicity. Mol Microbiol.1998;28:413-20.
    [8]Bange FC, Collins FM, Jacobs WR, Jr. Survival of mice infected with Mycobacterium smegmatis containing large DNA fragments from Mycobacterium tuberculosis. Tuber Lung Dis. 1999;79:171-80.
    [9]Lagier B, Pelicic V, Lecossier D, Prod'hom G, Rauzier J, Guilhot C, et al. Identification of genetic loci implicated in the survival of Mycobacterium smegmatis in human mononuclear phagocytes. Mol Microbiol.1998;29:465-75.
    [10]Khatri P, Draghici S. Ontological analysis of gene expression data:current tools, limitations, and open problems. Bioinformatics.2005;21:3587-95.
    [11]Cole ST, Saint Girons I. Bacterial genomics. FEMS Microbiol Rev.1994;14:139-60.
    [12]Ameyama M, Matsushita K, Shinagawa E, Hayashi M, Adachi O. Pyrroloquinoline quinone: excretion by methylotrophs and growth stimulation for microorganisms. Biofactors.1988; 1:51-3.
    [13]Misra HS, Khairnar NP, Barik A, Indira Priyadarsini K, Mohan H, Apte SK. Pyrroloquinoline-quinone:a reactive oxygen species scavenger in bacteria. FEBS Lett. 2004;578:26-30.
    [14]GEORGE P. KUBICA VAS, JAMES O. KILBURN, RONALD W. SMITHWICK, R. EDWARD BEAM, WILBUR D. JONES, JR. and K. D. STOTTMEIER Differential identification of mycobacteria Ⅵ. Mycobacterium triviale Kubica sp. nov. international journal of systematic and evolutionary microbiology.1970;20:161-74.
    [15]Jebbar M, Talibart R, Gloux K, Bernard T, Blanco C. Osmoprotection of Escherichia coli by ectoine:uptake and accumulation characteristics. J Bacteriol.1992;174:5027-35.
    [16]Bursy J, Pierik AJ, Pica N, Bremer E. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem. 2007;282:31147-55.
    [1]Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis.2003;3:432-42.
    [2]Aldous WK, Pounder JI, Cloud JL, Woods GL. Comparison of six methods of extracting Mycobacterium tuberculosis DNA from processed sputum for testing by quantitative real-time PCR. J Clin Microbiol.2005;43:2471-3.
    [3]Von Groll A, Martin A, Jureen P, Hoffner S, Vandamme P, Portaels F, et al. Fluoroquinolone Resistance in Mycobacterium tuberculosis and Mutations in gyrA and gyrB. Antimicrobial Agents and Chemotherapy.2009;53:4498-500.
    [4]Yin X, Yu Z. Mutation characterization of gyrA and gyrB genes in levofloxacin-resistant Mycobacterium tuberculosis clinical isolates from Guangdong Province in China. Journal of Infection.2010;61:150-4.
    [5]Cui Z, Wang J, Lu J, Huang X, Hu Z. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009. BMC Infectious Diseases.2011;11:78.
    [6]Chan RCY, Hui M, Chan EWC, Au TK, Chin ML, Yip CK, et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. Journal of Antimicrobial Chemotherapy.2007;59:866-73.
    [7]Huang TS. Trends in fluoroquinolone resistance of Mycobacterium tuberculosis complex in a Taiwanese medical centre:1995-2003. Journal of Antimicrobial Chemotherapy. 2005;56:1058-62.
    [8]Mokrousov I, Otten T, Manicheva O, Potapova Y, Vishnevsky B, Narvskaya O, et al. Molecular Characterization of Ofloxacin-Resistant Mycobacterium tuberculosis Strains from Russia. Antimicrobial Agents and Chemotherapy.2008;52:2937-9.
    [9]Pannamthip Pitaksajjakul WW, Wantanee Punprasit, Boonchuy Eampokalap, Sharon Peacock, Ramasoota aP. Mutations in the gyrA and gyrB genes of fluoroquinolone-resistant Mycobacterium tuberculosis from TB patients in Thailand. Southeast Asian J Trop Med Public Health.2005;36.
    [10]Umubyeyi AN, Rigouts L, Shamputa IC, Fissette K, Elkrim Y, de Rijk PWB, et al. Limited fluoroquinolone resistance among Mycobacterium tuberculosis isolates from Rwanda:results of a national survey. Journal of Antimicrobial Chemotherapy.2007;59:1031-3.
    [11]An DD, Hong Duyen NT, Lan NTN, Hoa DV, Ha DTM, Kiet VS, et al. Beijing Genotype of Mycobacterium tuberculosis Is Significantly Associated with High-Level Fluoroquinolone Resistance in Vietnam. Antimicrobial Agents and Chemotherapy.2009;53:4835-9.
    [12]Siddiqi N, Shamim M, Hussain S, Choudhary RK, Ahmed N, Prachee, et al. Molecular Characterization of Multidrug-Resistant Isolates of Mycobacterium tuberculosis from Patients in North India. Antimicrobial Agents and Chemotherapy.2002;46:443-50.
    [13]Escribano I, Rodr, iacute, guez JC, Llorca B, Garc, et al. Importance of the Efflux Pump Systems in the Resistance of Mycobacterium tuberculosis to Fluoroquinolones and Linezolid. Chemotherapy.2007;53:397-401.
    [14]Drlica K, Malik M, Kerns RJ, Zhao X. Quinolone-Mediated Bacterial Death. Antimicrobial Agents and Chemotherapy.2007;52:385-92.
    [15]Feuerriegel S, Cox HS, Zarkua N, Karimovich HA, Braker K, Rusch-Gerdes S, et al. Sequence Analyses of Just Four Genes To Detect Extensively Drug-Resistant Mycobacterium tuberculosis Strains in Multidrug-Resistant Tuberculosis Patients Undergoing Treatment. Antimicrobial Agents and Chemotherapy.2009;53:3353-6.
    [16]Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One.2009;4:e7815.
    [17]Rozen DE, McGee L, Levin BR, Klugman KP. Fitness Costs of Fluoroquinolone Resistance in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy.2006;51:412-6.
    [18]Ruiz J, Moreno A, Jimenez de Anta MT, Vila J. A double mutation in the gyrA gene is necessary to produce high levels of resistance to moxifloxacin in Campylobacter spp. clinical isolates. International Journal of Antimicrobial Agents.2005;25:542-5.
    [19]Mor N, Vanderkolk J, Heifets L. Inhibitory and bactericidal activities of levofloxacin against Mycobacterium tuberculosis in vitro and in human macrophages. Antimicrob Agents Chemother. 1994;38:1161-4.
    [20]Yew WW. Comparative Roles of Levofloxacin and Ofloxacin in the Treatment of Multidrug-Resistant Tuberculosis:Preliminary Results of a Retrospective Study From Hong Kong. Chest.2003; 124:1476-81.
    [21]Piton J, Petrella S, Delarue M, Andre-Leroux G, Jarlier V, Aubry A, et al. Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase. PLoS One. 2010;5:e12245.
    [1]Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR, Jr. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990;4:1911-9.
    [2]Rawat M, Heys J, Av-Gay Y. Identification and characterization of a diamide sensitive mutant of Mycobacterium smegmatis. FEMS Microbiol Lett.2003;220:161-9.
    [3]Sassetti CM. Comprehensive identification of conditionally essential genes in mycobacteria. Proceedings of the National Academy of Sciences.2001;98:12712-7.
    [4]Siegrist MS, Rubin EJ. Phage transposon mutagenesis. Methods Mol Biol.2009;465:311-23.
    [5]Fortune SM. Mutually dependent secretion of proteins required for mycobacterial virulence. Proceedings of the National Academy of Sciences.2005; 102:10676-81.
    [6]Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A. 1999;96:1645-50.
    [7]Gunderson CW, Segall AM. DNA repair, a novel antibacterial target:Holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. Mol Microbiol. 2006;59:1129-48.
    [8]Monaghan RL, Barrett JF. Antibacterial drug discovery--then, now and the genomics future. Biochem Pharmacol.2006;71:901-9.
    [9]Silver LL. Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov. 2007;6:41-55.
    [10]Projan SJ, Bradford PA. Late stage antibacterial drugs in the clinical pipeline. Curr Opin Microbiol.2007; 10:441-6.
    [11]Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs:confronting the challenges of antibacterial discovery. Nat Rev Drug Discov.2007;6:29-40.
    [12]Bumann D. Has nature already identified all useful antibacterial targets? Curr Opin Microbiol. 2008; 11:387-92.
    [13]Cottarel G, Wierzbowski J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol.2007;25:547-55.
    [14]Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. Biochem Pharmacol.2006;71:910-8.
    [15]Tamae C, Liu A, Kim K, Sitz D, Hong J, Becket E, et al. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J Bacteriol. 2008;190:5981-8.
    [16]Breidenstein EB, Khaira BK, Wiegand I, Overhage J, Hancock RE. Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility. Antimicrob Agents Chemother.2008;52:4486-91.
    [17]Fajardo A, Martinez-Martin N, Mercadillo M, Galan JC, Ghysels B, Matthijs S, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One.2008;3:e1619.
    [18]Li TK, Liu LF. Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol.2001;41:53-77.
    [19]Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 2001;41:367-401.
    [20]Smith GR. Homologous recombination near and far from DNA breaks:alternative roles and contrasting views. Annu Rev Genet.2001;35:243-74.
    [21]Eggleston AK, West SC. Exchanging partners:recombination in E. coli. Trends Genet. 1996; 12:20-6.
    [22]West SC. Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet. 1997;31:213-44.
    [23]Champoux JJ. DNA topoisomerases:structure, function, and mechanism. Annu Rev Biochem. 2001;70:369-413.
    [24]Shea ME, Hiasa H. Interactions between DNA helicases and frozen topoisomerase IV-quinolone-DNA ternary complexes. J Biol Chem.1999;274:22747-54.
    [25]Shea ME, Hiasa H. Distinct effects of the UvrD helicase on topoisomerase-quinolone-DNA ternary complexes. J Biol Chem.2000;275:14649-58.
    [26]Shea ME, Hiasa H. The RuvAB branch migration complex can displace topoisomerase Ⅳ.quinolone.DNA ternary complexes. J Biol Chem.2003;278:48485-90.
    [27]Otsuji N, Iyehara H, Hideshima Y. Isolation and characterization of an Escherichia coli ruv mutant which forms nonseptate filaments after low doses of ultraviolet light irradiation. J Bacteriol.1974; 117:337-44.
    [28]England P, Wehenkel A, Martins S, Hoos S, Andre-Leroux G, Villarino A, et al. The FHA-containing protein GarA acts as a phosphorylation-dependent molecular switch in mycobacterial signaling. FEBS Lett.2009;583:301-7.
    [29]Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Brodin P, et al. Proteomic identification of M. tuberculosis protein kinase substrates:PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol. 2005;350:953-63.
    [30]Nott TJ, Kelly G, Stach L, Li J, Westcott S, Patel D, et al. An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci Signal. 2009;2:ra12.
    [31]Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell.2007;130:797-810.
    [32]Festa RA, Pearce MJ, Darwin KH. Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis. J Bacteriol.2007; 189:3044-50.
    [33]MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94:5243-8.
    [34]Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A.2000;97:8841-8.
    [35]Shiloh MU, Nathan CF. Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr Opin Microbiol.2000;3:35-42.
    [36]De Mot R, Nagy I, Walz J, Baumeister W. Proteasomes and other self-compartmentalizing proteases in prokaryotes. Trends Microbiol.1999;7:88-92.
    [37]Nagy I, Geert S, Jos V, De Mot R. Further sequence analysis of the DNA regions with the Rhodococcus 20S proteasome structural genes reveals extensive homology with Mycobacterium leprae. DNA Seq.1997;7:225-8.
    [38]Lin G, Hu G, Tsu C, Kunes YZ, Li H, Dick L, et al. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol Microbiol. 2006;59:1405-16.
    [39]Darwin KH, Lin G, Chen Z, Li H, Nathan CF. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol Microbiol.2005;55:561-71.
    [40]Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science.2003;302:1963-6.
    [41]Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J.2006;25:5423-32.
    [42]Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405:962-6.
    [43]Manjunatha UH, Boshoff H, Dowd CS, Zhang L, Albert TJ, Norton JE, et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A.2006; 103:431-6.
    [1]Kresse H, Belsey MJ, Rovini H. The antibacterial drugs market. Nat Rev Drug Discov. 2007;6:19-20.
    [2]杨玉社;赵善荣;嵇汝运;陈凯先.喹诺酮化合物研究最新进展——抗肿瘤喹诺酮.药学学报.1998:33:157-60.
    [3]Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother.2007;51:28-34.
    [4]Malik M, Drlica K. Moxifloxacin lethality against Mycobacterium tuberculosis in the presence and absence of chloramphenicol. Antimicrob Agents Chemother.2006;50:2842-4.
    [5]Hussain S, Malik M, Shi L, Gennaro ML, Drlica K. In vitro model of mycobacterial growth arrest using nitric oxide with limited air. Antimicrob Agents Chemother.2009;53:157-61.
    [6]Snyder M, Drlica K. DNA gyrase on the bacterial chromosome:DNA cleavage induced by oxolinic acid. J Mol Biol.1979; 131:287-302.
    [7]Chen CR, Malik M, Snyder M, Drlica K. DNA gyrase and topoisomerase IV on the bacterial chromosome:quinolone-induced DNA cleavage. J Mol Biol.1996;258:627-37.
    [8]Deng S, Stein RA, Higgins NP. Organization of supercoil domains and their reorganization by transcription. Mol Microbiol.2005;57:1511-21.
    [9]Worcel A, Burgi E. On the structure of the folded chromosome of Escherichia coli. J Mol Biol. 1972;71:127-47.
    [10]Malik M, Zhao X, Drlica K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol Microbiol.2006;61:810-25.
    [11]Crumplin GC, Smith JT. Nalidixic acid:an antibacterial paradox. Antimicrob Agents Chemother. 1975;8:251-61.
    [12]Lewin CS, Howard BM, Ratcliffe NT, Smith JT.4-quinolones and the SOS response. J Med Microbiol.1989;29:139-44.
    [13]Ikeda H. Illegitimate recombination:role of type Ⅱ DNA topoisomerase. Adv Biophys. 1986;21:149-60.
    [14]Ikeda H, Shiraishi K, Ogata Y. Illegitimate recombination mediated by double-strand break and end-joining in Escherichia coli. Adv Biophys.2004;38:3-20.
    [15]Shanado Y, Kato J, Ikeda H. Escherichia coli HU protein suppresses DNA-gyrase-mediated illegitimate recombination and SOS induction. Genes Cells.1998;3:511-20.
    [16]Howard BM, Pinney RJ, Smith JT.4-Quinolone bactericidal mechanisms. Arzneimittelforschung.1993;43:1125-9.
    [17]Zhao X, Xu C, Domagala J, Drlica K. DNA topoisomerase targets of the fluoroquinolones:a strategy for avoiding bacterial resistance. Proc Natl Acad Sci U S A.1997;94:13991-6.
    [18]Zhao X, Wang JY, Xu C, Dong Y, Zhou J, Domagala J, et al. Killing of Staphylococcus aureus by C-8-methoxy fluoroquinolones. Antimicrob Agents Chemother.1998;42:956-8.
    [19]Malik M, Lu T, Zhao X, Singh A, Hattan CM, Domagala J, et al. Lethality of quinolones against Mycobacterium smegmatis in the presence or absence of chloramphenicol. Antimicrob Agents Chemother.2005;49:2008-14.
    [20]Lewin CS, Howard BM, Smith JT. Protein-and RNA-synthesis independent bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase. J Med Microbiol.1991;34:19-22.
    [21]Lewin CS, Morrissey I, Smith JT. The bactericidal activity of sparfloxacin. J Antimicrob Chemother.1992;30:625-32.
    [22]Hong G, Kreuzer KN. Endonuclease cleavage of blocked replication forks:An indirect pathway of DNA damage from antitumor drug-topoisomerase complexes. Proc Natl Acad Sci U S A. 2003;100:5046-51.
    [23]Pohlhaus JR, Kreuzer KN. Norfloxacin-induced DNA gyrase cleavage complexes block Escherichia coli replication forks, causing double-stranded breaks in vivo. Mol Microbiol. 2005;56:1416-29.
    [24]Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ. The importance of repairing stalled replication forks. Nature.2000;404:37-41.
    [25]Michel B, Grompone G, Flores MJ, Bidnenko V. Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A.2004; 101:12783-8.
    [26]McGlynn P, Lloyd RG. Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol.2002;3:859-70.
    [27]Heller RC, Marians KJ. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol.2006;7:932-43.
    [28]Shea ME, Hiasa H. The RuvAB branch migration complex can displace topoisomerase IV.quinolone.DNA ternary complexes. J Biol Chem.2003;278:48485-90.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.