乳酸菌表达系统的初步构建及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌(Lactic Acid Bacteria,LAB)是一类能利用碳水化合物产生大量乳酸的革兰氏阳性细菌的通称,广泛存在于自然界中,被公认为是安全的食品级(generally regarded as safe,GRAS)微生物。黏膜系统是人体免疫系统的重要组成部分,利用细菌载体接种黏膜表面诱导黏膜和系统水平的有效免疫应答,是有效预防从黏膜入侵传染因子的方法之一。减毒活菌疫苗不适用于所有人群,并有恢复毒力的危险;而用乳酸菌作为活菌疫苗载体能有效的避免以上问题。利用乳酸菌作为活菌疫苗载体能顺利通过胃到达肠黏膜,刺激机体产生免疫反应,有望成为新型疫苗。在乳酸菌中,可以作为活菌疫苗载体有乳杆菌(Lactobacillus)和乳球菌(Lactococcus)。用乳杆菌作为活菌载体表达外源抗原时,可能会产生免疫耐受。而乳球菌不是人体肠道的正常菌,不会产生免疫耐受。
     国内外有用乳酸菌进行重组蛋白表达和活菌疫苗研究的报道,但缺乏系统研究。国内相关研究较少。
     用增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)作为报告基因,比较了两种启动子的启动效果。酸诱导启动子P170受到自身代谢产生的H~+和生长量的诱导,即在pH低于6.5和在稳定期时诱导表达,不需要额外加入诱导物,宿主菌的菌体生长期和表达蛋白的生产期分开。P_(nisA)启动子是一个诱导效果很强的启动子,受到NisK和NisR的调控。nisin是一种安全的食品添加剂,其作为诱导物时的浓度在一定范围内与外源蛋白表达量呈正比例关系,容易控制。分别将egfp放在P170和P_(nisA)启动子后构建胞内和胞外表达载体,电转化入乳酸乳球菌(Lc.lactis)中,用SDS-PAGE检测及荧光显微镜观察发现无论是胞内表达还是胞外表达,P_(nisA)启动子的启动效果均强于P170启动效果。
     将pa置于P_(nisA)启动子后构建胞内和胞外表达载体,电转化入Lc.lactis1.2030中。用ELISA检测到PA的胞外表达情况,在培养12小时后检测到PA的表达,在16小时后趋于稳定;Western Blotting检测到胞内PA的表达,用SDS-PAGE检测PA随时间变化的关系,加入诱导物后4小时有表达,在16小时候趋于稳定。胞内表达效果较胞外表达效果好。同时构建了在PA的N端和C端含6个His-tag的表达载体。
     为了避免抗性基因在体内的转移和质粒的不稳定行,利用组氨醇磷酸化酶基因(hisB)作为同源交换序列,以pMD18-T为基础构建了在Lc.lactis中的自杀型整合载体pHEC。随后将P_(nisA)启动子和pa插入hisB正中间构建了含pa的自杀整合型载体pHEC-Pnis-PA,不含分泌信号肽基因,表达的PA不分泌到胞外。随后筛选得到了单交换突变体Lc.lactis1.2030S和双交换突变体Lc.lactis1.2030D,用SDS-PAGE检测有PA的表达。同样的用乳杆菌表达载体在植物乳杆菌(Lb.plantarum)中表达了N端含有6个his标签的PA。
     实验结果证实了应用hisB作为同源交换序列将外源基因整合到Lc.lactis染色体DNA的方法构建活菌载体疫苗是可行的。证明了构建的载体在Lc.lactis和Lb.plantarum中表达是可以接受的。以乳酸菌为活菌疫苗载体的策略为抗原在体内的运输提供一种新的途径。
Lactic acid bacteria (LAB), a group of G~+ bacteria that can ferment carbohydrates to produce large quantities of lactic, are considered GRAS (Generally Regarded As Safe) organisms that could safely be used for the expression of foreign proteins. Mucosa system plays an important role in whole immune responses of our body. Most pathogens enter the body through mucosal surfaces, and the development of vaccine protective at such sites should be a very effective means. The attenuated pathogenic vectors may impair their immunogenicity and raises questions about the safety. Probiotics, such as Lactobacillus and Lactococcus, offer an original alternative as antigen delivery vehicles. Administered orally or nasally route, it would not necessitate the professional health care infrastructure required for injectable preparations. LAB, promising new general vaccine vector, survive the low pH in stomach and entry into intestines mucosa. Lc. lactis has been used successfully to induce secretary and protective systemic responses against pathogen orally or nasally in some reports. As commensal bacteria, some Lactobacillus strains maybe cause immune tolerance.
     The enhanced green fluorescent protein (EGFP) as a reporter was expressed in different vectors induced by two promoters in Lc. lactis, H~+ induced promoter P170 and nisin-induced promoter P_(nisA). P170 is strongly activated at pH below 6.5 in the transition to stationary phase, without addiing an exogenous inducer. The growth phase is separated from the protein production phase. P_(nisA) is strongly induced by nisin, widely used as food preservative because of its broad host spectrum. P_(nisA) is regulated by a phosphorylase NisK and a response regulator NisR. Studies with increasing the concentration of nisin showed a linear dose-curve of foreign protein expressed. The gene of egfp was placed behind the two inducible promoters P170 and P_(nisA) in intracellular or extracellular vectors. The results showed that the expression of EGFP can be induced by addition of the amounts of nisin (10 ng/ml) to the culture medium, not so efficient expression induced by P170 intracellularly or extracellularly.
     After the gene of protective antigen (PA) of B. anthracis pa was placed behind the promoter P_(nisA), the expression of PA was obtained both intracellular and extracellular by the same methods. By enzyme-linked immunosorbent assay (ELISA) we found that PA was expressed extracellularly after 12 hours culture and no more expressed after 16 hours. Using Western Blotting (WB), we found PA was expressed intracellulary. SDS-PAGE showed that PA was expressed after 4 hours induced by nisin added, and after 16 hours induced, PA was expressed no more than before.
     In order to avoid the erythromycin resistance gene {ery) and and lose of plasmid, a suicide crossover vector based on pMD18-T was constructed. Because the histidinol phosphate phosphatase is coded by hisB and one gene located elsewhere in the Lc. lactis, hisB is used as a homologous crossover sequence for recombination in the genome of Lc. lactis. As pMD18-T doesn't contain an origin of replication in Lc. lactis, it and its derivates are suicide vectors in Lc. lactis. After hisB and ery were inserted in pMD18-T, named pHEC, followed digested by SnaB I, PnisA - PA was ligased to the pHEC, named pHEC- PnisA- PA, which is suicide vector without signal peptide for Lc. lactis. Single crossover mutant Lc. lactis1 .2030S and double crossover mutant Lc. lactis1. 2030D were obtained, and SDS-PAGE showed the expression of PA. The expression vectors of PA with 6 His-tag on the N or C point for Lc. lactis1. 2030 were botained, and PA with 6 His-tag on the N point was expressed by pSIP300-PA-His in Lb. plantarum.
     The result verified that construction of live bacteria vaccine using the vector pHEC and hisB as homologous crossover sequence was possible, and all vectors constructed in this experiment were acceptable for expression in Lc. lactis or Lb. plantarum. The strategy of developing live bacterial vaccine based on LAB provided a new way of the delivery of antigens in vivo.
引文
1 杨洁彬,郭兴华.1999.乳酸菌-生物学基础及应用,北京:中国轻工业出版社.
    2 凌代文,东秀珠.1999.乳酸菌分类鉴定及实验方法,北京:中国经工业出版社,1-4,6-16,45-47
    3 Gilliland S. E. 1990. Health and nutritional benefit from lactic acid bacteria. FEMS microbiology reviews, 7(1-2): 175-188
    4 Sanders M. E. 1994. Lactic acid bacteria as promoters of human health. In: Functional Foods. Ed. Goldberg Ⅰ, Chapman & Hall, 294-322
    5 Johnson T. R. & Case C. L. 1995. Laboratory experiments in microbiology. 4th edition. The Benjamin/Cummings Publishing Co. Inc.
    6 Danova S. T., Stoyancheva G., Manasiev Y. et al. 2005. Development and Application of Random DIG-Labelled Probes Based on Total Genomic Lactobacillus DNA. World Journal of Microbiology and Biotechnoiogy, 21(6-7): 835-842
    7 Johnson J. L. 1984, Bacterial classification Ⅲ. Nucleic acids in bacterial classification, in Bergey's Manual of Systematic Bacteriology, Vol.1(N. R. Krieg and J. G. Holt, eds.), Williams and Wilkins, Baltimore, p.8-11
    8 Lyhs U., Korkeala H. & Bjorkroth J. 2002. Identification of lactic acid bacteria from spoiled, vacuum-packaged 'gravad' rainbow trout using ribotyping. International Journal of Food Microbiology, 72: 147-153
    9 Ampe F. 2000. Design and evaluation of a Lactobacillus manihotivorans species-specific rRNA-targeted hybridization probe and its application to the study of sour cassava fermentation. Applied and Environmental Microbiology, 66: 2224-2226
    10 Nene V., Bioshop R., Morzaria S. et al. 2000. Theileria parva genomics reveals an atypical apicomplexan genome. International Journal for Parasitology, 30: 465-474
    11 Miteva V., Boudakov I., Ivanova S. G. et al. 2001. Differentiation of Lactobacillus delbrueckii subspecies by ribotyping and amplified ribosomal DNA restriction analysis. Journal of Applied Microbiology, 90: 909-918
    12 Johansson M. L., Quednau M., Ahme S. et al. 1995. Classification of Lactobacillus plantarum by restriction endonuclease analysis of total chromosomal DNA, using conventional agarose gel electrophoresis. International Journal of System Bacteriology, 45: 670-675
    13 Giraffa G., Lazzi C., Gatti M. et al. 2002. Molecular typing of Lactobacillus delbrueckii of dairy origin by PCR-RFLP of protein-coding genes. International Journal of Food Microbiology, 82: 163-172
    14 Oneca M., Irigoyen A., Ortigosa M. et al. 2003. PCR and RAPD identification of L. plantarum strains isolated from ovine milk and cheese. Geographical distribution of strains. FEMS Microbiology Letters, 227(2): 271-277
    15 Mannu L., Riu G., Comunian R. et al. 2002. A preliminary study of tactic acid bacteria in whey starter culture and industrial Pecorino Sardo ewes milk cheese: PCR identification and evolution during ripening. International Dairy Journal, 12: 17-26
    16 Nomura M., Kobayashi M. & Okamoto T. 2002. Rapid PCR based method which can determine both phenotype and genotype of Lactococcus lactis subspecies. Applied and Environmental Microbiology, 68: 2209-2213
    17 Chagnaud P., Machinis K., Coitte L. A. et al. 2001. Rapid PCR-based procedure to identify lactic acid bacteria: application to six common Lactobacillus species. Journal of Microbiological Methods, 44: 139-148
    18 Wilson W. J., Strout C. L., DeSantis T. Z. et al. 2002. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Molecular Cell Probes, 16: 119-127
    19 Giraffa G., De Vecchi P. & Rossetti L. 1998. Note: Identification of Lactobacillus delbrueckii subspecies bulgaricus and subspecies lactis dairy isolates by amplified rDNA restriction analysis. Journal of Applied Microbiology, 85(5): 918-918
    20 Ventura M. & Zink R. 2002. Specific identification and molecular typing analysis of Lactobacillus johnsonii by PCR-based methods and pulsed-field gel electrophoresis. FEMS Microbiology Letters, 217: 141-154
    21 Temmerman R., Maseo L., Vanhoutte T. et al. 2003. Development and validation of a nested PCR-denaturing gradient gel electrophoresis method for taxonomic characterization of bifidobacterial communities. Applied and Environmental Microbiology, 69: 6380-6385
    22 Pot B., Vandamme P. & Kersters K. 1994. Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics, pp. 493-521. Edited by M. Goodfellow & A. G. O'Donnell. Chichester, UK: Wiley.
    23 Stiles M. & Holzapfel W. H. 1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 36: 1-29
    24 Ahrne S., Nobaek S., Jeppsson B. et al. 1998. The normal Lactobacillus flora of healthy human rectal and oral mucosa. Journal of Applied Microbiology, 85(1): 88-94
    25 Fooks L. J., Full R. & Gibson G. R. 1999. Prebiotics, probiotics and human gut microbiology. International Dairy Journal, 9: 53-61
    26 Sanders M. E. 2000. Considerations for use of probiotic bacteria to modulate human health. Journal of Nutrition, 130: 384-390
    27 Naidu A. S., Bidlack W. R. & Clemens R. A. 1999. Probiotic spectra of lactic acid bacteria(LAB). Critical Reviews in Food Science and Nutrition, 39: 3-126
    28 Ouwehand A. C., Kirjavainen P. V. & Shortt C. 1999. Probiotics: mechanisms and established effects. International Dairy Journal 9: 43-52
    29 陈洪兴.乳糖和乳糖不耐症.盐城工学院学报(自然科学版).2002(3):32-35.
    30 Martini M. C., Bollweg G. L., Levit M. D. et al. 1987. Lactose digestion by yogurt β-galactosidase: influence of pH and microbial cell integrity. American Journal of Clinical Nutrition, 45: 432-436
    31 Martini M. C., Kukielka D. & Savaiano D. 1991. Lactose digestion from yogurt: influence of a meal and additional lactose. American Journal of Clinical Nutrition, 53: 1253-1258
    32 Silva M., Jacobus N. V., Deneke C. et al. 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrobes Agents Chemotherapy, 31: 1231-1233
    33 Gooderham M. J., Bolli P. & Fernandez P. G. 1999. Concomitant digoxin toxicity and warfarin interaction in a patient receiving clarithromycin. The Annals of Pharmacotherapy, 33(728): 796-799
    34 Isogai H., Isogai E., Hayashi S. et al. 1997. Experimental Helicobacter pylori infection in association with other bacteria. Microbiology and Immunology, 41(4): 361-365
    35 Aiba Y., Suzuki N., Kabir A. M. et al. 1998. Lactic acid mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic routine model. American Journal of Gastroenterology, 93(11): 2097-2101
    36 Kabir A. M., Aiba Y., Takagi A. et al. 1997. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model. Gut, 41(1): 49-55
    37 Salminen S. & Tanaka R. 1995. Annual review on cultured milks and probiotics. IDF Nutrition Newsletter, 4: 47-50
    38 Sakamoto I., Igarashi M., Kimura K. et al. 2001. Suppressive effect of Lactobacillus gasseri OLL 2716(L G21) on Helicobacter pylori infection in humans. Journal of Antimicrobial Chemotherapy, 47(5): 709-710
    39 Canducci F., Armuzzi A., Cremonini F. et al. 2000. A lyophilized and inactivated culture of Lactobacillus acidojphilus increases Helicobacter pylori eradication rates. Alimentary pharmacology and therapeutics, 14: 1625-1629
    40 Perdigon G., Nader de Macias M. E., Alvarez S. et al. 1990. Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. Journal of Dairy Research, 57: 255-264
    41 Kushal R., Anand S. K. & Chander H. 2006. Effect of feeding micro-entrapped co-culture of Lactobacillus acidophilus and Bifidobacterium bifidum on the immune response and protection of mice infected with Salmonella typhimurium. Dairy Science and Technology, 86: 387-399
    42 Perdigon G., Medici M., de Jorrat B. B. et al. 1993. Immunomodulating effects of lactic acid bacteria on mucosal and tumoral immunity. International Journal of Immunotherapy, 9(11): 29-52
    43 de Simone C., Vesely R., Bianchi-Salvadori B. et al. 1993. The role of probiotics in modulation of the immune system in man and in animals. International Journal of Immunotherapy, 9: 23-28
    44 O'Sullivan M. G., Thornton G., O'Sullivan G. C. et al. 1992. Probiotic bacteria: myth or reality. Trend food technology, 3: 309-314
    45 Perdigon G., Alvarez S., Rachid M. et al. 1995. Immune system stimulation by probiotics. Journal of Dairy Science, 78: 1579-1606
    46 Pereira D. I. & Gibson G. R. 2002. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Applied and Environmental Microbiology, 68(9): 4689-4693
    47 Portugal R. L., Goncalves J. L., Fernandes L. R. et al. 2006. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Brazilian Journal of Medical and Biological Research, 39: 629-635
    48 Klaver F. A. M. & van der Meer R. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugation activity. Environmental Microbiology, 59: 1120-1124
    49 Jin L. Z., Ho Y. W., Abdullah N. and Jalaludin S. 1998. Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing lactobacillus cultures. Poultry Science, 77: 1259-1265
    50 Gilland S. E., Nelson C. R. & Maxwell C. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Applied and Environmental Microbiology, 49(2): 377-381
    51 姜瞻梅,霍贵成,吕桂善.2003.不同事物来源的ACE抑制肽的研究现状.食品研究与开发.24(1):27-29
    52 Chobert J, M., El-Zahar K., Sitohy M. et al. 2005. Angiotensin Ⅰ-converting-enzyme-inhibitory activity of tryptic peptides ofovine β-lactoglobulin and of milk yoghurts obtained by using different starters. Lait, 2005: 141-152
    53 吴正均,叶锦,郭本恒.2004.乳酸菌的抗高血压作用.乳品科学与技术 1:1-8
    54 Fernandes C. F. & Shahani K. M. 1990. Anticarcinogenic and immunological properties of dietary lactobacilli. Journal of Food Protection, 53: 704-710
    55 Goldin B. R. & Gorbach S. L. 1984. The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. American Journal of Clinic nutrition, 39: 756-761
    56 Marteau P., Pochart P., Flourie B. et al. 1990. Effect of chronic ingestion of a fermented dairy' product contains Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. American Journal of Clinical Nutrition, 52: 685-688
    57 Kampman E., Goidbohm R. A., van den Brandt P. A., et al. 1994. Fermented dairy products, calcium and colorectal cancer in the Netherlands cohort study. Cancer Research, 54: 3186-3190
    58 Hirayama K. & Rafter J. 2000. The role of probiotic bacteria in cancer prevention. Microbes infection, 2: 681-686
    59 Rafter J. 2002. Lactic acid bacteria and cancer: mechanistic perspective. British Journal of Nutrition, 88: 89-94
    60 Park H. D. & Rhee C. H. 2001. Antimutagenic activity of Lactobacillus plantarum KLAB21 isolated from kimchi Korean fermented vegetables. Biotechnology Letters, 23(19): 1583-1589
    61 Salminen S. & Deighton M. 1992. Lactic acid bacteria in the gut in normal and disordered states. Digestive Diseases, 10: 227-238
    62 Aronsson B., Barany P., Nord C. E. et al. 1987. Clostridium difficile-associated diarrhea in uremic patients. European Journal of Clinical Microbiology, 6(3): 352-356
    63 Black F. T., Andersen P. L., Orskov J. et al. 1989. Prophylactic efficacy of lactobacilli on traveler's diarrhea. Travel Medicine, 7: 333-335
    64 Oksanen P. J., Saiminen S., Saxelin M. et al. 1990. Prevention of traveller's diarrhea by Lactobacillus GG. Ann. Med. 22: 53-56
    65 Hitchins A. D. & McDonough F. E. 1989. Prophylactic and therapeutic aspects of fermented milk. American Journal of Clinical Nutrition, 49: 675-684
    66 Hilton E., Isenberg H. D., Alperstein P. et al. 1992. Ingestion of yogurt containing Lactobacillus acidophilus as prophylaxis for candidal vaginitis. Annals of International Medicine, 116(5): 353-357
    67 Bolotion A., Wincker P., Mauger S. et al. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research, 11 (5): 731 - 753
    
    68 Wegmann U., O'Connell-Motherway M., Zomer A. et al. 2007. The complete genome sequence of the lactic acid bacterial paradigm Lactococcus lactis subsp. cremoris MG1363. Journal of Bacteriology, 189 (8): 3256 - 3270
    
    69 Kleerebezem IM., Boekhorst J., van Kranenburg R. et al. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences (PNAS), 100 (4): 1990 - 1995
    
    70 Willem M.V. 1999. Safe and sustainable system for food-grade fermentations by genetically modified lactic acid bacteria. International Dairy Journal, 9: 3 - 10
    
    71 Hansen E.B. 2002. Commercial bacterial starter cultures for fermented foods of the future. International Journal of Food Microbiology, 78: 119 - 131
    
    72 Kondo J.K. & Johansen E. 2002. Product development strategies for foods in the era of molecular biotechnology. Antonie Van Leeuwenhoek, 82: 291 - 302
    
    73 de Vos W.M. 1999. Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. International Dairy Journal, 9: 3 - 10
    
    74 Pavan S., Hols P., Delcour J. et al. 2000. Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Applied and Environmental Microbiology, 66: 4427 - 4432
    
    75 van Rooijen R.J., Gasson M.J. & de Vos W.M. 1992. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. Journal of Bacteriology, 174 (7): 2273 - 2280
    
    
    
    76 Wells J.M., Wilson P.W., Norton P.M. et al. 1995. Lactococcus lactis: high level expression of tetanus toxin fragment C and protection against lethal challenge. Molecular Microbiology, 8: 1155 - 1162
    
    77 Lokman B.C., Leer R.J., van Sorge R. et al. 1994. Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. Molecular and General Genetics, 245: 117 - 125
    
    78 O'Sullivan D.J., Walk S.A., West S.G. et al. 1996. Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology, 14: 82 - 87
    
    79 Kuipers O.P., Beerthuyzen M.M., de Ruyter P.G et al. 1995. Auto regulation of nisin biosynthesis in Lactococcus lactis by signal transduction. Journal of Biological Chemistry, 270: 27299 - 27304
    
    80 Kleerebezem M., Quadri L.E.N., Kuipers O.P. et al. 1997. Quorum sensing by peptide pheromones and two- component signal transduction systems in Gram-positive bacteria. Molecular Microbiology, 24: 895 - 905
    
    
    81 de Ruyter P.G.G.A., Kuipers O.P. & de Vos W.M. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Applied and Environmental Microbiology, 62: 3662 - 3667
    
    82 Bron P.A., Benchimol M.G., Lambert J. et al. 2002. Use of the alr Gene as a Food-Grade Selection Marker in Lactic Acid Bacteria. Applied and Environmental Microbiology, 68 (11): 5663 - 5670
    
    
    83 Monne M., Chan K.W., Slotboom D.J. & Kunji E.R.S. 2005. Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Science, 14: 3048 - 3056
    84 Grangette C., Muller-Alouf H., Goudercourt D. et al. 2001. Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum. Infection and Immunity, 69(3): 1547-1553
    85 Sφrvig E., Gronqvist S., Naterstad K. et al. 2003. Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiology Letters, 229: 119-126
    86 van Sinderen D., Kansens H., Kok J. et al. 1996. Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage rlt. Molecular Microbiology, 19: 1343-1355
    87 Nauta A., van den Burg B., Karsens H. et al. 1997. Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling. Nature Biotechnology, 15: 980-983
    88 Israelsen H., Madsen S. M., Vrang A. et al. 1995. Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Applied and Environmental Microbiology, 61: 2540-2547
    89 Sanders J. W., Leenhouts K., Burghoom J. et al. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Molecular Microbiology, 27(2): 299-310
    90 Duan K., Harvey M. L., Liu C. Q. et al. 1996. Identification and characterization of a mobilizing plasmid, pND300, in Lactococcus lactis M189 and its encoded nisin resistance determinant. Journal of Applied Bacteriology, 81(5): 493-500
    91 Von wright A., Wessels S., Tynkkynen S. et al. 1990. Isolation of a replication region of a large Lactococcus plasmid and use in cloning of a nisin resistance determinant. Applied and Environmental Microbiology, 56: 2029-2035
    92 Takala T. & Saris P. 2002. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Applied Microbiology and Biotechnology, 59(4-5): 467-471
    93 汤莎,陈秀珠,杨巍等.2001.一个含有乳链菌肽抗性基因的乳酸乳球菌质粒pTS50的鉴定.微生物学报,41:536-541
    94 Kuipers O. P., de Ruyter P. G. G. A., Kleerbezen M. et al. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of Biotechnology, 64: 15-21
    95 Gels A., EI Demerdash H. A. & Heller K. J. 2003. Sequence analysis and characterization of plasmids from Streptococcus thermophilus. Plasmid, 50(1): 53-69
    96 EI Demerdash H. A. M., Heller K. J. & Geis A. 2003. Application of the shsp gene, encoding a small heat shock protein, as a food grade selection marker for lactic acid bacteria. Applied and Environmental Microbiology, 69: 4408-4412
    97 Sorensen K. I., Larsen R., Kibenich A. et al. 2000. A food-grade system for industrial strains of Lactococcus lactis. Applied and Environmental Microbiology, 66(4): 1253-1258
    98 Sasaki Y., Ito Y. & Sasaki T. 2004. ThyA as a selection marker in construction of food-grade host-vector and integration systems for Streptococcus thermophilus. Applied and Environmental Microbiology, 70: 1858-1864
    99 Sridhar V. R.. Smeianov V. V. & Steele J. L. 2006. Construction and evaluation of food-grade vectors for Lactococcus lactis using aspartate aminotransferase and alpha-galactosidase as selectable markers. Journal of Applied Microbiology, 101(1): 161-171
    100 Herman R. E. & McKay L. L. 1986. Cloning and expression of the beta-D-galactosidase gene from Streptococcus thermophilus in Escherichia coli Applied and Environmental Microbiology, 52: 45-50
    101 Hols P., Defrenne C., Ferain T. et al. 1997. The alanine racemase gene is essential for growth of Lactobacillus plantarum. Journal of Bacteriology, 179(11): 3804-3807
    102 Madsen S. M., Albrechtsen B., Hansen E. B. et al. 1996. Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614. Journal of Bacteriology, 178(13): 3689-3694
    103 Glenting J., Madsen S. M., Vrang A. et al. 2002. A plasmid selection system in Lactococcus lactis and its use for gene expression in Lc. lactis and human kidney fibroblasts. Applied and Environmental Microbiology, 68: 5051-5056
    104 Liu C. Q., Leelawatcharamas V., Harvey M. et al. 1996. Cloning vectors for lactococci based on a plasmid encoding resistance to cadmium. Current Microbiology, 33: 35-39
    105 Liu C. Q., Khunajakr N. & Chia L. G. 1997. Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid, 38: 79-90
    106 Wong W. Y., Su P., Allison G. E. et al. 2003. A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker. Applied and Environmental Microbiology, 69: 5767-5771
    107 Leelawatcharamas V., Chia L. G., Charoenchai P. et al. 1997. Plasmid-encoded copper resistance in Lactococcus lactis. Biotechnology Letter, 19: 639-643
    108 Liu C. Q., Su P., Khunajakr N. et al. 2005. Development of food-grade cloning and expression vectors for Lactococcus lactis. Journal of Applied Microbiology, 98(1): 127-135
    109 Biswas I., Gruss A., Ehrlich S. D. et al. 1993. High-efficient inactivation and replacement system for Gram-positive bacteria. Journal of Bacteriology, 175: 3625-3628
    110 Gosalbes M. J., Esteban C. D., Galan J. L. et al. 2000. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Applied and Environmental Microbiology, 66: 4822-4828
    111 Henrieh B., Klein J. R., Weber B. et al. 2002. Food-grade delivery system for controlled gene expression in Lactococcus lactis. Applied and Environmental Microbiology, 68: 5429-5436
    112 Kok J., van der Vossen J. M. B. M. & Venema G. 1984. Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Applied and Environmental Microbiology, 48: 726-731
    113 Boucher I., Parrot M., Gaudreau H. et al. 2002. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Applied and Environmental Microbiology, 68: 6152-6161
    114 Novotny R., Scheberl A., Giry-Laterriere M. et al. 2005. Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis. FEMS Microbiology Letters, 242: 27-35
    115 de Ruyter P. G., Kuipers O. P,, Beerhtuyzen M. M. et al. 1996. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. Journal of Bacteriology, 178(12): 3434-3439
    116 Chan W. C., Bycroft B. W., Lian L. Y. et al. 1989. Isolation and characterization of two degradation products derived from the peptide antibiotic nisin. FEBS Letters, 252: 29-36
    117 Bower C. K., Meguire J. & Daeschel M. A. 1995. Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces. Applied and Environmental Microbiology, 61(3): 992-997
    118 Neu T. & Henrich B. 2003. New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri. Applied and Environmental Microbiology, 69(3): 1377-1382
    119 Miyoshi A., Poquet J., Azevedo V. et al. 2002. Controlled production of stable heterologous proteins in Lactococcus lactis. Applied and Environmental Microbiology, 68(6): 3141-3146
    120 Le Loir Y., Azevedo V., Oliveira S. C. et al. 2005. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterogonous protein production, Microbial Cell Factories, 4(1): 2
    121 Mierau I., Leij P., van Swam I., Blommestein B. et al. 2005. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microbial Cell Factories, 4: 15
    122 Llull D. & Poquet I. 2004. New expression system tightly controlled by zinc availability in Lactococcus lactis. Applied and Environmental Microbiology, 79(9): 5398-5406
    123 Chalfie M., Tu Y., Euskirchen G. et al. 1994. Green fluorescent protein as a marker for gene expression. Science, 263: 802-805
    124 Kahana J., Schapp B. & Silver P. 1995. Kinetics of spindle pole body separation in budding yeast. Proceeding National Academy Science(PNAS), 92: 9707-9711
    125 Moores S., Sabry J. & Spudich J. 1996. Myosin dynamics in live Dictyostelium cells. Proceeding National Academy Science(PNAS), 93: 443-446
    126 Casper S. & Holt C. 1996. Expression of the green fluorescent protein encoding gene from a tobacco mosaic virus-based vector. Gene, 173: 69-73
    127 Epel B., Padgett H., Heinlein M. et al. 1996. Plant virus movement protein dynamics probed with a GFP-protein fusion. Gene, 173: 75-79
    128 Ludin B., Doll T., Meill R. et al. 1996. Application of novel vectors for GFP-tagging of proteins to study microtubule-associated proteins. Gene, 173: 107-11
    129 DeGiorgi F., Brini M., Bastianutto C. et al. 1996. Targeting aequorin and green fluorescent protein to intracellular organelles. Gene, 173: 113-127
    130 Chandrapati S. & O'Sullivan D. J. 1999. Nisin independent induction of the nisA promoter in Lactococcus lactis during growth in lactose or galactose. FEMS Microbiology, 170: 191-198
    131 Madsen S. M., Arnau J., Vrang A, et al, 1999. Molecular characterization of the pH-inducible and growth phase-dependent promoter P 170 of Lactococcus lactis. Molecular Microbiology, 32(1): 75-87
    132 Theisen M., Soe S., Brunstedt K. et al. 2004. A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine, 22(9-10): 1188-1198
    133 Varma N. R. S., Raha A. R., Ross E. et al. 2004. Inducible expression of green fluorescence protein in Lactococcus lactis. Scientific Correspondence, 87(2): 1185-1187
    134 Mock M. & Fouet A. 2001. Anthrax. Annual Review of Microbiology, 55: 647-671
    135 Turnbull P. C. B. 2002. Introduction: anthrax history, disease and ecology. Current Topics in Microbiology and Immunology, 271: 1-20
    136 Inglesby T. V., Henderson D. A., Bartlett J. G. et al. 1999, Anthrax as a biological weapon: medical and public health management. Working Group on Civilian Bio-defense. The Journal of the American Medical Association, 281: 1735-1745
    137 Enouf V., Langella P., Commissaire J. et al. 2001. Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Applied and Environmental Microbiology, 67(4): 1423-1428
    138 Poquet I., Ehrlich S. D. & Gruss A. 1998. An export-specific reporter designed for gram-positive bacteria: application to Lactococcus lactis. Journal of Bacteriology, 180: 1904-1912
    139 Ravn P., Arnau J., Madsen S. M. et al. 2000. The development of TnNuc and its use for the isolation of novel secretion signals in Lactococcus lactis. Gene, 242: 347-356
    140 Dieye Y., Usai S., Clier F. et al. 2001. Design of a protein-targeting system for lactic acid bacteria. Journal of Bacteriology, 183: 4157-4166
    141 Le Loir Y., Gruss A., Ehrlich S. D. et al. 1994. Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter. Journal of Bacteriology, 176: 5135-5139
    142 Sibakov M., Koivula T., von Wright A. et al. 1991. Secretion of TEM beta-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp, lactis. Applied and Environmental Microbiology, 57: 341-348
    143 Pillidge C. J., & Pearce L. E. 1991. Expression of a beta-galactosidase gene from Clostridium acetobutylicum in Lactococcus lactis subsp, lactis. Journal of Applied Bacteriology, 71: 78-85
    144 Perez-Martinez G., Kok J., Venema G. et al. 1992. Protein export elements from Lactococcus lactis. Molecular and General Genetics, 234: 401-411
    145 Corthier G., Delorme C., Ehrlich S. D. et al. 1998. Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Applied and Environmental Microbiology, 64: 2721-2722
    146 Thompson A. & Gasson M. J. 2001. Location effects of a reports of a reporter gene on expression levels and on native protein synthesis in Lactococcus lactis and Saccharomyces cerevisiae. Applied and Environmental Microbiology, 67: 3434-3439
    147 Lee M. H., Roussel Y., Wilks M. et al. 2001. Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice. Vaccine, 19: 3927-3935
    148 Meghee J. R., Lamm M. E. & Strober W. 1999. Mucosal immune responses: an overview. In Mucosal Immunology, Academic Press, New York, p.485
    149 Boyaka P. N., Marinaro M., Fujihashi K. et al. 2001. Host defense at mucosal surface. In Clinical Immunology, London, pp. 20-21
    150 Nathalie M., Sylvie A. & Camille L. 2001. Nasal vaccination using live bacterial vectors. Advanced Drug Delivery, 51: 55
    151 Fox J. 1997. Taking multiple paths towards mucosal vaccines immunity. ASM News, 63: 413-414
    152 Chatfield S. N., Charles I. G., Makoff A. J. et al. 1992. Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus toxin vaccine. Biotechnology, 10: 888-892
    153 Dunstan S. J., Simmons C. P. & Strugnell R, A. 1998. Comparison of the abilities of different attenuated Salmonella typhimurium strains to elicit humoral immune responses against a heterologous antigen. Infection and Immunity, 66(2): 732-740
    154 Jacobs W. R., Snapper S. B., Lugosi L. et al. 1990. Development of BCG as recombinant vaccine delivery vehicle. Current Topics in Microbiology and Immunology, 155: 153-160
    155 Muller-Alouf H., Grangette C., Goudercourt D. et al. 1999. Comparative cytokine inducing pattern of lactic acid bacteria used for mucosal vaccine development. Immunology Letters, 69: 33
    156 Robinson K., Chamberlain L. M., Schofield K. M. et al. 1997. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nature biotechnology, 15: 653-657
    157 Delorme C., Ehrlich S. D. & Renault P. 1992. Histidine biosynthesis genes in Lactococcus lactis subsp, lactis. Journal of Bacteriology, 174(20): 6571-6579
    158 Axelsson L. & Ahrne S. 2000. Lactic acid bacteria. In Applied Microbial Systematics, pp. 365-386. Edited by F. G. Priest & M. Goodfellow. Dordrecht, The Netherlands: Kluwer Academic Publishers.
    159 Mercenier A., Pavan S. & Pot B. 2003. Probiotics as biotherapeutic agents: present knowledge and future prospects. Current pharmaceutical Design, 9(2): 175-191
    160 Pouwels P. H., Leer R. J. & Boersma W. J. 1996. The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. Journal of Biotechnoiogy, 44(1-3): 183-192
    161 Pouwels P. H., Vriesema A., Martinez B. et al. 2001. Lactobacitli as vehicles for targeting antigens to mucosal tissues by surface exposition of foreign antigens. Methods in Enzymology, 336: 369-389
    162 Kruger C., Hu Y. Z., Pan Q. et al. 2002. In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nature Biotechnology, 20(7): 702-706
    163 Scheppler L., Vogel M., Zuercher A. W. et al. 2002. Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine, 20(23-24): 2913-2920
    164 Bates E. E. M., Gilbert H. J., Hazlewood G. P. et al. 1989. Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Applied and Environmental Microbiology, 55(8): 2095-2097
    165 Skaugen M., Nissen-Meyer J., Jung G. et al. 1994. Introduction of D-Ala by modification of L-Ser. Journal of Biological Chemistry, 269: 27183-27185
    166 Diep D. B., Havarstein L. S. & Nes I. F. 1995. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus ptantarurn C11. Molecular Microbiology, 18: 631-639
    167 Diep D. B., Havarstein L. S. & Nes I. F. 1996. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. Journal of Bacteriology, 178: 4472-4483
    168 Brurberg M. B., Nes I. F. & Eijsink V. G. H. 1997. Pheromone-induced production of antimicrobial peptides in Lactobacillus. Molecular Microbiology, 26: 347-360
    169 Axelsson L. & Holck A. 1995. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sakei Lb706. Journal of Bacteriology, 177(8): 2125-2137
    170 de Vos W. M. 1999. Gene expression systems for lactic acid bacteria. Current Opinion in Microbiology, 2: 289-295
    171 A legre M. T., Rodriguez M. C. & Mesas J. M. 2004. Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbiology Letters, 241: 73-77
    172 Vos P., van Asseldonk M., van Jeveren F. et al. 1989. A maturation protein is essential for production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. Journal of Bacteriology, 171(5): 2795-2802
    173 O'Sullivan D. J. & Klaenhammer T. D. 1993. Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Applied and Environmental Microbiology, 59: 2730-2733
    174 Maassen C. B., van Holten-Neelen C., Balk F. et al. 2000. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine, 18: 2613-2623
    175 Zergers N. D., Kluter E., van der Stap H. et al. 1999. Expression of the protective antigen ot Bacillus anthracis by Lactobacillus casei: towards the development of an oral vaccine against anthrax. Journal of Applied Microbiology, 87: 309-314
    176 陈慰峰等.2004.医学免疫学.第四版.北京:人民卫生出版社.
    177 何维,高晓明,曹雪涛等.2005.医学免疫学.北京:人民卫生出版社,170-174
    178 William E., Paul. 1999. Fundamental Immunology, 4th ed. New York: Lippinocott-Raven, 19-35
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.