高扬程泵站压力管路安全防护的计算机数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在供水工程中,由于压力管路中流速的突然变化,引起管路中水流压力急剧上升或降低的现象,称为水锤或水力过渡过程。泵站水锤对供水工程的正常运行影响很大,一般事故停泵所产生的水锤压力比正常压力高出1.5—4倍,当发生断流弥合水锤时产生的水锤压力更大,不少供水工程因事故水锤而遭受严重破坏,给人民的正常生产和生活带来了很大损失。因此长距离、高扬程供水工程水力过渡过程的计算,已经成为供水工程安全运行的重要课题之一,只有对供水工程水力过渡过程进行精确、合理的数值模拟,同时采取必要、可靠的水锤防护措施,才能确保供水工程的安全运行。
     本文首先系统介绍了供水工程水力过渡过程计算的特征线法,然后对供水工程的稳态运行工况进行了研究,在此基础上对泵系统的过渡过程特性进行了研究,通过模拟水泵故障的边界条件,基于特征线法建立了不同水锤防护措施下水锤计算的数学模型,同时应用合理的数值计算方法,编写了计算机模拟程序,并结合实际具体工程进行研究。主要内容如下:
     1.在总结前人研究成果的基础上,系统的阐述了水锤的基本理论及其特征线法,分析各种水锤防护措施(蝶阀、下开式水锤消除器、进排气阀等)的工作机理,建立其边界条件和求解的数学、水力学模型。
     2.结合不同型号水泵并联运行和两阶段关闭的液控蝶阀
In water supply system works, flow rate suddenly changing in pressure piping that create pressure of stream current steep rise or sudden drop, which is also called water hammer or hydraulic transient. Water hammer shall affect largely the normal operation of pumping station, water hammer pressure of general cut-off water hammer is higher 1.5 to 4 times than normal pressure, and the hammer of water column separation can create greater water hammer pressure. Many pumping station had been destroyed badly by water hammer and this cause great loss to the normal production and life for people. Therefore, hydraulic transient calculation of long distance and high lift pump of water supply works has become one of important project. Only when hydraulic transient of pumping station is precede precision & rational numerical calculation, at the same time adopt requirement safety measure of water hammer, which ensure safe operation of pumping station.This article systematic introduces method of characteristic curves of hydraulic transient of pumping station firstly and then
    researches stable operation of pumping station, on the base of it, studying transient characteristic of pump system. Through simulating terminal condition of water pump accident, and establishing mathematical model of water hammer calculation that is under different protective measures of water hammer, which based on the method of characteristic curves. At the same time, applying the proper numerical calculation method, compiling computer simulation program, and carrying through studying combine with the practice embody project. The key research contents as following:1. Based on generalizing predecessor research achievement, systemic formulation the basic principle of water hammer and method of characteristic curves, analyzing operating principle of different water hammer protection measure (such as butterfly valve > waterhammer arrester with the lower open type^ air inlet and vent valve, etc.) , establishing the boundary condition and solving mathematical-hydraulic model.2. Combine boundary condition equation of different model water pump parallel operating and two-stage closedown pilot butterfly valve, which establish suitable hydraulic model for calculation. Through no.9 pumping station's application and calculation at Guhai expansion irrigated area in Ningxia province, analogy calculation on scheme of big pump matching small pump
    and optimization protection result of two-stage closedown pilot butterfly valve's close procedure, supply maintenance logistics to water filling of the first time and safe operation for the future.3. According to the characteristic pipeline pressure distribution in long distance water supply works and partial salient point installment air inlet and vent valve, combination equivalent pipeline method and adjustment wave speed method, which establish mathematic model of air inlet and vent valve. Through calculation analysis in Yellow River industrial water supply project in Yumenkou of Shanxi province, which put the conclusion, that air inlet and vent valve is very important to safety protection in water supply works.4. Combination water hammer arrester itself characteristic, which establish hydraulic-calculation model of water hammer arrester. Through application and calculation analysis of the water hammer arrester in No.2 Niangziguan pumping station project of Shanxi province, provide technical basis for safe operation of the pumping station system.5. The hydraulic transient mumerical simulation of three project items mentioned above is based on steady-state operation study of water supply works, thus make the result of water hammer calculation more press closer to practice, it is of innovation;6. Adopting Visual Basic to exploit good interface, high
    interactive, credibility performance and simple operating computer numeric simulated system that is applied in hydraulic transient of water supply works.At the end of the paper, carrying through analysis to the calculation result mentioned above, studying on calculation error's reason, at the same time, putting the further research problem that is existence in the calculation of water supply woks hydraulic transient.
引文
[1] 燕在华,水锤的发生与防护,节水灌溉,1999(2),P11~13
    [2] 刘保华,长沙污水厂95年7月8日水锤事故原因分析(研究报告),1985
    [3] 王立辉、单长清,供水系统停泵水锤防止措施的探讨,冶金动力,2000(2),P34~35
    [4] 王学芳、叶宏开、汤荣鸣等,工业管道中的水锤,北京,科学出版社,1995.8
    [5] 熊水应、关兴旺、金锥,多处水柱分离与断流弥合水锤综合防护问题及设计实例(下),给水排水,2003,29(8),P1~6
    [6] 中华人民共和国国家标准,泵站设计规范(GB/T 50265-97),北京,中国计划出版社,1997.9
    [7] 徐军,梯级电站引水系统水力过渡过程研究,[学位论文],北京,国家图书馆,2002.4
    [8] M. Hanif Chaudhry, Applied hydraulic transients, British Columbia Hydro and Power Authority Vancouver, British Columbia, Canada, 1979
    [9] Frizell J P. Pressure Resulting from Changes of Velocity of water in Pipes. Trans. of the ASCE, 1898, 39, Paper (819): 1~18
    [10] Allievi L. The Theory of Water Hammer, English Translation by Halmos E E, ASME, New York, 1925(Translation)
    [11] Bergeron L. Study on the Steady-state Variation in Water-filled Conduits. General Graphical Solution. Revue General de 1' Hydraulique, 1935, 1(1): 12~25
    [12] Streeter V. L. Transient Cavitating Pipe Flow. ASCE Journal of Hydraulic Engineering, 1983, 109(HY11): 1408~1423
    [13] Streeter V. L. Water hammer Analysis. ASCE Journal of the Hydraulics Division, 1969, 95(HY6): 1959~1972
    [14] 刘志勇,长输水管道系统水锤防护的比较及研究,[学位论文],北京, 国家图书馆,2001.4
    [15] 黄卫军,泵站水力过渡过程试验研究,[学位论文],北京,国家图书馆,2003.3
    [16] 王守仁、张祥云等,下开式停泵水锤消除器试制(研究报告),1965.7
    [17] 龙期泰、张福生等,停泵直接水锤性能的试验(研究报告),1965.10
    [18] E.B.怀利、V.L.斯特里特,瞬变流,清华大学流体传动与控制教研组译,北京,水利电力出版社,1983.2
    [19] M.H.乔德里,实用水力过渡过程,陈家远、孙诗杰、张治滨译,成都,四川水力发电工程学会,1985.9
    [20] 刘竹溪、刘光临,泵站水锤及其防护,北京,水利电力出版社,1988
    [21] 刘光临、蒋劲等,泵站水锤阀调节防护试验研究,武汉水利电力大学学报,1991(12),P597~603
    [22] 索丽生、刘宇敏、张健,气垫调压室的体型优化计算,河海大学学报,1998(11),P11~15
    [23] 李明,高扬程抽水站水锤防护措施——液控缓闭蝶阀选型,科技情报开发与经济,1999(4),P30~31
    [24] 叶宏开、刘宇敏、张键,管道中有气泡时的水锤计算,清华大学学报,1993(5),P17~21
    [25] 栾鸿儒、杨晓东,逆止阀旁通管消除水锤的研究和计算,水泵技术,1987(3)
    [26] 杨晓东、朱满林、李郁侠,装有进排气阀的长压力输水系统水锤计算研究,水利学报,1998增刊,P60~64
    [27] 秦淑芳、陶爱峰,止回阀在减小停泵水锤压力中的应用,水利科技与经济,2004,10(4),P235~237
    [28] R. A. Baltzer, Column Separation Accompanying Liquid Transients in Pipes, ASME Journal of Basic Engineering, Series D, 1967, 89(4), P837~846
    [29] Jin Zhui, The study on water column separations and the water hammer Due to cavities collapsing at Two Points Proceedings of the 3rd Japan-China Joint conference on Fluid Machinery, Osaka, 1990. 4
    [30] A. Bergant & A. R. Simpson, Interface Model for Transient Cavitating Flow in Pipelines, Proc. of the Conf, On Unsteady Flow and Transients, IAHR, Durham, 1992(9), P333~342
    [31] J. P. Kalkwijk, C. Kranenburg, Closure to "Cavitations in Horizontal Pipelines due to Water hammer", ASCE Journal of the Hydraulic Division, 1973, 99(3), P529~530
    [32] E. B. Wylie, V. L. Streeter, L. Suo, Fluid Transients in Systems, Prentice-Hall, Englewood cliffs, N. 1993. 1
    [33] 金锥、姜乃昌、关兴旺,停泵水锤及其防护,北京,中国建筑工业出版社,1993.2
    [34] 陈璧宏、周发毅,水电站和泵站水力过渡流,大连,大连理工大学出版社,2001.10
    [35] 杨远东、邓志光,停泵水锤计算及其防护措施,中国给水排水,2000,16(5),P29~31
    [36] 王立宪、陈常洲,停泵水锤的防护措施,化工给排水设计,1995(4),34~39
    [37] 栾鸿儒,水泵及水泵站,北京,水利电力出版社,1993.6
    [38] 武汉水利电力学院,水泵及水泵站,北京,水利出版社,1981.2
    [39] 姜乃昌,水泵及水泵站,北京,中国建筑工业出版社,1995
    [40] 李怀印,考虑变速调节后的选泵设计,给水排水,1994(2),P43~46
    [41] 刘益萱,水泵供水系统调速节能技术,见,北京市市政工程设计研究总院四十五周年论文集,北京,2002
    [42] 吴建华,供水泵站工程新技术,北京,中国水利水电出版社,2002.6
    [43] 王树人,水击理论与水击计算,北京,清华大学出版社,1981
    [44] 成都科技大学水力学教研组,吴持恭,水力学(上、下册),北京:高等教育出版社,1982.11
    [45] (日)秋元德三著,水击与压力脉动,支培法,徐关泉,严亚芳等译,北京,电力工业出版社,1982
    [46] 栾鸿儒,泵站水锤分析和计算(修订本),西安,陕西机械学院水电工程系讲义,1987.2
    [47] 汪德罐,计算水力学理论与应用,南京:河海大学出版社,1989
    [48] 谢水波、张浩江、汪兴华等,停泵水锤电算中的几个问题,给水排水, 2000,26(2),P64~66
    [49] 姚青云,陕甘宁盐环定扬黄工程梯级泵站水力过渡及缓闭蝶阀最优操作程序实验研究,[学位论文],西安,西安理工大学,1995.4
    [50] 长沙市阀门厂,LZXS、LZQX液控重锤式止回蝶阀产品使用说明书,长沙
    [51] 姚青云,泵站水锤两阶段关闭调节防护,宁夏农学院学报,1997,1(1),P36~39
    [52] 乐育生,液控止回蝶阀在东深供水改造工程的应用,水利水电技术,2003(8),P32~33
    [53] 西安济源水用设备公司,QSP10(16.25)全压高速排气阀产品使用说明书,西安
    [54] 翁晓红、匡许衡、宋元胜、蒋劲,进排气阀压力涌浪的防护特性研究,中国农村水利水电,1998(8),P29~31
    [55] Yao Zhaohui, Ye Hongkai, Wang Xuefeng, The Calculation of Waterhammer Caused by Cavity Collapsing With VOF Method, Energy Science of Technology, 1995, 29(1), P20~26
    [56] Jayaraj Kochupillai, N. Ganesan, Chandramouli Padmanabhan, A new finite element formulation based on the velocity of flow for water hammer problems, International Journal of Pressure Vessels and Piping, 2005(82), P1~14
    [57] 杨开林,电站与泵站中的水力瞬变及调节,北京,中国水利水电出版社,2000.5
    [58] 杨晓东、朱满林,水锤计算中的水锤消除器数学模型,西安理工大学学报,1998,14(2),P157~161
    [59] 李良庚、刘梅清,水锤消除器在工程中的应用,机电设备,2001(4),P25~29
    [60] A. S. Tijsseling, A. E. Vardy, D. Fan, Fluid-structure interaction and cavitation in a single-elbow pipe system, Journal of Fluids and Structures, 1996(10), P395~420
    [61] 吴建华、曹广学,工业供水工程压力管路的安全防护措施,太原理工大学学报,2004,35(3),P359~361
    [62] 马坦,关系数据库理论,北京,清华大学出版社,1985
    [63] 胡或、闫宏印,VB程序设计,北京,电子工业出版社,2001.9
    [64] 陈俊源,Visual Basic 6.x程序设计(SQL Server应用集成篇),北京:中国铁道出版社,2001
    [65] 郑阿奇、刘启芬、顾韵华,SQL Server实用教程,北京,电子工业出版社,2002.8
    [66] D. N. Contrator, Two and three stage valve closures to minimize water hammer transient, American Society of Mechanical Engineers, v 98(7), 1985, P357~361
    [67] Kevin E. Lansey、Kofi Awumah, Optimal Pump Operations Considering Pump Switches, Journal of Water Resources Planning & Management, 1994(1)
    [68] 刘光临、郭满华,水泵全面特性曲线的计算机仿真,水利学报,1998(8),P1~7
    [69] 郑铭,泵的全特性曲线在流动瞬变中的应用,排灌机械,1997(3),P30~35
    [70] 索丽生,国外有压瞬变流研究进展,河海科技,1991,2(11)
    [71] 蒋劲,确定泵系统阀门最优关闭程序的VS法3研究,武汉水利电力大学学报,1994,27(5)
    [72] Vardy A. E, Brown J, and Huang K, A weighting fanction model of transient turbulent PIPe friction, J. Hydr. Res. Delft. The Netherlands, 31(4), 1993
    [73] Vardy A. E, and Brown J, Transient, Turbulent, Smooth pipe friction, J. Hgdr. Dres. Delft. The Netherlands, 33(4), 1995
    [74] Giuseppe p, Evaluation of Unsteady Fow Resistances by Quasi-2D or 1D models. J. Hydr. Eng., 126(10), 2000
    [75] 常近时著,水利机械过渡过程,北京:机械工业出版社,1991
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.