β_3-肾上腺素受体抗体与心力衰竭的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     心力衰竭(简称心衰)是扩张型心肌病(DCM)、冠心病、风湿性心脏病、高血压心脏病等多种心血管疾病发展的共同终末阶段,对人类生命构成巨大威胁,已成为全球范围内造成死亡的主要原因之一。心衰的发病过程非常复杂,已知的心衰发生机制主要有心肌损害、血液动力学异常、神经激素的激活和心肌重构等。一项长达10年的临床研究表明,尽管针对心衰发病的上述机制采取了许多积极的治疗措施,但心衰病人的预后并没有明显的改善,其存活率与10年前基本相同。这一结果说明,真正降低心衰的患病率和死亡率非常困难,提示在心衰发生发展过程中还有许多未知因素的存在。进一步探讨这些未知因素,对从根本上预防和治疗心衰将具有重要的理论与实践意义。
     β肾上腺素受体(βAR)是交感神经系统的重要成员,通过介导体内儿茶酚胺类物质的生理效应,在调节心脏活动中发挥着重要的作用。βAR属于G蛋白偶联受体家族,分为β_1、β_2和β_3AR三个亚型,具有相同的结构特征,即含有7个22~28个氨基酸的跨膜区、3个细胞内环和3个细胞外环。以前认为在心脏中βAR为β_1AR和β_2AR两种亚型,通过兴奋型G蛋白—腺苷酸环化酶—环磷酸腺苷系统,发挥心肌正性变时、变力和变传导效应。最近的研究发现,在人类等多种种属动物的心肌细胞中有β_3AR的表达,但与经典的β_1AR和β_2AR不同的是,人类心室肌组织β_3AR通过与抑制型G蛋白(inhibitory G protcins,Gi)偶联,活化eNOS-NO-cGMP通路,介导心肌负性变力效应。此外,由于β_3AR是一种低亲和力受体,即激活β_3AR所需儿茶酚胺的浓度明显高于激活β_1AR和β_2AR所需的浓度,因此在生理情况下,β_3AR调节心脏功能的意义可能不大。
     在心衰发生发展过程中,交感神经系统活性过度增高,心脏β_1AR和β_2AR由于PKA和βARK的磷酸化等机制而脱敏,受体密度下调,使这些受体对儿茶酚胺的反应性减弱,从而促使机体产生更高浓度的儿茶酚胺类物质。与此相反的是,心衰时β_3AR表达水平较正常人上调2—3倍,而且与之偶联的G_1蛋白也上调,再加上此时也具备激活β_3AR的配体条件—高浓度的儿茶酚胺,所以在心衰时β_3AR很有可能被激活。在人类衰竭的左心室中,β_1-和β_3AR相反的改变导致他们的变力效应不平衡,有可能成为加重心脏功能恶化的因素。但在β_3AR转基因小鼠模型中,并没有检测到心肌细胞肥大增生、纤维化等组织学改变,激活β_3AR可能不是引发心脏损伤的原因。这提示在心衰发生发展过程的不同阶段,β_3AR的活化可能发挥着不同的病理生理作用。
     上世纪90年代以来,国内外学者相继发现在DCM等心脏疾病患者血清中存在有β肾上腺素受体(β_1和β_2AR)的自身抗体,这些自身抗体可通过作用于相应受体细胞外第二环而产生类激动剂样效应,且采用相应细胞外第二环肽段长期免疫动物,可使其心脏功能及形态均发生类似DCM病人的变化。由于G蛋白偶联受体家族成员具有相似的结构特征,为证实心衰发病过程中是否有针对β_3AR的自身免疫作用的参与,2005年我们以人工合成的人β_3AR细胞外第二环的肽段作为抗原,采用酶联免疫吸附实验(ELISA)筛查了217例心衰病人和100例正常人血清中的抗β_3AR抗体。结果发现,心衰患者血清中抗β_3AR抗体的阳性率明显高于正常人(27%vs11%,P<0.05)。我们的研究还发现,该抗体具有类β_3AR激动剂的负性变时、变力效应,且此效应具有不脱敏现象。但是,上述实验结果还不足以说明针对β_3AR细胞外第二环的自身抗体与心衰发病的关系。
     首先,由于心衰的发病原因不同,其机制及病理改变也存在一定差异。高血压、冠心病、扩心病、肥厚性心肌病及风心病等多种疾病所致心衰的发病过程中均存在免疫系统紊乱,并已得到该研究领域国内外专家的公认,但针对心肌的自身免疫作用的研究结果却不尽相同。例如Rahat S等的研究结果显示抗肌球蛋白抗体在冠心病与扩张性心肌病所致心衰患者中的阳性率及亲和力无明显差异;而Jonathan H等则报道扩张性心肌病所致心衰患者中抗肌球蛋白抗体的阳性率及亲和力高于冠心病所致心衰患者。另Jahns R和Fu ML等的研究结果则显示:虽然继发于扩心病、冠心病、高血压和肥厚性心肌病等疾病的心衰患者体内均检测到β_1AR自身抗体,但此抗体却只在扩心病及冠心病心衰过程中发挥作用,而与继发于高血压和肥厚性心肌病的心衰发病无关。那么,在不同原因所致心衰过程中,β_3AR自身抗体的阳性率及亲和力是否有所差异,β_3AR自身抗体在何种疾病所致心衰的发生发展过程中对心脏功能产生影响尚待进一步证实。
     其次,尽管诸多研究表明,G蛋白耦联受体细胞外第二环具有T细胞及B细胞表位,有很强的抗原性和免疫原性,是产生自身抗体的主要表位。但也有研究证实,DCM患者体内同样存在针对β_1AR细胞外第一环的功能性自身抗体。考虑到β_3AR细胞外三个环均具有暴露于机体免疫系统的可能,那么,它们是否均能刺激机体产生相应自身抗体?如果存在这些自身抗体,其各自有何临床意义值得我们去关注。目前关于针对β_3AR细胞外第一、第二和第三环自身抗体产生情况的比较研究尚未见有报道。
     再次,自发现β_1AR自身抗体至今已经历了19年的时间,期间又发现了诸多针对G蛋白偶联受体细胞外第二环的自身抗体,并对它们相应的临床意义和病理生理机制进行了大量的研究,但到目前为止,自身抗体产生的免疫学机制还不十分明确。抗原的数量、位置及机体免疫系统功能的变化均是调节抗体产生的重要因素。在正常机体内存在针对自身组织的自身反应性淋巴细胞,当自身抗原存在量达较高危险浓度时就有可能活化相应的自身反应性淋巴细胞,产生自身抗体。而B淋巴细胞是机体体液免疫应答过程中产生抗体的主体,其数量或/和抗体产生能力的改变都将导致机体抗体水平的改变。业已证实,在心衰发生发展过程中,心肌细胞β_3AR mRNA和蛋白质水平均有增高,同时机体免疫系统存在持续激活,这些条件可能会导致机体针对β_3AR的免疫反应性增加,进而产生针对β_3AR的自身抗体,但这一假说需要进一步的研究证实。
     此外,虽然我们的前期研究证实,β_3AR自身抗体具有受体激动剂样效应,可以影响离体心肌细胞活动产生类激动剂样的生物效应,但在整体动物,β_3AR自身抗体长期存在下,会对心脏结构及功能产生什么样的作用,尚不清楚。而对这一问题的解释,有利于全面评价β_3AR自身抗体存在的可能的病理生理意义,以及对β_3AR自身抗体进行深入研究提供方向。
     综上所述,我们拟在在本课题进行以下三方面的研究:①不同原发疾病所致心衰患者血清中,β_3AR自身抗体分布的免疫学特征及其与心衰某些特异性指征的相关性分析,借以分析β_3AR自身抗体在不同原发疾病心衰发生中的可能作用;②在β_3AR自身抗体阴性的大鼠,建立增大心脏压力后负荷致心衰的动物模型,观察在心衰的发生过程中是否会产生β_3AR的自身抗体,如果产生,其产生规律为何;③通过用β_3AR细胞外环肽段主动免疫正常大鼠,观察在β_3AR自身抗体长期存在下,心脏结构和功能是否会发生改变。
     一、心力衰竭患者血清中β_3AR自身抗体的种类和可能的临床意义
     目的
     本研究分别以合成的人β_3AR细胞外第一环、第二环和第三环表位肽段作为抗原,应用酶联免疫吸附测定(ELISA)技术,检测不同原发疾病所致心衰患者血清中β_3AR的自身抗体,并分析抗β_3AR自身抗体的免疫反应性及其对心脏功能活动的影响,以探讨心衰患者血清中抗β_3AR自身抗体存在的病理生理意义。
     方法
     1.研究对象及标本
     166例继发于扩张型心肌病(简称扩心病,n=30)、冠状动脉粥样硬化性心脏病(简称冠心病,n=93)、高血压性心脏病(简称高心病,n=33)和风湿性心脏病(简称风心病,n=10)的心衰患者为山西医科大学第一医院、山西省人民医院及山西省心血管疾病研究所2005~2007年的住院病人,心功能Ⅱ~Ⅳ级,左室射血分数(LVEF)均低于45%(病例资料见表1)。全部患者除外内分泌、自身免疫性疾病、各种感染性疾病和免疫缺陷性疾病,采集血样前3d避免服用免疫抑制剂和βAR阻滞剂。正常对照组:健康体检者103例,年龄、性别构成与心衰组均衡,无任何临床症状且心电图、超声心动图、X线胸片、肝肾功能常规检查未见异常。入选者均于空腹12h后采集静脉血液并及时分离血清置于-20℃保存。
     2.肽段合成
     3个抗原肽段均由西安美联生物工程公司合成,相当于人β_3AR细胞外第一环、第二环及第三环氨基酸序列的特异性抗原决定簇,合成肽段纯度为95%。人β_3AR氨基酸序列检索来自NCBI(AC:P13945,GI:461604)(见表2)。合成的肽段储存于-20℃备用。
     3.检测方法
     按照我实验室以前的方法,应用SA-ELISA检测方法。抗原包被用量为5μg/ml。主要技术流程如下:包被合成的抗原多肽→加入按一定比例稀释的待测血清→加入标记有生物素的抗人IgG抗体→加入标记有辣根过氧化物酶的亲和素→加入辣根过氧化物酶的底物及显色剂→在酶标仪上测定反应物的光密度值(optical density,OD)。
     4.判断标准
     抗体水平以标本1:20稀释时测定的OD值反映。以阳性血清与阴性血清的吸光度之比即P/N比值来判断阳性率,P/N≥2.1为阳性(P/N=标本OD值-空白对照OD值/阴性对照OD值-空白对照OD值)。
     5.统计学处理
     采用SPSS 13.0统计软件对实验数据进行统计。率的比较采用x~2检验或Fisher's确切概率法;计数资料均数间显著性差异比较采用方差分析或t检验,等级资料采用秩和检验。
     结果
     1.正常人和心衰患者血清中β_3AR自身抗体的种类及阳性率
     经ELISA筛选发现,心衰患者及正常人血清中均存在分别针对β_3AR细胞外第一环、第二环和第三环的自身抗体(依次表示为anti-β_3-EC_Ⅰ,anti-β_3-EC_Ⅱ和anti-β_3-EC_Ⅲ),但各自阳性率不同。其中,扩心病患者anti-β_3-EC_Ⅰ及anti-β_3-EC_Ⅱ阳性率(33.3%和40.0%)均高于正常人(分别为9.7%和8.7%,P<0.05),而anti-β_3-EC_Ⅲ阳性率(6.7%)与正常人(5.8%)无差异(P>0.05);冠心病患者anti-β_3-EC_Ⅱ的阳性率(28.0%)也显著高于正常人(8.7%,P<0.05),而anti-β_3-EC_Ⅰ及anti-β_3-EC_Ⅱ阳性率(19.4%和3.2%)和正常人相比无明显差异(P>0.05);高心病和风心病患者血清中anti-β_3-EC_Ⅰ,anti-β_3-EC_Ⅱ和anti-β_3-EC_Ⅲ的阳性率与正常对照比较经x~2检验(或Fisher's确切概率法)均无差异(P>0.05)(见图1)。
     这一结果提示β_3AR自身抗体(主要为anti-β_3-EC_Ⅱ抗体)可能与扩心病及冠心病所致心衰的发病过程有关。
     2.正常人和心衰患者β_3AR自身抗体的水平
     分析β_3AR自身抗体阳性血清中的β_3AR自身抗体水平(见图2)发现:正常人组内anti-β_3-EC_Ⅱ的抗体水平(0.92±0.23)均明显高于anti-β_3-EC_Ⅰ(0.28±0.06)和anti-β_3-EC_Ⅲ(0.35±0.05,P<0.05),同样在各心衰患者组内anti-β_3-EC_Ⅱ的抗体水平也均明显高于anti-β_3-EC_Ⅰ和anti-β_3-EC_Ⅲ。提示正常状态下β_3AR细胞外第二环就具有较强的免疫性,anti-β_3-EC_Ⅱ具有较强的亲和力,更易于和相应抗原结合而被检测出。此外,在扩心病患者血清中的anti-β_3-EC_Ⅱ水平(1.17±0.17)显著高于正常人(0.92±0.23,P<0.05),其他三种疾病所致心衰患者的anti-β_3-EC_Ⅱ抗体水平和正常人无明显差异(P>0.05);而anti-β_3-EC_Ⅰ和anti-β_3-EC_Ⅲ的抗体水平在正常人和各种原发疾病所致心衰患者间均无明显差异(P>0.05)。
     上述结果均提示,anti-β_3-EC_Ⅱ是与心衰(尤其是扩心病所致心衰)发病过程有关的主要的β_3AR自身抗体的种类。
     3.β_3AR自身抗体与心衰患者心功能之间的关系
     以心脏左室射血分数(ejection fraction,EF)和NYHA(纽约心脏协会)心功能分级作为反映患者心功能状态的指标,分析在不同原发疾病所致心衰中各类β_3AN自身抗体(anti-β_3-EC_Ⅰ,anti-β_3-EC_Ⅱ和anti-β_3-EC_Ⅲ)对心功能的影响。经t检验及秩和检验发现,在扩心病患者中,anti-β_3-EC_Ⅱ阳性者较阴性者心功能好,表现为anti-β_3-EC_Ⅱ阳性者EF显著高于阴性者(P<0.05),同时NYHA心功能分级低于阴性者(P<0.05);然而,anti-β_3-EC_Ⅰ阳性者较阴性者心功能差,表现为EF低于阴性者(P<0.05),而NYHA心功能分级则高于阴性者(P<0.05);冠心病患者中,anti-β_3-EC_Ⅱ阳性者也优于阴性者,但不具有统计学意义(P>0.05),而anti-β_3-EC_Ⅰ阳性者心功能则低于阴性者(P<0.05)(见表3);风心病及高心病患者β_3AR自身抗体阳性患者和阴性患者间心功能指标无差别。
     这一结果提示,β_3AR自身抗体(主要是anti-β_3-EC_Ⅱ)与扩心病及冠心病所致的心衰有关,心衰发病过程中,anti-β_3-EC_Ⅱ可能对由β_1AR自身抗体诱发的心脏功能障碍和心肌损伤中起着心肌保护的作用。关于anti-β_3-EC_Ⅰ对心功能的影响,由于其抗体水平较低,观察例数较少,且其功能效应还不明确,故尚难得出明确结论。
     小结:
     1.针对β_3AR细胞外第二环的自身抗体,在扩心病和冠心病所致心衰患者中的阳性率和/或抗体水平均明显高于正常人,提示它可能与心衰的发病过程有关。
     2.针对β_3AR细胞外第一环的自身抗体,在扩心病患者中也有较高的阳性率,但抗体水平较低;针对β_3AR细胞外第三环的自身抗体则与心衰发病无关。
     3.心衰发病过程中,anti-β_3-EC_Ⅱ可能对由β_1AR自身抗体诱发的心脏功能障碍和心肌损伤起着一定的心肌保护作用。
     二、心衰的发生发展过程与β_3AR自身抗体产生的关系
     目的
     为进一步探讨β_3AR自身抗体与心衰发病的关系,我们还在β_3AR自身抗体阴性的大鼠身上制备了增大心脏压力后负荷的心衰模型,借以观察在心衰发生发展过程中,β_3AR自身抗体的产生规律,并分析β_3AR自身抗体的产生与心肌β_3AR密度及免疫系统机能变化的联系,以便查明β_3AR自身抗体在心衰发生发展过程中所起的作用,加深对心脏疾病发生过程中的自身免疫机制的理解,并为相关疾病的防治提供新思路。
     方法
     1.采用缩窄腹主动脉法制备心衰大鼠模型:
     采用与第一部分相同的ELISA方法和判断标准确定为β_3AR自身抗体阴性的健康Wistar大鼠(雄性,10周龄,体重200-250g,山西医科大学动物中心提供)随机分为2组:(1)主动脉缩窄组(AB组,n=80):根据Doering等的方法实施腹主动脉环扎术。(2)伪手术对照组(sham组,n=40):仅分离腹主动脉而不结扎,其他操作与主动脉缩窄组相同。
     2.大鼠血清中p3AR自身抗体的测定:
     所有实验动物于手术前及手术后每两周采用剪尾法收集血清,-20℃备用,采用ELISA方法(与第一部分相同)检测模型形成前后针对β_3AR细胞外第二环的自身抗体(根据第一部分研究结果选择)。抗原肽段序列由西安美联生物工程公司合成,相当于大鼠β_3AR细胞外第二环氨基酸序列(176aa~200aa,RVGADAEAQECHSNPRCCSFASNMP,检索自NCBI AC:P26255,GI:543882),合成肽段纯度为95%。合成的肽段储存于-20℃备用。
     3.大鼠在体心功能测定:
     两组大鼠均于术后4周、8周、12周和16周称体重,用25%乌拉坦麻醉后,仰卧固定于手术台上,颈前正中作一约4厘米的切口,分离颈前肌群至气管,分离右侧颈总动脉并结扎远心端,近心端用小动脉夹阻断血流,用眼科剪剪V字形口,将充满肝素生理盐水的导管经右颈总动脉插入心室并结扎固定,打开动脉夹。导管的另一端借三通管连接P—50压力换能器,压力信号输入MS2000生物信号记录分析系统,记录各心功能参数,包括左心室收缩压(LVSP),左心室舒张末期压(LVEDP)以及室内压上升和下降的最大速率(±dp/dt_(max))。测定结束后,开胸,迅速取出心脏,洗净心腔内积血、擦干,去除心脏周围组织及血管,称量全心重,计算心脏重量与体重的比值,部分心肌组织固定于10%中性福尔马林,其余组织于-70℃保存备用。同时按无菌操作法分离大鼠脾脏。
     4.心脏组织形态学检测:
     大鼠心肌置于10%中性福尔马林固定48小时,常规脱水,石蜡包埋。制作4μm组织切片,采用Masson染色及HE染色,于光学显微镜下观察心肌形态,并利用图象分析技术进行心肌染色切片胶原容积百分比(CVF)的测定。
     5.蛋白免疫印迹技术(Western Blot)测定心肌细胞β_3AR含量:
     大鼠左心室组织细胞膜蛋白提取按照膜相/水相蛋白提取试剂盒(TansMem proteinisolation system instructions,Applygen Technologies Inc)说明书操作。蛋白含量采用BCA法测定。30μg变性蛋白经10%SDS-PAGE凝胶分离后转膜,分别与大鼠β_3AR特异性抗体及二抗孵育,采用化学发光法测定。
     6.大鼠B淋巴细胞含量测定:
     脾脏研磨成悬液,采用Ficol淋巴细胞分离液2500rpm离心30分钟,收获单个核细胞层细胞,洗涤两次,调整细胞数为1×10~7/ml。台盼兰染色查活细胞数应大于90%。取100μl脾淋巴细胞(1×10~6个)与适量PE标记的抗大鼠CD45R单克隆抗体混合,室温下避光孵育20分钟后洗涤,应用流式细胞仪FACSCalibur进行检测。Ceil quest收集细胞(总数10000个细胞),并分析流式结果。
     7.B淋巴细胞抗体生成能力测定:
     用20%绵羊红细胞(SRBC)生理盐水悬液腹腔免疫大鼠,4天后无菌取出脾脏,用RPMI1640洗一次后置平皿中不锈钢筛网上,用无菌注射器针芯研磨成悬液,RPMI1640洗涤两次,调整细胞数为5×10~6/ml。台盼兰染色查活细胞数应大于90%。按照Jerne和Nordin等改良的直接及间接溶血空斑实验测定B淋巴细胞抗体生成能力。空斑数量采用VilBer Lourmat capt软件测定.
     结果
     1.模型大鼠术后生存率:
     实施腹主动脉狭窄术后第2周,手术组大鼠存活44只,伪手术组大鼠存活36只,存活率分别为55%(44/80)和90%(36/40)。之后,两组大鼠在处死前均未出现意外死亡。
     2.大鼠心衰模型成功指标:
     2.1大鼠心重/体重比:实施腹主动脉狭窄术后4周,手术组大鼠心脏重量与体重的比值(0.32±0.01)较同期伪手术组(0.27±0.01)显著增加(P<0.05)。术后8周,手术组心脏重量的增加(0.36±0.01)与术后4周相比进一步加剧(P<0.05);在术后12周和16周,手术组心脏重量与体重的比值(分别为0.34±0.01和0.34±0.02)与术后8周相比无统计学差异(P>0.05),与同期假手术组相比(分别为0.26±0.01和0.27±0.01)仍有显著性差异(P<0.01)(见图3)。
     2.2心功能变化:实施腹主动脉狭窄术后4周,手术组大鼠的LVSP和±dp/dtmax均低于伪手术组,LVEDP高于伪手术组,但无统计学差异(P>0.05);术后8周,手术组上述左室收缩、舒张功能各参数改变进一步加剧,与同期伪手术组具有明显差异;术后12周和16周,两组模型中反映左心室功能的上述各项指标与术后8周相比,心功能障碍无进一步加重的趋势,而与同期假手术组相比,各参数仍有明显的差异(P<0.01)。见表4。
     2.3心肌形态学改变:通过Masson染色和HE染色技术结合光学显微镜观察及图象分析技术等证实,腹主动脉缩窄手术组大鼠随着时间的发展,发生了明显的心肌细胞形态改变及胶原纤维化,同时伴随程度不同的淋巴细胞浸润(见表5,图4,图5)。
     以上结果显示,心衰模型建立成功。
     3.心衰模型形成过程中,大鼠血清中β_3AR自身抗体的产生和变化规律:
     心衰模型大鼠血清中β_3AR自身抗体水平(O.D.值)在术后2周(0.37±0.01)开始与术前(0.20±0.01)及同期伪手术组(0.20±0.02)相比,即有明显升高(P<0.05),之后平稳上升至8周时达峰值(0.71±0.04),并保持至10周(0.70±0.05)。术后12周,心衰模型手术组大鼠血清中β_3AR自身抗体开始下降(0.60±0.07),但直至16周(0.52±0.06)仍维持在高于术前水平,而在14周及16周与同期伪手术组相比已无统计学差异(P>0.05)。伪手术组大鼠血清β_3AR自身抗体测定结果也呈现一种平稳升高的态势,但直至实验结束,其差别也未具有统计学意义(P>0.05)(见图6)。
     这一结果提示,在心衰发生发展过程中β_3AR自身抗体具有逐渐产生、缓慢增高、维持、自然消退的变化规律。
     4.心衰模型形成过程中,心肌细胞β_3AR的含量改变:
     与同期伪手术组大鼠相比,手术组大鼠心肌细胞膜β_3AR的含量在术后4周已有轻微增加;在术后8周明显升高,差异具有统计学意义(P<0.05);术后12周和16周,β_3AR的含量一直持续在较高的水平(见图7)。而伪手术组心肌细胞膜β_3AR的含量在整个实验进程中均未发生明显改变(P>0.05)。此外,β_3AR含量的上调高峰出现在术后8周,与β_3AR自身抗体到达高峰的时程相符,
     这一结果提示,在心衰的发生发展过程中,β_3AR的上调和β_3AR自身抗体的生成之间,在时间点上有较明确的对应关系,说明二者在功能作用上的一致性。但由于实验设计中观察时间点的限制,本实验还无法分析β_3AR上调和β_3AR自身抗体产生之间是否有因果关系。
     5.B淋巴细胞数量及抗体产生能力的改变:
     采用流式细胞仪技术测定实验大鼠脾淋巴细胞中B细胞的数量,结果显示在整个实验过程中手术组大鼠与同期伪手术组相比,其脾脏B淋巴数目并未明显改变(P>0.05)(见图8)。同时采用直接及间接溶血空斑实验来测定实验大鼠脾淋巴细胞的功能(即抗体生成能力),结果表明,与伪手术组比较,手术组大鼠直接溶血空斑数量在术后4周已有明显升高,术后8周达到最高峰,在术后12周降至与伪手术组相似的水平(图9);而手术组大鼠间接溶血空斑数目同样在术后4周明显升高,术后8周达到高峰,并保持至术后12周,在术后16周降至与伪手术组相似的水平(图10)。说明在实验大鼠心功能改变过程中出现免疫系统抗体生成能力的变化,而且抗体生成能力的变化与血清中β_3AR自身抗体的变化规律十分相似。
     这一结果提示,β_3AR自身抗体的产生可能与心衰发生发展过程中机体免疫系统功能的改变具有内在联系。
     小结
     1.在建立压力后负荷型大鼠心衰模型的过程中,原为β_3AR自身抗体阴性的大鼠血清中开始出现高水平的β_3AR自身抗体,但该抗体具有一定的产生、维持和减退的自我消长的时间过程;
     2.β_3AR的产生过程与脾淋巴细胞抗体生成能力的改变趋势一致,但与B淋巴细胞数量无关;
     3.β_3AR自身抗体水平出现峰值的时间与大鼠心肌细胞膜受体β_3AR的上调时间一致,说明二者在功能作用上有一致性;
     4.本实验证实在心衰的发生发展过程中,心脏的病理生理改变促进了β_3AR自身抗体的产生,但其启动β_3AR自身抗体产生的确切机制还有待进一步探讨。
     三、β_3AR自身抗体长期存在对在体大鼠心脏结构及功能的影响
     目的
     我们的前期研究证实,心衰病人血清中存在β_3AR自身抗体,主要针对β_3AR细胞外第二环,具有类激动剂样负性变时、负性变力效应,且此效应具有不脱敏现象,与DCM及冠心病等患者的心衰发生发展过程可能有一定的关系。但在在体情况下,此抗体的长期持续作用会对心脏结构及功能产生何种影响尚不清楚,而此研究对进一步理解在心衰发展过程中不同类别的受体抗体是如何发挥相互作用的,进而加深对扩心病等心脏疾患发病中自身免疫机制的理解,可能具有较重要意义。因此,本研究采用β_3AR细胞外第二环的合成肽段主动免疫正常大鼠六个月,观察被免疫大鼠在β_3AR自身抗体的持续刺激下心脏结构及功能的改变,并探讨β_3AR自身抗体可能的信号转导通路,借以分析β_3AR自身抗体在心衰发病过程中可能的作用机制。
     方法
     1.动物免疫:
     选用8周龄、重量为100-160g、健康雄性Wistar大鼠20只(山西医科大学动物中心提供),随机分成两组:对照组(n=8)和β_3AR免疫组(n=12)。β_3AR免疫组根据人β_3AR细胞外第二环第179~203位氨基酸残基的序列人工合成抗原进行免疫,首次免疫时用合成的抗原肽段(0.4μg/kg)加完全佐剂进行,2周后采用合成的抗原肽段加不完全佐剂进行加强免疫,以后每隔两周加强一次,共免疫6月(24周);对照组除不加抗原外,余同免疫组。
     2.血清中β_3AR自身抗体的测定:
     上述两组大鼠均于免疫前及每次加强免疫前1天鼠尾采血,分离血清,用SA-ELISA方法测定其血清β_3AR自身抗体水平,测定方法见第一部分方法3。
     3.大鼠在体心功能测定:
     分别于初次免疫后3月(12周)及6月(24周)两个时间点,随机选取实验动物进行在体心功能测定,具体操作同第二部分方法3。心功能测定结束处死大鼠,留取新鲜心肌组织,部分以适当方法固定用于光学显微镜检查和电子显微镜检查,其余组织置于-70℃保存备用。
     4.心肌形态学指标的测定:
     采用光学显微镜及电子显微镜技术测定。
     5.心肌组织β_3AR及eNOS含量的测定:
     采用WestemBlot技术进行检测。
     6.心肌组织cAMP及cGMP含量测定:
     采用放射免疫技术测定,操作过程严格按照试剂盒说明书进行。
     7.心肌组织总NO(NOx)含量测定:
     采用比色法测定,具体操作按照试剂盒说明书进行。
     结果
     1.β_3AR细胞外第二环肽段主动免疫模型的建立:
     首次免疫后2周,β_3AR免疫组大鼠血清中β_3AR自身抗体水平(2.08±0.18)已明显升高,与免疫前(0.28±0.03)及同期对照组(0.33±0.08)相比差异均具有统计学意义(P<0.01),随后抗体水平缓慢升高并维持在一个高水平。对照组大鼠血清中β_3AR自身抗体水平始终无明显改变(P>0.05)。(见图11)提示主动免疫模型制备成功。
     2.主动免疫过程中大鼠心功能的变化:
     初期免疫后3月及6月,β_3AR免疫组大鼠在体左心室功能参数LVSP和±dp/dt_(max)均高于对照组,而LVEDP低于对照组,但这些差异均无显著性(见表6)。提示β_3AR自身抗体的持续作用并未造成实验大鼠心功能的明显改变,但有改善心功能的倾向。
     3.主动免疫过程中大鼠心肌形态学改变特点:
     β_3AR免疫组大鼠在初期免疫后3月及6月,通过染色技术结合光学显微镜技术证实,心肌组织形态基本正常,未出现心肌细胞肥大、变性、坏死、大量炎性细胞浸润、胶原纤维化等病理改变;通过电子显微镜技术观察到β_3AR免疫组大鼠心肌细胞肌原纤维排列整齐,线粒体结构清晰完整(见图12)。提示在主动免疫6个月的情况下,β_3AR自身抗体的持续作用并未造成实验大鼠心肌结构发生明显改变。这提示需要进一步延长免疫时间或建立被动免疫心衰模型大鼠,以便最终确定β_3AR自身抗体在心衰发生发展过程中的作用机制。
     4.主动免疫过程中大鼠心肌组织β_3AR的含量:
     在免疫3月及6月,β_3AR免疫组大鼠心肌细胞膜β_3AR的含量均稍有增加,但与同期免疫对照组大鼠相比并无明显差异(P>0.05)(见图13)。提示β_3AR自身抗体持续作用6个月对大鼠心脏β_3AR的含量未产生明显影响。
     5.主动免疫过程中大鼠心肌组织eNOS的含量:
     与免疫对照组相比,β_3AR免疫组大鼠心肌组织eNOS的含量在免疫3月及免疫6月时均有显著增加(P<0.05)(见图14)。提示eNOS可能是介导β_3AR自身抗体作用的一个信号通路分子。
     6.主动免疫过程中大鼠心肌组织cAMP和cGMP的含量:
     与免疫对照组组相比,免疫3月时β_3AR免疫组大鼠心肌组织cGMP的含量有明显升高(25.35±1.10 vs 21.10±1.33 pmol/g,P<0.05);免疫6月时cGMP含量升高更为显著(26.97±1.05 vs 20.45±1.58 pmol/g,P<0.01)(见图15)。同期β_3AR免疫大鼠心肌组织cAMP的含量与免疫对照组组相比也有升高的趋势,但无显著差异(P>0.05)(见图16)。进一步比较不同免疫时期大鼠心肌组织cAMP/cGMP的比值,发现此值在β_3AR免疫组大鼠免疫6月时明显低于免疫3月(5.38±0.22 vs 6.59±0.16,P<0.05)而相应免疫对照组却无明显改变(6.71±0.17 vs 6.80±0.37,P>0.05)(见图17)。说明在长期β_3AR免疫过程中心肌组织cGMP较cAMP确实有显著升高。提示cGMP可能是介导β_3AR自身抗体作用的一个重要信号通路分子。
     7.主动免疫过程中大鼠心肌组织总NO(NOx)含量:
     与免疫对照组组相比,免疫3月及6月时β_3AR免疫组大鼠心肌组织NOx的含量均有所升高,但未具有显著性差异(P>0.05),(图18)提示β_3AR自身抗体可能刺激了NO产生。未出现显著意义的原因也许是由于本次实验为初探性研究,实验中所用动物数量较少造成的。
     小结
     1.在用β_3AR细胞外第二环肽段主动免疫6个月的条件下,高水平β_3AR抗体较长时间的存在,对大鼠心脏功能及结构均未产生有统计学显著意义的影响,但有改善心功能的倾向;
     2.在主动免疫过程中,大鼠心肌组织β_3AR的含量均有增加的倾向,但未达到有统计学显著意义的水平:
     3.β_3AR抗体存在时,大鼠心肌细胞中eNOS-NO-cGMP信号转导途径中的主要信号分子均有明显增加。提示β_3AR自身抗体可能通过eNOS-NO-cGMP信号转导途径发挥其病理生理作用。
     结论
     1.在不同原发疾病所致心衰患者及正常人血清中均存在有分别针对β_3AR细胞外第一环、第二环和第三环的自身抗体,但其中以针对β_3AR细胞外第二环的自身抗体(anti-β_3-EC_Ⅱ)出现的阳性率和抗体水平为最高(显著高于一、三环的自身抗体),且在心衰病人显著高于正常人,提示anti-β_3-EC_Ⅱ是重要的功能性抗体,参与了心衰(主要是扩心病和冠心病所致心衰)的病理生理过程,可能对由β_1AR自身抗体诱发的心脏功能障碍和心肌损伤起着心肌保护的作用。
     2.心衰大鼠模型在心衰发生发展过程中产生了β_3AR自身抗体,且该抗体具有一定的产生、维持和减退的自然消长过程;β_3AR自身抗体的产生过程与脾淋巴细胞抗体生成能力增高的趋势一致,而与B淋巴细胞数量无关;伴随β_3AR自身抗体的增高,心肌组织β_3AR的数目也有上调,说明二者在功能上的一致性,高度提示其在心衰中具有一定的作用;
     3.在主动免疫6个月条件下,β_3AR自身抗体对在体大鼠的持续作用未能引发心脏结构和功能的明显改变,但有改善心功能的倾向:此外,β_3AR抗体长期存在,可以使大鼠心肌组织中eNOS-NO-cGMP信号转导途径活跃,提示β_3AR自身抗体可能通过该途径发挥其病理生理作用。
Autoimmune mechanisms have been proposed to participate in the pathogenesis of chronic heart failure(CHF).In this study,we examined the immunoglobulin fractions of sera from healthy subjects and patients with chronic heart failure suffering from dilated cardiomyopathy (DCM),coronary artery disease(CAD),rheumatic heart disease(RHD) and hypertensive heart disease(HHD) for the presence of autoantibodies against the three extracellular loops ofβ_3-adrenoceptor.Autoantibodies against the three extracellular loops ofβ_3-adrenoceptor(anti-β_3-EC_Ⅰ,anti-β_3-EC_Ⅱand anti-β_3-EC_Ⅲ) were all detected in the sera of patients with heart failure and healthy subjects.However,among them the occurrence frequency and level of anti-β_3-EC_Ⅱwere the highest and by far higher than those of anti-β_3-EC_Ⅰand anti-β_3-EC_Ⅲ.In addition,the frequency and level of anti-β_3-EC_Ⅱin patients with heart failure(resulted mainly from DCM and CAD) were significantly higher than those in healthy subjects.Consequently,it is rational to assume that anti-β_3-EC_Ⅱis an important functional antibody involved in the pathogenesis of heart failure.The frequency of anti-β_3-EC_Ⅰin patients with DCM was also higher than that in healthy subjects but with fairly low titre level,while no statistical differences in both frequency and level of anti-β_3-EC_Ⅲwere seen between patients with CHF and healthy subjects.The effects of anti-β_3-EC_Ⅱon the cardiac function level of the failing heart were also analyzed.It was suggested that anti-β_3-EC_Ⅱmight play a functional protective role in the development of heart failure.
     Experimental rat models with aortic banding were used to study the relations of development of heart failure to the genesis of serum autoantibodies to cardiacβ_3-adrenoceptor. 120 Wistar rats were divided into 2 groups:aortic banding group(n=80) and sham operated control group(n=40).On the basis of cardiac anatomic measurements,light microscopic examination,as well as myocardial collagen staining,it was shown that the experimental models underwent remarkable myocardial remodeling.During this period,the level of the autoantibodies againstβ_3-adrenoceptor in experimental group was exceedingly increased as compared with pre-treatment level accompanied by increased expression of cardiacβ_3-adrenoceptor protein, while in control group no significant changes were observed.These results suggest that the up-regulation of myocardialβ_3AR might be a crucial factor involving in the stimulation of genesis ofβ_3AR autoantibody during the course of heart failure.Moreover,the antoantibody againstβ_3AR exhibited the time course of occurrence,maintenance and disappearance,which is consistent with the trends of antibody producing ability alternation,confirming that the induction ofβ_3AR autoantoantibody is independent on the quantity of B lymphocytes,but is mainly regulated by functional statues of immune system.This might be an important form that immunological mechanism involved in the pathophysiological mechanisms of some caridac diseases.Furthermore,the mechanisms ofβ_3AR autoantoantibody need to be explored in the future.
     An experiment model of cardiomyopathy was created by immunizing rats for 6 months with synthetic peptides corresponding to the sequence of the second extracellular loop of bothβ_3-adrenoceptor.Twenty rats were used and divided into two groups:a control group(n=8) and a group immunized with the peptide corresponding to theβ_3-adrenoceptor(β_3 immunity group, n=12).In the sera fromβ_3 immunized rats,high-level of anti-β_3-adrenoceptor antibodies were found throughout the study period,but noly a low level of antibodies were found in the sera from some control rats or in the preimmune sera of some immunized rats.At 3 and 6 months after immunization,the left ventricular systolic and diastolic function in immunized group were slightly but not significantly enhanced than that of in the control group,and morphological examination of the hearts ofβ_3 immunized rats demonstrated no obvious alterations.Moreover, compared with the corresponding controls,the myocardialβ_3-adrenoceptor density and the concentration of myocardial total NO of immunized rats displayed a slightly up-regulation and the myocardial eNOS and cGMP concentrations of immunized rats displayed significantly increased after 3 and 6 months of immunization.These results suggested that tha autoantibodies againstβ_3-adrenoceptor maybe transducte signal through eNOS-NO-cGMP pathway,however, immunization by peptide corresponding to the target sequences for anti-β_3-adrenoceptor antibodies for 6 months did not induces obviously morphological and functional changed in the heart.
引文
1. Molenaar P, Parsonage WA. Fundamental considerations of β-adrenoceptor subtypes in human heart failure. Trends in Pharmacol Sci. 2005;26 (7):368-375.
    2. Felix S, Staudt A, Dorffel WV, et al. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J Am Coll Cardiol. 2000;35(6): 1590-1598.
    3. Muller J, Wallukat G, Dandel M, et al. Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation. 2000;101(4):385-391.
    4. Staudt A, Schaper F, Stangl V, et al. Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation. 2001 ;103(22):2681-2686.
    5. Magnusson Y, Marullo S, Hoyer S, et al. Mapping of a functional autoimmune epitope on the β_1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest. 1990; 86(5):1658-1663.
    6. Chiale PA, Rosenbaum MB, Elizari MV, et al. High prevalence of antibodies against β_1-and β_2-adrenoceptors in patients with primary electrical cardiac abnormalities. J Am Coll Cardiol. 1995;26(4): 864-869.
    7. Rosenbaum MB, Chiale PA, Schejtman D, et al. Antibodies to β-adrenergic receptors disclosing agonist-like properties in idiopathic dilated cardiomyopathy and Chagas' heart disease. J Cardiovasc Electrophysiol. 1994; 5(4): 367-375.
    8. Chiale PA, Rosenbaum MB, Elizari MV, et al. High prevalence of antibodies against β_1-and β_2-adrenoceptors in patients with primary electrical cardiac abnormalities. J Am Coll Cardiol. 1995; 26(4): 864-869.
    9. Matsui S, Fu ML, Katsuda S, et al. Peptides derived from cardiovascular G-protein-coupled receptors induce Morphological Cardiomyopathic changes in immunized Rabbits. J Mol Cell Cardiol. 1997; 29(2): 641-655.
    10. Elies R, Ferrari I, Wallukat G, et al. Structural and functional analysis of the B cell epitopes recognized by anti-receptor autoantibodies in patients with Chagas' disease. J Immunol. 1996; 157(9): 4203-4211.
    11. Jahns R, Boivin V, Hein L, et al. Direct evidence for a β_1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest. 2004; 113(10):1419-1429.
    12. Matsui S, Fu ML, Katsuda S, et al. Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J Mol Cell Cardiol. 1997;29(2):641-655.
    13. Wallukat G, Wollenberger A, Morwinski R, et al. Anti-β_1-adrenoceptor autoantibodies with chronotropica activity from the serum of patients with dilated cardiomyopathy: mapping of epitopes in the first and second extracellular loops. J Mol Cell Cardiol 1995;27(1):397-406.
    14. Johnson M. The β-adrenoceptor. Am. J. Respir Crit. Care .Med. 1998; 158(5 Pt 3): S146-S153.
    15. Gauthier C, Tavernier G, Charpentier F, et al. Functional β_3-adrenoceptor in the human heart. J. Clin.Invest. 1996;98 (2):556-562 .
    16. Gauthier C, Langin D, Balligand JL. β_3-adrenoceptors in the cardiovascular system. Trends. Pharmacol. Sci. 2000;21(11):426-431.
    17. Pelat M, Verwaerde P, Galitzky J, et al. High isoproterenol doses are required to activate β_3-adrenoceptor-mediated functions in dogs. J Pharmacol Exp Ther. 2003;304(1):246-253.
    18. Moniotte S, Kobzik L, Feron O, et al. Upregulation of β_3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation. 2001;103(12): 1649-1655.
    19. Shi L, Javitch JA. The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc Natl Acad Sci USA. 2004;101(2):440-445.
    20. Li MX, Wang XL, Tang JN, et al. Distribution and property of anti-β_3-adrenoceptor autoantibody in patients with heart failure. Chin J Cardiol. 2005; 33(12): 1114-1118.
    21. Merrifield RB. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol. 1969; 32:221-296.
    22. Porstmann T, Kiessig ST. Enzyme immunoassay techniques. An overview. J Immunol Methods. 1992;150(1-2):5-21.
    Fu LX, Magnusson Y, Bergh CH, et al. Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest. 1993;91(5):1964-1968.
    24. Jahns R, Boivin V, Siegmund C, et al. Activating β_1-adrenoceptor antibodies are not associated with cardiomyopathies secondary to valvular or hypertensive heart disease. J Am Coll Cardiol. 1999;34(5): 1545-1551.
    25. Borda E, Pascual J, Cossio P, et al. A circulating IgG in Chagas' disease which binds to β-adrenoceptor of myocardium and modulates its activity. Clin Exp Immunol 1984;57(3):679-686.
    26. Magnusson Y, Wallukat G, Waagstein F, et al. Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the β_1-adrenoceptor with positive chronotropic effect. Circulation. 1994;89(6):2760-2767.
    27. Fu ML, Hoebeke J, Matsui S, et al. Autoantibodies against cardiac G-protein-coupled receptors defines different populations with cardiomyopathies but not with hypertension. Clin Immunol Immunopathol 1994;72(1):15-20.
    28. Zhang L, Hu D, Li J, et al. Autoantibodies against the myocardial β_1-adrenergic and M2-muscarinic receptors in patients with congestive heart failure. Chin Med J (Engl). 2002;115(8):1127-1131.
    29. Matsui S, Larsson L, Hayase M, et al. Specific removal of β1-adrenoceptor autoantibodies by immunoabsorption in rabbits with autoimmune cardiomyopathy improved cardiac structure and function. J Mol Cell Cardiol. 2006;41 (1):78-85.
    30. Jahns R, Boivin V, Siegmund C, et al. Autoantibodies activating human β_1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation. 1999;99(5):649-654.
    31.Miao GB, Liu JC, Liu MB, et al. Autoantibody against β1-adrenergic receptor and left ventricular remodeling changes in response to metoprolol treatment. Eur J Clin Invest. 2006;36(9):614-620.
    32. Goldman JH, Keeling PJ, Warraich RS, et al. Autoimmunity to alpha myosin in a subset of patients with idiopathic dilated cardiomyopathy. Br Heart J. 1995;74(6):598-603.
    33. Warraich RS, Dunn MJ, Yacoub MH. Subclass specificity of autoantibodies against myosin in patients with idiopathic dilated cardiomyopathy: pro-inflammatory antibodies in DCM patients. Biochem Biophys Res Communications. 1999;259(2):255-261.
    34. Fu LX, Magnusson Y, Bergh CH, et al. Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest. 1993;91(5):1964-1968.
    35. Liu HR, Zhao RR, Jiao XY, et al Relationship of myocardial remodeling to the genesis of serum autoantibodies to cardiac β(1)-adrenoceptors and muscarinic type-2 acetylcholine receptors in rats. J Am Coll Cardiol. 2002; 39(11): 1866-1873.
    36. Shi L, Javitch JA. The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc Natl Acad Sci USA. 2004;101(2):440-445.
    37. Li MX, Zhang HF, Liu XJ, et al. The Distribution and Biological Effects of Autoantibodies against the Second Extracellular Loop of β_3-Adrenoceptor from the Patients with Heart Failure. Circulation(Suppl Ⅱ). 2005;112(17):638.
    38. Jahns R, Boivin V, Krapf T, et al. Modulation of β_1-adrenoceptor activity by domain-specific antibodies and heart failure-associated autoantibodies. J Am Coll Cardiol. 2000; 36(4): 1280-1287.
    1. Molenaar P, Parsonage WA. Fundamental considerations of beta-adrenoceptor subtypes in human heart failure. Trends Pharmacol Sci, 2005, 26(7):368-75
    2. Wallukat G, Nissen E, Morwinski R, et al. Autoantibodies against the beta- and muscarinic receptors in cardiomyopathy. Herz, 2000,25(3):261-6
    3. Chiale PA, Rosenbaum MB, Elizari MV, et al. High prevalence of antibodies against beta 1-and beta 2-adrenoceptors in patients with primary electrical cardiac abnormalities. J Am Coll Cardiol, 1995,26(4):864-9
    4. Borda E, Pascual J, Cossio P, et al. A circulating IgG in Chagas' disease which binds to beta-adrenoceptors of myocardium and modulates their activity. Clin Exp Immunol, 1984, 57:679-85
    5. Magnusson Y, Wallukat G, Waagstein F, et al. Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the b 1-adrenoceptor with positive chronotropic effect. Circulation, 1994, 89(6):2760 -7
    6. Magnusson Y, Marullo S, Hoyer S, et al. Mapping of a functional autoimmune epitope on the beta 1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest, 1990, 86(5): 1658-63
    7. Rosenbaum MB, Chiale PA, Schejtman D, et al. Antibodies to beta-adrenergic receptors disclosing agonist-like properties in idiopathic dilated cardiomyopathy and Chagas' heart disease. J Cardiovasc Electrophysiol, 1994,5(4):367-75
    8. Elies R, Ferrari I, Wallukat G, et al.Structural and functional analysis of the B cell epitopes recognized by anti-receptor autoantibodies in patients with Chagas' disease. J Immunol, 1996, 157(9):4203-11
    9. Jahns R, Boivin V, Hein L, et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest, 2004, 113(10):1419-29
    10. Matsui S, Fu ML, Katsuda S, et al. Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J. Mol. Cell. Cardiol. 1997; 29: 641-655
    11. Dixon RA, Sigal IS, Candelore MR, et al. Structural features required for ligand binding to the beta-adrenergic receptor. EMBO J, 1987,6(11):3269-75
    12. Fraser CM. Site-directed mutagenesis of beta-adrenergic receptors. Identification of conserved cysteine residues that independently affect ligand binding and receptor activation. J Biol Chem, 1989, 264(16):9266-70
    13.Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A, 1981, 78(6):3824-8
    14. Rothbard JB, Taylor WR.A sequence pattern common to T cell epitopes.EMBO J, 1988, 7(1):93-100
    15. Li MX, Wang XL, Tang JN, et al. Distribution and property of anti-beta3-adrenoceptor autoantibody in patients with heart failure. Zhonghua Xin Xue Guan Bing Za Zhi, 2005 , 33(12):1114-8
    16. Doering CW, Jalil JE, Janicki JS, et al. Collagen network remodelling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res, 1988, 22(10):686-95
    17. Merrifield. R.B, Solid phase peptide synthesis. Endeavour. 1965 Jan;24:3-7
    18. Jeme NK, Nordin AA. Plaque formation in agar by single antibody-producing cells. Science, 1963, 140:405
    19. Tavernier G, Toumaniantz G, Erfanian M, et al. beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc Res, 2003, 59(2):288-96
    20. Moniotte S, Kobzik L, Feron O, et al. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation, 2001, 103(12): 1649-55
    21. Chamberlain PD, Jennings KH, Paul F, et al. The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord, 1999, 23(10): 1057-65
    22. Matsui S, Larsson L, Hayase M, et al. Specific removal of beta1-adrenoceptor autoantibodies by immunoabsorption in rabbits with autoimmune cardiomyopathy improved cardiac structure and function. J Mol Cell Cardiol, 2006, 41(1):78-85
    23. Zannad F, Briancon S, Juilliere Y, et al.Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: the EPICAL Study. Epidemiologie de l'Insuffisance Cardiaque Avancee en Lorraine. J Am Coll Cardiol, 1999,33(3):734-42
    24. MERIT-HF study group. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet, 1999, 353(9169):2001-7
    25. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med, 2001,344(22): 1651-8
    26. Kurrer MO, Kopf M, Penninger JM, et al. Cytokines that regulate autoimmune myocarditis. Cardiovasc Res, 2003, 59(2):288-96
    27. Kallwellis-Opara A, Dorner A, Poller WC, et al. Autoimmunological features in inflammatory cardiomyopathy. Clin Res Cardiol, 2007, 96(7):469-80
    28. Baker AJ, Redfern CH, Harwood MD, et al. Abnormal contraction caused by expression of G(i)-coupled receptor in transgenic model of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol, 2001, 280(4):H1653-9
    29. Emorine LJ, Marullo S, Briend-Sutren MM, et al. Molecular characterization of the human beta 3-adrenergic receptor. Science, 1989, 245(4922):1118-21
    30. Dzimiri N. Regulation of beta-adrenoceptor signaling in cardiac function and disease. Pharmacol Rev, 1999, 51(3):465-501
    31. Cheng HJ, Zhang ZS, Onishi K, et al. Upregulation of functional beta(3)-adrenergic receptor in the failing canine myocardium. Circ Res, 2001, 89(7):599-606
    32. Kurrer MO, Kopf M, Penninger JM, et al. Cytokines that regulate autoimmune myocarditis. Swiss Med Wkly, 2002, 132(29-30):408-13
    33. Caforio AL, Goldman JH, Baig MK, et al. Cardiac autoantibodies in dilated cardiomyopathy become undetectable with disease progression. Heart, 1997, 77(1):62-7
    34. Fu ML, Gerd W, Ake H, et al. Agonist-like activity of anti-peptide antibodies directed against an autoimmune epitope on the heart muscarinic acetylcholine receptor. Receptors Channels, 1994, 2(2): 121-30
    35. Mobini R, Staudt A, Felix SB, et al. Hemodynamic improvement and removal of autoantibodies against β-adrenergic receptor by immunoadsorption therapy in dilated cardio-myopathy. J Autoimmun, 2003, 20(4): 345-350
    36. Jahns R, Boivin V, Hein L, et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest, 2004, 113(10): 1419-1429
    37. Jane-wit D, Altuntas CZ, Johnson JM, et al. Beta 1-adrenergic receptor autoantibodies mediate dilated cardiomyopathy by agonistically inducing cardiomyocyte apoptosis. Circulation, 2007,116(4):399-410
    38. Limas CJ, Limas C, Goldenberg IF, et al. Possible involvement of the HLA-DQB1 gene in susceptibility and resistance to human dilated cardiomyopathy. Am Heart J, 1995, 129:1141-4
    39. Ferrari I, Levin M, Wallukat G, et al. Molecular mimicry between the immunodominant ribosomal protein PO of Trypanosoma cruzi and a functional epitope on the human beta -adrenergicreceptor. J Exp Med, 1995, 182:59-65
    40. Dangas G, Konstadoulakis MM, Epstein SE, et al. Prevalence of autoantibodies against contractile proteins in coronary disease and their clinical implications. Am J Cardiol, 2000, 85:870-2
    41. Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation, 1993, 87(5 Suppl):IV90-6
    42. ZhangWG, MaA-Q, WeiJ, et al. Study of autoantibodies against the adenine nucleotide translocator in idiopathic dilated cardiomyopathy. Blood Press Suppl, 1996, 3:45-8
    1. Man D, Di Berardino F, Cugno M. Chronic heart failure and the immune system. Clin Rev Allergy Immunol, 2002,23(3):325-40
    2. Caforio AL, Bonifacio E, Stewart JT, et al. Novel organ-specific circulating cardiac auto-antibodies in dilated cardiomyopathy. J Am Coll Cardiol, 1990, 15: 1527-1534
    3. Brestow MR, Hersberger RE, Port JD, et al. β-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation, 1990, 82 (suppl I):I12-I25
    4. Jahns R, Boivin V, Hein L, et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest, 2004, 113(10):1419-1429
    5. Caforio AL, Grazzini M, Mann JM, et al. Identification of α- and β-cardiac myosin heavy chain isoforms as major autoantigens in dilated cardiomyopathy. Circulation, 1992, 85(5): 1734-1742
    6. Magnusson Y, Marullo S, Hoyer S, et al. Mapping of a functional autoimmune epitope on the β_1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest, 1990,86:1658-1663
    7. Elies R, Ferrari I, Wallukat G, et al. Structural and functional analysis of the B cell epitopes recognized by anti-receptor autoantibodies in patients with Chagas' disease. J Immunol, 1996,157:4203-4211
    8. Chiale PA, Rosenbaum MB, Elizari MV, et al. High prevalence of antibodies against β_1- and β_2-adrenergic receptors in patients with primary electrical cardiac disturbances. J Am Coll Cardiol, 1995, 26:864-869
    9. Liu HR, Zhao RR, Zhi JM, et al. Screening of serum autoantibodies to cardiac β_1-adrenoceptors and M_2-muscarinic acetylcholine receptors in 408 healthy subjects of varying ages. Autoimmunity, 1999,29:43-51
    10. Rosenbaum MB, Chiale PA, Schejtman D, et al. Antibodies to β-adrenergic receptors disclosing agonist-like properties in idiopathic dilated cardiomyopathy and Chagas' heart disease. J Cardiovasc Electrophysiol, 1994, 5:367-375
    11. Jahns R, Boivin V, Hein L, et al. Direct evidence for a β_1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest, 2004, 113:1419-1429
    12. Matsui S, Fu ML, Katsuda S, et al. Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J Mol Cell Cardiol, 1997, 29: 641-655
    13. Liang-Xiong Fu, Yvonne Magnusson, Claes-Hakan Bergh, et al. Localization of a Functional Autoimmune Epitope on the Muscarinic Acetylcholine Receptor-2 in Patients with Idiopathic Dilated Cardiomyopathy. Clin Invest Volume May, 1993,91:1964-1968
    14. Dixon, R A F, I S Sigal, et al. Structural features required for ligand binding to the f-adrenergic receptor. EMBO J, 1987,6:3269-3275
    15. Fraser C M. Site-directed mutagenesis of β_3-adrenergic receptors. J Biol Chem, 1989, 264:9266-9270
    16. Hopp TP, KR Woods. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA, 1981, 78:3824-3828
    17. Rothbard J, W Taylor. A sequence common to T cell epitopes. EMBO (Eur. Mol. Bio. Organ.) J, 1988,7:93-100
    18. Yvonne Magnusson, Stefano Marullo, S Bren Hoyer, et al. Mapping of a Functional Autoimmune Epitope on the β_1-Adrenergic Receptor in Patients with Idiopathic Dilated Cardiomyopathy. J Clin Invest, 1990, 86: 1658-1663
    19. Meixia Li, Haifeng Zhang, Xiaojun Liu et al. The Distribution and Biological Effects of Autoantibodies against the Second Extracellular Loop of β_3-Adrenoceptor from the Patients with Heart Failure(Abstract). Supplement II Circulation, 2005, 112: 17
    20. Merrifield RB. Solid phase peptide synthesis. J Am Chem Soc, 1963, 85:2149-2154
    21. Schultheiss HP, Schauer K, Wttzenbichler B, et al. Antibody-medicated imbalance of myocardial energy metabolism, a causal factor of heart failure? Cir Res, 1995, 76:64-72
    22. Neu N, Rose NR, Beisel KW, et al. Cardiac myosin induces myocarditis ingenetically predisposed mice. J Immunol, 1087, 139: 3630-3636
    23. Schwlmmbeck PL, Baclorffc, Schltheiss HP, et al. Transfer of human myocarditis intosevere combined immunodeficiency mice. Cire Res, 1994, 75: 156-164
    24. Magnusson Y, Marullo S, Hoyers, et al Mapping of a functional autoimmune epitopeon the β_1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest, 1990,86:1658-1663
    25. Fu LXM, Magnusson Y, Bergh C, et al. Localization off a functional autoimmune epitope on the muscarinin acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J Clin Invest, 1993, 91:1964-1968
    26. Rose NR, Bona N. Defining criteria for autoimmune disease (Witebsky's postulate revisited). Immunol Today, 1993,14: 426-430
    27. Matsui S, Fu ML, Katsuda S, et al. Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J Mol Cell Cardiol, 1997,29: 641-655
    28. Takahashi T, Anzai T, Yoshikawa T, et al. Angiotensin receptor blockade improves myocardial β-adrenergic receptor signaling in postinfarction left ventricular remodeling: a possible link between β-adrenergic receptor kinase-1 and protein kinase C epsilon isoform. J Am Coll Cardiol, 2004,43(1): 125-32
    29. Johnson M. The β-adrenoceptor. Am J Respir Crit Care Med, 1998,158: S146-S153
    30. Gauthier C, Tavernier G, Charpentier F, et al. Functional β_3-adrenoceptor in the human heart. J Clin Invest, 1996,98:556-562
    31. Moniotte S, Kobzik L, Feron O, et al. Upregulation of β_3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation, 2001, 103:1649-1655
    32. Gauthier C, Langin De, Balligand JL. β_3-adrenoceptors in the cardiovascular system. Tips, 2000, 21:426-431
    33. Pelat M, Verwaerde P, Galitzky J, et al. High isoproterenol doses are required to activate β_3-adrenoceptor-mediated functions in dogs. JPET, 2003,304:246-253
    34. Morimoto A, Hasegawa H, Cheng HJ, et al. Endogenous β_3-adrenoreceptor activation contributes to left ventricular and cardiomyocyte dysfunction in heart failure. Am J Physiol Heart Circ Physiol, 2004, 286:H2425-H2433
    35. Tavernier G, Toumaniantz G, Erfanian M, et al. β_3-adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human β_3-adrenergic receptor. Cardiovasc Res, 2003, 59(2): 288-296
    36. Engelhardt S, Hein L, Keller U, et al. Inhibition of Na~+-H~+ exchange prevents hypertrophy, fibrosis, and heart failure in β_1-adrenergic receptor transgenic mice. Circ Res., 2002, 90(7):814-9
    37. Kong Y, Li W, Tian Y, et al. Effect of β_3-adrenoreceptors agonist on β_3- adrenoreceptors expression and myocyte apoptosis in a rat model of heart failure. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2004, 16(3): 142-147
    38. Gauthier C, Tavernier G, Charpentier F, et al. Functional β_3-adrenoceptor in the human heart. J Clin Invest, 1996, 98(2):556-562
    39. Cheng H, Zhang Z, Onishi K, et al Upregulation of functional β_3-adrenergic receptor in the failing canine myocardium. Circ Res, 2001, 89(7): 599-606
    40. Zhang ZS, Cheng HJ, Onishi K, et al Enhanced inhibition of L-type Ca~(2+) current by β_3-adrenergic stimulation in failing rat heart. J Pharmacol Exp Ther, 2005, 315(3): 1203-1211
    41. Imbrogno S, Angelone T, Adamo C, et al. P3-Adrenoceptor in the eel (Anguilla anguilla) heart: negative inotropy and NO-cGMP-dependent mechanism. The Journal of Experimental Biology, 2006, 209: 4966-4973
    42. Gauthier C, Leblais V, Kobzik L, et al The negative inotropic effect of β_3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest, 1998, 102(7): 1377-1384
    43. Schulz R, Rassaf T, Massion PB, et al. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther, 2006, 108(3), 225-256
    44. Varghese P, Harrison RW, Lofthouse RA. et al. β_3-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest, 2000, 106(5), 697-703
    45. Mery PF, Lohmann SM, Walter U, et al. Ca~(2+) current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA, 1991, 88(4), 1197-1201
    46. Wahler GM, Dollinger SJ. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol, 1995, 268: C45-C54
    47. Yasuda S, Lew WY. Lipopolysaccharide depresses cardiac contractility and β-adrenergic contractile response by decreasing myofilament response to Ca~(2+) in cardiac myocytes. Circ Res, 1997, 81(6):1011-1020
    48. Beavo JA. cGMP inhibition of heart phosphodiesterase: is it clinically relevant? J Clin Invest, 1995, 95(2): 445
    49. Mery PF, Pavoine C, Belhassen L, et al. Nitric oxide regulates cardiac Ca~(2+) current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem, 1993,268(35): 26286-26295
    50. Torres J, Darley-Usmar V, Wilson MT. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J, 1995, 312: 169-173
    51. Gross WL, Bak MI, Ingwall JS, et al. Nitric oxide inhibits Creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA, 1996,93(11): 5604-5609
    52. Campbell DL, Stamler JS, Strauss HC. Redox modulation of Ltype calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol, 1996, 108(4): 277-293
    53. Bloch W, Fleischmann B K, Lorke D E, et al. Nitric oxide synthase expression and role during cardiomyogenesis. Cardiovasc Res, 1999, 43(3): 675-684
    54. Leonor Sterin-Borda, Gustavo Bernabeo, Sabrina Ganzinelli, et al. Role of nitric oxide/cyclic GMP and cyclic AMP in β_3-adrenoceptorchronotropic response. J Molecular and Cellular Cardiology, 2006,4: 580-588
    1. Wallukat G. The beta adrenergic receptors. Herz, 2002, 27 (7): 683-690
    2. Staudt A, Mobini R, Fu M, et al. Beta (1)- Adrenoceptor antibodies induce positive inotropic response in isolated cardiomyocytes. Eur J Pharmacol, 2001, 423(2-3): 115-119
    3. Jurgens CW, Rau KE, Knudson CA, et al. Beta1 adrenergic receptor-mediated enhancement of hippocampal CA3 network activity. J Pharmacol Exp Ther. 2005 ,314(2):552-60
    4. Kobilka B K, Macgregor C, Daniel K, et al. Functional activity and regulation of human beta 2—adrenergic receptors expressed in Xenopus oocytes. J Biol Chem , 1987, 262 : 15796-15802
    5. Brodde OE, Michel MC. Adrenergic andmuscarinic receptors in the human heart. Pharmacol Rev, 1999, 51 (4) : 651-690
    6. Neve KA ,Mc Goigle P, Molinoff PB. Quantitive analysis of the selectivity of radioligands for subtypes of β—adrenergic receptors. J Pharmacol Ex p Ther, 1986, 238:46—53
    7. Emonrine LJ, Marullo S, B riend-SuternMM, et al. Molecular characterization of human β3-adrenergic receptor. Science, 1989, 245 (8): 1118-21128
    8. Emonrine LJ , Feve B, Pairault J , et al. Structural basis for functional diversity of β1, β2 and β3-adrenergic receptors. B iochem Pharmacol, 1991,41: 853-859
    9. Gauthier C, Tavernier G, Charpentier F, et al. Functional β3-adrenoceptor in the human heart. J Clin Invest, 1996;98: 556-562
    10. Granneman JG, Lahners KN, Chaudhry A. Characterization of the humanβ3 -adrenoceptor receptor gene. Mol Pharmacol, 1993, 44: 264-270
    11. Halushka MK, Fan JB, Bentley K, et al. Patterns of single nucleotide polymorphisms in candidate for blood-pressure hemeostasis. Nat Genet, 1999, 22(3): 239-247
    12. Bengtsson K, Melander O, Orho-Melander M, et al. Polymorphisms in the beta1-adrenergic receptor gene and hypertension. Circulation, 2001,104: 187-190
    13. Yuan M, Ohishi M, Ito N, et al. Genetic influences of beta-adrenoceptor polymorphisms on arterial functional changes and cardiac remodeling in hypertensive patients. Hypertens Res, 2006, 29(11): 875-881
    14. Tonolo G, Melix MG, Secchi G, et al . Association of Trp64Arhg beta3 - adrenergic -receptor gene polymorphism with essential hypertention in the Sardinian population. J Hyperters, 1999,17(1) :33
    15. O'Shaughnessy KM, Fu B, Dickerson C, et al . The gain-of-function G389R variant of the betal- adrenoceptor does not influence blood pressure or heart rate response to beta-blockade in hypertensive subjects. Clin Sci (Lond), 2000, 99(3):233-8
    16. Liu J, Liu ZQ, Yu BN, et al. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther, 2006, 80(1):23-32
    17. Iaccarino G, Izzo R, Trimarco V, et al. Beta2-adrenergic receptor polymorphisms and treatment-induced regression of left ventricular hypertrophy in hypertension.Clin Pharmacol Ther, 2006, 80(6):633-45
    18. Iwai C, Akita H, Kanazawa K, et al. Arg389Gly polymorphism of the human beta1-adrenergic receptor in patients with nonfatal acute myocardial infarction. Am Heart J, 2003,146(1): 106-9
    19. Akhter SA, D'Souza KM, Petrashevskaya NN, et al. Myocardial betal-adrenergic receptor polymorphisms affect functional recovery after ischemic injury. Am J Physiol Heart Circ Physiol, 2006,290(4):H 1427-32
    20. Ligget SB. Molecular and genetic basis of beta 2 adrenergic receptor function. J A llergy Clin Immunol, 1999, 104 (2p t2): s42-46
    21. KowalskiML, Woszczek G, Borow ieeM, et al. D istribution of the β2 adrenergic receptor polymorphisms inatopic and non-atopic patients. J A llergy Clin Immunol, 1997, 100 (3): 338-340
    22. Liggett SB. Polymorphisms of the beta2 - adrenergic receptor and asthma. Am J Respir Crit Care Med, 1997,156 (4 pt2) :S156
    23. Hall IP,Weatley A,wilding P, et al. Association of Glu 27β2 adrenocetor polymorphism with lower airway reactivity in asthmatic subjects. Lancet, 1995,345 (8 959): 1213-1214
    24. Bartels NK, Borgel J, Wieczorek S, et al. Risk factors and myocardial infarction in patients with obstructive sleep apnea: impact of beta2-adrenergic receptor polymorphisms. BMC Med, 2007, 5:1
    25. Li S, Chen W, Srinivasan SR, et al. Influence of lipoprotein lipase gene Ser447Stop and beta1-adrenergic receptor gene Arg389Gly polymorphisms and their interaction on obesity from childhood to adulthood: the Bogalusa Heart Study. Int J Obes (Lond), 2006, 30(8): 1183-8
    26. Xiu LL, Weng JP, Sui Y, et al. Common variants in beta 3- adrenergic- receptor and uncoupling protein-2 genes are associated with type 2 diabetes and obesity. Zhonghua Yi Xue Za Zhi, 2004, 84 (5): 375-379
    27. Zhan S, Ho SC. Meta-analysis of the association of the Trp64Arg polymorphism in the beta3 adrenergic receptor with insulin resistance. Obes Res, 2005,13(10):1709-19
    28. Cheslack-Postava K, Fallin MD, Avramopoulos D, et al. beta2-Adrenergic receptor gene variants and risk for autism in the AGRE cohort. Mol Psychiatry, 2007,12(3):283-91
    29. McLaren N, Reed DM, Musch DC, et al. Evaluation of the beta2-adrenergic receptor gene as a candidate glaucoma gene in 2 ancestral populations. Arch Ophthalmol, 2007, 125(1): 105-11.
    30. Fujisawa T, Ikegami H, Kawaguchi Y, et al. Meta-analysis of the association of Trp64Arg polymorphism of beta 3-adrenergic receptor gene with body mass index. J Clin Endocrinol Metab, 1998,83(7):2441-4
    31. Katsumata K, Nishizawa K, Unno A, et al. Association of gene polymorphisms and bone density in Japanese girls. J Bone Miner Metab, 2002, 20(3): 164-169
    32. Wang CY, Nguyen ND, Morrison NA, et al.Beta3-adrenergic receptor gene, body mass index, bone mineral density and fracture risk in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). BMC Med Genet, 2006, 7:57
    33. Kuschel M ,Zhou YY, Cheng H ,et al. G(i) protein-mediated functional compartmentalization of cardiac beta2-adrenergic signaling. J Biol Chem, 1999,274 : 22048 -22052
    34. Martin NP, Whalen EJ, Zamah MA, et al. PKA-mediated phosphorylation of the beta1-adrenergic receptor promotes Gs/Gi switching. Cell Signal, 2004,16(12): 1397-403
    35. Nakamura J. Protein kinase C attenuates beta-adrenergic receptor-mediated lipolysis, probably through inhibition of the beta1-adrenergic receptor system. Arch Biochem Biophys, 2006,447(1):1-10
    36. Xiao RP ,Avdonin P ,Zhou YY, et al. Coupling of bata2- adrenoceptor to Gi proteins its hysiological relevance in murine cardiac myocytes. Circ Res, 1999, 84 : 43-52
    37. Zhu WZ, Zheng M, Koch WJ, et al. Dualmodulation of cell survival and cell death by bata2-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A, 2001, 98(4):1607-12
    38. Liu J S , Zhao ML , Brosnan CF , et al. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol, 2001,158(6):2057-66
    39. Canova NK, Lincova D, Kmonickova E, et al. Nitric oxide production from rat adipocytes is modulated by beta3-adrenergic receptor agonists and is involved in a cyclic AMP-dependent lipolysis in adipocytes. Nitric Oxide, 2006,14(3):200-11
    40. Pelat M, Verwaerde P, Galitzky J, et al. High isoproterenol doses are required to activate beta3-adrenoceptor-mediated functions in dogs. J Pharmacol Exp Ther, 2003, 304(1):246-53
    41. Kumar N, Robidoux J, Daniel KW, et al. Requirement of Vimentin Filament Assembly for beta3-Adrenergic Receptor Activation of ERK MAP Kinase and Lipolysis. J Biol Chem, 2007, 282(12):9244-50
    42. Robidoux J, Kumar N, Daniel KW, et al. Maximal beta3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem, 2006, 281(49):37794-802
    43. Furlan C, Sterin-Borda L, Borda E. Activation of beta3 adrenergic receptor decreases DNA synthesis in human skin fibroblasts via cyclic GMP/nitric oxide pathway. Cell Physiol Biochem, 2005,16(4-6): 175-82
    44. Zhu WZ, Zheng M, Koch WJ, et al. Dual modulation of cell survival and cell death by bata2- adrenergic signaling in adult mouse cardiacmyocytes. Proc Natl Acad Sci USA, 2001, 98(4): 1607-1612
    45. Foo RS, Mani K, Kitsis RN. Death begets failure in the heart. J Clin Invest, 2005, 115 (3): 565-571
    46. Zhu WZ, Wang SQ, Chakir K, et al. Linkage of β1- adrenergic stimulation to apoptotic heart cell death through protein kinase A- independent activation of Ca2+ /calmodulin kinase Ⅱ. J Clin Invest, 2003, 111 (5) :617—625
    47. Communal C ,Singh K, Sawyer DB ,et al. Opposing effects of beta 1 and beta 2 adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin- sensitive G protein. Circulation, 1999,100 : 2210-2212
    48. Kong YH, Li WM, Tian Y. Effect of beta3-adrenoreceptors agonist on beta3-adrenoreceptors expression and myocyte apoptosis in a rat model of heart failure. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2004, 16 (3): 142-147
    49. Bartel S, Krause EG, Wallukat G, et al. New insights into β2 adrenoceptor signaling in the adult rat heart. Cardiovasc Res, 2003, 57 (3) : 694-703
    50. Mallet RT, Ryou MG, Williams AG Jr, et al. Beta1-Adrenergic receptor antagonism abrogates cardioprotective effects of intermittent hypoxia. Basic Res Cardiol, 2006, 101(5):436-46
    51. Anderson KM, Eckhart AD, Willette RN, et al. The myocardial beta- adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. Hypertension, 1999,33(1 Pt 2):402-7
    52. Moniotte S, Kobzik L, Feron O, et al. Up regulation of beta3- adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation, 2001, 103 (12): 1649
    53. Granneman JG, Lahners KN, Chaudhry A. Characterization of the humanβ3adrenoceptor receptor gene. Mol Pharmacol, 1993,44 (2): 264-270
    54. Gauthier C, Tavernier G, Charpentier F, et al. Functional bata3 adrenoceptor in human heart. Clin Invest, 1996, 98 (2): 556-562
    55. Cheng HJ, Zhang ZS, Onishi K, et al. Up regulation of functional beta3 adrenergic receptor in the failing canine myocardium. Circ Res, 2001, 89 (7): 599-606
    56. El-Armouche A, Zolk O, Rau T, et al. Inhibitory G-proteins and their role in desensitization of the adenylyl cyclase pathway in heart failure. Cardiovasc Res, 2003, 60(3): 478-487
    57. Tavernier G, Toumaniantz G, Erfanian M, et al. beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc Res, 2003, 59 (2): 288-296
    58. Kim H, Pennisi PA, Gavrilova O, et al. Effect of adipocyte beta3-adrenergic receptor activation on the type 2 diabetic MKR mice. Am J Physiol Endocrinol Metab, 2006, 290(6):E1227-36
    59. Turner NC, White P. Effects of streptozotocin-induced diabetes on vascular reactivity in genetically hyperinsulinaemic obese Zucker rats. J Cardiovasc Pharmacol, 1996, 27 (6): 884-890
    60. Johnstone MT, Creager SJ, Scales KM, et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation, 1993, 88 (6): 2510-2516
    61. Gallego M, Espina L, Casis O. Blood pressure responsiveness to sympathetic agonists in anaesthetised diabetic rats. J Physiol Biochem, 2002, 58 (2): 87-93
    62. Dincer UD, Bidasee KR, Guner S, et al. The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes, 2001, 50 (2): 455-461
    63. Klein R. Diabetic retinopathy. Annu Rev Public Health, 1996,17: 137-158
    64. O'Shea JG. Age-related macular degeneration: a leading cause of blindness. Med J Aust, 1996,165 (10): 561-564
    65. Harris A, Chung HS, Ciulla TA, et al. Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration. Prog Retin Eye Res, 1999,18 (5): 669-687
    66. Steinle JJ, Booz GW, Meininger CJ, et al. Beta 3-adrenergic receptors regulate retinal endothelial cell migration and proliferation. J Biol Chem, 2003,278 (23):20681-20686
    67. Steinle JJ, Zamora DO, Rosenbaum JT, et al. Beta 3-adrenergic receptors mediate choroidal endothelial cell invasion, proliferation, and cell elongation. Exp Eye Res, 2005, 80 (1): 83-91
    68. Magnusson Y, Marullo S, Hoyer S, et al. Mapping of a functional autoimmune epitope on the beta1- adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest, 1990, 86: 1658-1663
    69. Jahns R, Boivin V, Krapf T, et al. Modulation of beta1-adrenocep tor activity by domain specific antibodies and heart failure- associated autoantibodies. J Am Coll Cardiol, 2000, 36 (4): 1280-1287
    70. Rosenbaum MB, Chiale PA, Schejtman D, et al. Antibodies to beta-adrenergic receptors disclosing agonist-like properties in idiopathic dilated cardiomyopathy and Chagas' heart disease. J Cardiovasc Electrophysiol ,1994, 5:367-75
    71. Chiale PA, Rosenbaum MB, Hjalmayson A, et al. High prevalency of antibodies against beta-1 and beta-2 adrenoceptors in patients with primary electrical cardiac abnormalities. Jam Coll Cardial, 1995,26:864-9
    72. Jahns R, Boivin V, Siegmund C, et al. Autoantibodies activating human beta1-adrenrgic are associated with reduced cardiac function in chronic heart failure. Circulation, 1999, 99(5):649-54
    73. Sterin-Borda L, Gorelik G, Postan M, et al. Alterations in cardiac beta-adrenergic receptors in chagasic mice and their association with circulating beta-adrenoceptor-related autoantibodies. Cardiovasc Res, 1999,41(1):116-25
    74. Liu HR, Zhao RR, Jiao XY, et al. Relationship of myocardial remodeling to the genesis of serum autoantibodies to cardiac beta(1)-adrenoceptors and muscarinic type 2 acetylcholine receptors in rats. J Am Coll Cardiol, 2002,39 (11): 1866-1873
    75. Iwata M, Yoshikawa T, Baba A, et al. Autoimmunity against the second extracellular loop of beta(1)-adrenergic receptors induces beta-adrenergic receptor desensitization and myocardial hypertrophy in vivo. Circ Res, 2001, 88 (6): 578-586
    76. Staudt Y, Mobini R, FuM, et al. Beta1 adrenoceptor antibodies induce apoptosis in adult isolated cardiomyocytes. Eur J Pharmacol, 2003,466 (1-2): 1-6
    77. Buvall L, Bollano E, Chen J, et al. Phenotype of early cardiomyopathic changes induced by active immunization of rats with a synthetic peptide corresponding to the second extracellular loop of the human beta-adrenergic receptor. Clin Exp Immunol. 2006;143(2):209-15
    78. Miao GB, Liu JC, Liu MB, et al. Autoantibody against betal-adrenergic receptor and left ventricular remodeling changes in response to metoprolol treatment. Eur J Clin Invest, 2006, 36(9):614-20
    79. ZHANG Lin, WU Ya feng; MIAO Guo bin, et al. Study of autoantibodies against G-protein-coupled β2 and α1-adrenergic and angiotensinⅡ-1 receptors in patients with chronic heart failure. Chin J Cardiol, 2003 , 31 (1): 17-20
    80. LI Mei-xia, ZHANG Hai-feng, ZHANG Yan-qing, et al. Biological effects of the autoantibody against β3-adrenoceptor from the sera of rats with heart failure. Chinese Journal of Pahophysiology, 2006, 22(12): 2340 - 2344
    1. Lands A, Arnold A, McAuliff J, et al. Differentiation of receptor systems activated by sympathomimetic amines. Nature, 1967; 214(88): 597-598.
    2. Emorine L, Marullo S, Briend M, et al. Molecular characterization of the human beta 3-adrenergic receptor. Science, 1989; 245(4922): 1118-1121.
    3. Sellke F, Tofukuji M, Stamler A, et al. Betaadrenergic regulation of the cerebral microcirculation after hypothermic cardiopulmonary bypass. Circulation, 1997; 96(9 Suppl): 11-10.
    4. Forrest R, Hickford JG. Rapid communication: nucleotide sequences of the bovine, caprine, and ovine beta3-adrenergic receptor genes. J Anim Sci, 2000; 78(5): 1397-1398.
    5. Granneman J, Lahners K, Chaudhry A, et al. Characterization of the human beta 3-adrenergic receptor gene. Mol Pharmacol, 1993; 44(2): 264-270.
    6. Granneman J, Lahners K, Rao D, et al. Rodent and human beta 3-adrenergic receptor genes contain an intron within the protein-coding block. Mol Pharmacol, 1992; 42(6): 964-970.
    7. Spronsen A, Nahmias C, Krief S, et al. The promoter and intron/exon structure of the human and mouse beta 3-adrenergic-receptor genes. Eur J Biochem, 1993;. 213(3): 1117-1124.
    8. Lenzen G, Pietri F, Drumare M, et al. Genomic cloning and species-specific properties of the recombinant canine beta3-adrenoceptor. Eur J Pharmacol, 1998; 363(2 - 3): 217-227.
    9. Walston J, Lowe A, Silver K, et al. The beta3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64. Gene, 1997; 188(2): 207-213.
    10. Levasseur S, Pigeon C, Reyl F, et al. Stimulation of adenylate cyclase by the isoforms of human and rat beta-3 adrenergic receptor expressed in the CHO cells. Gastroenterol Clin Biol, 1995; 19 (8-9): 668-672.
    11. Evans, B, Papaioannou M, Hamilton S et al. Alternative splicing generates two isoforms of the beta3-adrenoceptor which are differentially expressed in mouse tissues. Br J Pharmacol, 1999; 127(6): 1525-1531.
    12. Strosberg A, Pietri RF. Function and regulation of the beta 3-adrenoceptor. Trends Pharmacol Sci, 1996; 17(10): 373-381.
    13. Moffett S, Mouillac B, Bonin H, et al. Altered phosphorylation and desensitization patterns of a human beta 2-adrenergic receptor lacking the palmitoylated Cys341. EMBO J, 1993; 12(1): 349-356.
    14. Summers R, Kompa A, Roberts S, et al. Beta-adrenoceptor subtypes and their desensitization mechanisms. J Auton Pharmacol, 1997; 17(6): 331-343.
    15. Liggett S, Freedman N, Schwinn D, et al. Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor. Proc Natl Acad Sci USA. 1993; 90(8): 3665-3669.
    16. Jockers R, Da A, Strosberg A, et al. New molecular and structural determinants involved in beta 2-adrenergic receptor desensitization and sequestration. Delineation usingchimeric beta 3/beta 2-adrenergic receptors. J Biol Chem, 1996; 271(16): 9355-9362.
    17. Rouget C, Breuiller M, Mercier F, et al. The human near-term myometrial beta3-adrenoceptor but not the beta2-adrenoceptor is resistant to desensitization after sustained agonist stimulation. Br J Pharmacol, 2004; 141(5): 831-841.
    18. Klaus S, Muzzin P, Revelli J, et al. Control of beta 3-adrenergic receptor gene expression in brown adipocytes in culture. Mol Cell Endocrinol, 1995; 109(2): 189-195.
    19. Arch J & Kaumann A. Beta 3 and atypical beta-adrenoceptors. Med Res Rev, 1993; 13(6): 663-729.
    20. Emorine L, Blin N, Strosberg A, et al. The human beta 3-adrenoceptor: the search for a physiological function. Trends Pharmacol Sci, 1994; 15(1): 3-7.
    21. Liggett S. Functional properties of the rat and human beta 3-adrenergic receptors: differential agonist activation of recombinant receptors in Chinese hamster ovary cells. Mol Pharmacol, 1992; 42(4): 634-637.
    22. Blin N, Camoin L, Maigret B, et al. Structural and conformational features determining selective signal transduction in the beta3-adrenergic receptor. Mol Pharmacol, 1993; 44(6): 1094-1104.
    23. Kaumann A, Molenaar P. Differences between the third cardiac beta adrenoceptor and the colonic beta 3-adrenoceptor in the rat. Br J Pharmacol, 1996;. 118(8): 2085-2098.
    24. De F, Gibelli G, Croci T, et al. Functional evidence of atypical beta 3-adrenoceptors in the human colon using the beta 3-selective adrenoceptor antagonist, SR 59230A. Br J Pharmacol, 1996; 117(7): 1374-1376.
    25. Manara L, Badone D, Baroni M, et al. Functional identification of rat atypical beta-adrenoceptors by the first beta 3-selective antagonists, aryloxypropanolaminotetralins. Br J Pharmacol, 1996; 117(3): 435-442.
    26. Popp B, Hutchinson D, Evans B, et al. Stereoselectivity for interactions of agonists and antagonists at mouse, rat and human beta3-adrenoceptors. Eur J Pharmacol, 2004; 484(2 - 3): 323-331.
    27. Strosberg AD. Structure and function of the beta 3-adrenergic receptor. Annu Rev Pharmacol Toxicol, 1997; 37: 421-450.
    28. Arch J, Ainsworth A, Cawthorne M, et al. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature, 1984; 309(5964): 163-165.
    29. Bianchetti A, Manara L. In vitro inhibition of intestinal motility by phenylethanol aminotetralines: evidence of atypical beta-adrenoceptors in rat colon. Br J Pharmacol, 1990; 100(4): 831-839.
    30. Dolan J, Muenkel H, Burns M, et al. Beta-3 adrenoceptor selectivity of the dioxolane dicarboxylate phenethanolamines. J Pharmacol Exp Ther, 1994; 269(3): 1000-1006.
    31. Pietri RF, Strosberg AD. Pharmacological characteristics and species-related variations of beta 3-adrenergic receptors. Fundam Clin Pharmacol, 1995; 9(3): 211-218.
    32. Lenzen G, Pietri F, Drumare M, et al. Genomic cloning and species-specific properties of the recombinant canine beta3-adrenoceptor. Eur J Pharmacol, 1998; 363(2-3): 217-227.
    33. Wilson S, Chambers J, Park J, et al. Agonist potency at the cloned human beta-3 adrenoceptor depends on receptor expression level and nature of assay. J Pharmacol Exp Ther, 1996; 279(1): 214-221.
    34. Hutchinson D, Bengtsson T, Evans B, et al. Mouse beta 3a- and beta 3b-adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signaling pathways. Br J Pharmacol, 2002; 135(8): 1903-1914.
    35. Sennitt M, Kaumann A, Molenaar P, et al. The contribution of classical (beta1/2-) and atypical beta adrenoceptors to the stimulation of human white adipocyte lipolysis and right atrial appendage contraction by novel beta3-adrenoceptor agonists of differing selectivities. J Pharmacol Exp Ther, 1998; 285(3): 1084-1095.
    36. Arch JR. Beta(3)-adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol, 2002; 440(2-3): 99-107.
    37. Langin D, Portillo M, Saulnier J, et al. Coexistence of three beta-adrenoceptor subtypes in white fat cells of various mammalian species. Eur J Pharmacol, 1991; 199(3): 291-301.
    38. Galitzky J, Reverte M, Portillo M, et al. Coexistence of beta 1-, beta 2-, and beta 3-adrenoceptors in dog fat cells and their differential activation by catecholamines. Am J Physiol, 1993; 264(3 Pt 1): E403-E412.
    39. Manara L, Badone D, Baroni M, et al. Functional identification of rat atypical beta-adrenoceptors by the first beta 3-selective antagonists, aryloxypropanolaminotetralins. Br J Pharmacol, 1996; 117(3): 435-442.
    40. Kubo S, Matsuda A, Ohnuki T, et al. Assessment of beta 2- and beta 3-adrenoceptors in rat white adipose tissues by radioligand binding assay. Biol Pharm Bull, 1997; 20(2): 142-148.
    41. Candelore M, Deng L, Tota L, et al. Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther, 1999; 290(2): 649-655.
    42. Vrydag W, Michel MC. Tools to study beta3-adrenoceptors.Naunyn Schmiedebergs Arch Pharmacol, 2007; 374:385-398.
    43. Bristow M, Ginsburg R, Umans V, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor downregulation in heart failure. Circ Res, 1986;.59(3): 297-309.
    44. Granneman JG. The putative beta4-adrenergic receptor is a novel state of the beta1-adrenergic receptor. Am J Physiol Endocrinol Metab, 2001; 280(2): E199-E202.
    45. Sarsero D, Russell F, Lynham J, et al. (-)-CGP 12177 increases contractile force and hastens relaxation of human myocardial preparations through a propranolol-resistant state of the beta 1-adrenoceptor. Naunyn Schmiedeberg's Arch Pharmacol, 2003; 367(1): 10-21.
    46. Kaumann A, Bartel S, Molenaar P, et al. Activation of beta2-adrenergic receptors hastens relaxation and mediates phosphorylation of phospholamban, troponin I, and C-protein in ventricular myocardium from patients with terminal heart failure. Circulation, 1999; 99(1): 65-72.
    47. Xiao R, Cheng H, Zhou Y, et al. Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ Res, 1999; 85(11): 1092-1100
    48. Pavoine C, Defer N. The cardiac beta2-adrenergic signalling a new role for the cPLA2. Cell Signal, 2005; 17(2): 141-152.
    49. Pavoine C, Magne S, Sauvadet A, et al. Evidence for a beta2 adrenergic/arachidonic acid pathway in ventricular cardiomyocytes. Regulation by the beta1-adrenergic/cAMP pathway. J Biol Chem, 1999; 274(2): 628-637.
    50. Pavoine C, Behforouz N, Gauthier C, et al. Beta2-adrenergic signaling in human heart: shift from the cyclic AMP to the arachidonic acid pathway. Mol Pharmacol, 2003; 64(5): 1117-1125.
    51. Hall R, Ostedgaard L, Premont R, et al. A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci USA, 1998; 95(15): 8496-8501.
    52. Gauthier C, Langin D, Balligand J, et al. Beta3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci, 2000; 21(11): 426-431.
    53. Wheeldon N, McDevitt D, Lipworth B, et al. Investigation of putative cardiac beta 3-adrenoceptors in man. Q J Med, 1993; 86(4); 255-261.
    54. Wheeldon N, McDevitt D, Lipworth B, et al Cardiac effects of the beta 3-adrenoceptor agonist BRL35135 in man. Br J Clin Pharmacol, 1994; 37 (4): 363-369.
    55. Gauthier C, Tavernier G, Charpentier F, et al. Functional beta3-adrenoceptor in the human heart. J Clin Invest, 1996; 98(2):556-562.
    56. Gauthier C, Leblais V, Kobzik L, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest, 1998; 102(7): 1377-1384
    57. Moniotte S, Vaerman J, Kockx M, et al. Real-time RT-PCR for the detection of betaadrenoceptor messenger RNAs in small human endomyocardial biopsies. J Mol Cell Cardiol, 2001; 33(12): 2121-2133.
    58. Kaumann A, Molenaar P. Modulation of human cardiac function through 4 betaadrenoceptor populations. Naunyn Schmiedeberg's Arch Pharmacol, 1997; 355(6): 667-681.
    59. Molenaar P, Sarsero D, Kaumann A, et al. Proposal for the interaction of non-conventional partial agonists and catecholamines with the 'putative beta 4- adrenoceptor' in mammalian heart. Clin Exp Pharmacol Physiol, 1997; 24 (9 - 10): 647-656
    60. Joseph S, Lynham J, Molenaar P, et al. Intrinsic sympathomimetic activity of (-)-pindolol mediated through a (-)-propranolol-resistant site of the beta1-adrenoceptor in human atrium and recombinant receptors. Naunyn Schmiedeberg's Arch Pharmacol, 2003; 368(6): 496-503.
    61. Chamberlain P, Jennings K, Paul F, et al. The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord, 1999; 23(10): 1057-1065.
    62. Pott C, Brixius K, Bundkirchen A, et al. The preferential beta3-adrenoceptor agonist BRL 37344 increases force via beta1/beta2-adrenoceptors and induces endothelial nitric oxide synthase via beta3-adrenoceptors in human atrial myocardium. Br J Pharmacol, 2003; 138(3): 521-529.
    63. Bianchetti A, Manara L. In vitro inhibition of intestinal motility by phenylethanol-aminotetralines: evidence of atypical beta-adrenoceptors in rat colon. Br J Pharmacol, 1990; 100(4): 831-839.
    64. Kitamura T, Onishi K, Dohi K, et al. The negative inotropic effect of beta3-adrenoceptor stimulation in the beating guinea pig heart. J Cardiovasc Pharmacol, 2000; 35(5): 786-790.
    65. Tavernier G, Galitzky J, Bousquet A, et al. The positive chronotropic effect induced by BRL 37344 and CGP 12177, two beta-3 adrenergic agonists, does not involve cardiac beta adrenoceptors but baroreflex mechanisms. J Pharmacol Exp Ther, 1992; 263(3): 1083-1090.
    66. Berlan M, Galitzky J, Bousquet A, et al. Beta-3 adrenoceptor-mediated increase in cutaneous blood flow in the dog. J Pharmacol Exp Ther, 1994; 268(3): 1444-1451.
    67. Shen Y, Cervoni P, Claus T, et al. Differences in beta 3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs. J Pharmacol Exp Ther, 1996; 278(3): 1435-1443.
    68. Shen Y, Zhang H, Vatner F, et al. Peripheral vascular effects of beta-3 adrenergic receptor stimulation in conscious dogs. J Pharmacol Exp Ther, 1994; 268(1): 466-473
    69. Takayama S, Furukawa Y, Ren L, et al. Positive chronotropic and inotropic responses to BRL 37344, a beta 3-adrenoceptor agonist in isolated, blood-perfused dog atria. Eur J Pharmacol, 1993; 231(3): 315-321.
    70. Gauthier C, Tavernier G, Trochu J, et al. Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. J Pharmacol Exp Ther, 1999; 290(2): 687-693.
    71. Cheng H, Zhang Z, Onishi K, et al. Upregulation of functional beta(3)-adrenergic receptor in the failing canine myocardium. Circ Res, 2001; 89(7): 599-606.
    72. Cohen M, Bloomquist W, Kriauciunas A, et al. Aryl propanolamines: comparison of activity at human beta3 receptors, rat beta3 receptors and rat atrial receptors mediating tachycardia. Br J Pharmacol, 1999; 126(4): 1018-1024.
    73. Dincer U, Bidasee K, Guner S, et al. The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes, 2001; 50(2): 455-461.
    74. Germack R, Dickenson J. Induction of {beta}3-adrenergic receptor functional expression following chronic stimulation with noradrenaline in neonatal rat cardiomyocytes. J Pharmacol Exp Ther, 2006; 316(1): 392-402.
    75. Tavernier G, Toumaniantz G, Erfanian M, et al. Beta3-adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc Res, 2003; 59(2): 288-296.
    76. Kohout T, Takaoka H, McDonald P, et al. Augmentation of cardiac contractility mediated by the human beta(3)-adrenergic receptor overexpressed in the hearts of transgenic mice. Circulation, 2001; 104(20): 2485-2491.
    77. Kitamura T, Onishi K, Dohi K, et al .The negative inotropic effect of beta3-adrenoceptor stimulation in the beating guinea pig heart. J Cardiovasc Pharmacol, 2000; 35(5): 786-790.
    78. Zhang Z, Cheng H, Onishi K, et al Enhanced inhibition of L-type Ca2+ current by {beta}3-adrenergic stimulation in failing rat heart. J Pharmacol Exp Ther, 2005b; 315(3): 1203-1211
    79. Riordan J, Rommens J, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 1989; 245(4922): 1066-1073.
    80. Leblais V, Demolombe S, Vallette G, et al. Beta3-adrenoceptor control the cystic fibrosis transmembrane conductance regulator through a cAMP/protein kinase A-independent pathway. J Biol Chem, 1999; 274(10): 6107-6113.
    81. Levesque P, Hart P, Hume J, et al. Expression of cystic fibrosis transmembrane regulator Cl- channels in heart. Circ Res, 1992; 1(4): 1002-1007.
    82. Warth J, Collier M, Hart P, et al. CFTR chloride channels in human and simian heart. Cardiovasc Res, 1996; 31(4): 615-624.
    83. Leblais V, Demolombe S, Vallette G, et al Beta3-adrenoceptor control the cystic fibrosis transmembrane conductance regulator through a cAMP/protein kinase A-independent pathway. J Biol Chem, 1999; 274(10): 6107-6113.
    84. Kathofer S, Zhang W, Karle C, et al. Functional coupling of human beta 3-adrenoreceptors to the KvLQT1/MinK potassium channel. J Biol Chem, 2000; 275(35): 26743-26747.
    85. Bosch R, Schneck A, Kiehn, et al Beta3-adrenergic regulation of an ion channel in the heart-inhibition of the slow delayed rectifier potassium current I(Ks) in guinea pig ventricular myocytes. Cardiovasc Res, 1996; 56(3): 393-403.
    86. Wang Q, Curran M, Splawski I, et al Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet, 1996; 12(1): 17-23.
    87. Milano C, Allen L, Rockman H, et al Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science, 1994; 264(5158): 582-586.
    88. Kupershmidt S, Yang T, Anderson M, et al Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circ Res, 1999; 84(2): 146-152.
    89. Chaudhry A, MacKenzie R, Georgic, et al Differential interaction of beta 1- and beta 3-adrenergic receptors with Gi in rat adipocytes. Cell Signal, 1994; 6(4): 457-465.
    90. Begin-Heick N. Beta 3-adrenergic activation of adenylyl cyclase in mouse white adipocytes: modulation by GTP and effect of obesity. J Cell Biochem, 1995; 58(4): 464-473.
    91. Schulz R, Rassaf T, Massion P, et al. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther, 2006; 108(3): 225-256
    92. Varghese P, Harrison R, Lofthouse R, et al Beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest, 2000; 106(5): 697-703.
    93. Mery P, Lohmann S, Walter U, et al Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA, 1991; 88(4):1197-1201.
    94. Wahler G, Dollinger S. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol, 1995; 268(1 Pt 1): C45-C54.
    95. Shah A, Spurgeon H, Sollott S, et al. 8-Bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res, 1994; 74(5): 970-978.
    96. Goldhaber J, Kim K, Natterson P, et al. Effects of TNF-alpha on [Ca2+]i and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol, 1996; 271(4 Pt 2): H1449-H1455.
    97. Yasuda S, Lew W. Lipopolysaccharide depresses cardiac contractility and beta-adrenergic contractile response by decreasing myofilament response to Ca2+ in cardiac myocytes. Circ Res, 1997; 81(6): 1011-1020.
    98. Beavo J. cGMP inhibition of heart phosphodiesterase: is it clinically relevant? J Clin Invest, 1995; 95(2): 445.
    99. Mery P, Pavoine C, Belhassen L, et al. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem, 1993; 268(35): 26286-26295.
    100.Torres J, Darley V, Wilson M, et al. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J, 1995; 312(Pt 1): 169-173.
    101.Gross W, Bak M, Ingwall J, et al. Nitric oxide inhibits Creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA, 1996; 93(11): 5604-5609.
    102.Campbell D, Stamler J, Strauss H, et al. Redox modulation of Ltype calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol, 1996; 108(4): 277-293.
    103.Bloch W, Fleischmann B, Lorke D, et al. Nitric oxide synthase expression and role during cardiomyogenesis. Cardiovasc Res, 1999; 43(3): 675-684.
    104.Furchgott R, Zawadzki J. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980; 288 (5789): 373-376.
    105.De Mey J, Vanhoutte P. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res, 1982; 51(4): 439-447.
    106.Osswald W, Guimaraes S. Adrenergic mechanisms in blood vessels: morphological and pharmacological aspects. Rev Physiol Biochem Pharmacol, 1983; 96: 53-122.
    107.Edvinsson L, Owman C. Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro. Circ Res, 1974; 35(6): 835-849.
    108.Donnell S, Wanstall J. Responses to the beta 2-selective agonist procaterol of vascular and atrial preparations with different functional beta-adrenoceptor populations. Br J Pharmacol, 1985; 84(1): 227-235.
    109.Krauss S, Dodge J, Bevan J, et al. Magnitude of betaadrenoceptor-mediated responses of dog epicardial coronary arteries: inverse relation to diameter. Am J Physiol, 1992; 263(5 Pt 2): H1422-H1429.
    110.Konishi M, Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension, 1983; 5(6): 881-886.
    111.Brawley L, Shaw A, MacDonald A, et al. Role of endothelium/nitric oxide in atypical beta- adrenoceptor-mediated relaxation in rat isolated aorta. Eur J Pharmacol, 2000; 398(2):285-296
    112.Guimaraes S, Moura, D. Vascular adrenoceptors: an update. Pharmacol Rev, 2001; 53(2): 319-356.
    113.Atef N, Lafontan M, Double A, et al. A specific beta 3-adrenoceptor agonist induces increased pancreatic islet blood flow and insulin secretion in rats. Eur J Pharmacol, 1996; 298(3): 287-292
    114.Takahashi H, Yoshida T, Nishimura M, et al. Beta-3 adrenergic agonist, BRL-26830A, and alpha/ beta blocker, arotinolol, markedly increase regional blood flow in the brown adipose tissue in anesthetized rats. Jpn Circ J, 1992; 56(9): 936-942.
    115.Kuratani K, Kodama H, Yamaguchi I, et al. Enhancement of gastric mucosal blood flow by beta-3 adrenergic agonists prevents indomethacininduced antral ulcer in the rat. J Pharmacol Exp Ther, 1994; 270(2): 559-565.
    116.Rohrer D, Chruscinski A, Schauble E, et al. Cardiovascular and metabolic alterations in mice lacking both beta1-and beta2-adrenergic receptors. J Biol Chem, 1999; 274(24): 16701-16708.
    117.Donckier J, Massart P, Van H, et al. Cardiovascular effects of beta 3-adrenoceptor stimulation in perinephritic hypertension. Eur J Clin Invest, 2001; 31(8): 681-689.
    118.Lacroix J, Kurt A, Auberson S, et al. Beta-adrenergic mechanisms in the nasal mucosa vascular bed. Eur Arch Otorhinolaryngol, 1995; 252(5): 298-303.
    119.Barbe P, Millet L, Galitzky J, et al. In situ assessment of the role of the beta 1-, beta 2- and beta 3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br J Pharmacol, 1996; 117(5): 907-913.
    120.Larsen T, Toubro S, van Baak M, et al. Effect of a 28-d treatment with L-796568, a novel beta(3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr, 2002; 76(4): 780-788.
    121.Clark B, Bertholet, A. Effects of pindolol on vascular smooth muscle. Gen Pharmacol, 1983; 14(1): 117-119.
    122.Oriowo MA. Atypical beta-adrenoceptors in the rat isolated common carotid artery. Br J Pharmacol, 1994; 113(3): 699-702.
    123.MacDonald A, McLean M, MacAulay L, et al. Effects of propranolol and L-NAME on beta-adrenoceptor-mediated relaxation in rat carotid artery. J Auton Pharmacol, 1999; 19(3): 145-149.
    124.Trochu J, Leblais V, Rautureau Y, et al. Beta3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br J Pharmacol, 1999; 128(1): 69-76.
    125.Oriowo M. Different atypical beta-adrenoceptors mediate isoprenaline-induced relaxation in vascular and non-vascular smooth muscles. Life Sci, 1995; 56(15): L269-L275.
    126.Rautureau Y, Toumaniantz G, Serpillon S, et al. Beta 3-adrenoceptor in rat aorta: molecular and biochemical characterization and signalling pathway. Br J Pharmacol, 2002; 137 (2): 153-161.
    127.Brahmadevara N, Shaw A, MacDonald A, et al. Evidence against beta3 -adrenoceptors or low affinity state of beta 1-adrenoceptors mediating relaxation in rat isolated aorta. Br J Pharmacol, 2003; 138(1): 99-106.
    128.Rozec B, Tran Quang T, Noireaud J, et al. Mixed beta 3-adrenoceptor agonist and alpha 1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. Br J Pharmacol, 2006; 147(7): 699-706.
    129.de Groot A, Mathy M, van Zwieten A, et al. Involvement of the beta3 adrenoceptor in nebivolol-induced vasorelaxation in the rat aorta. J Cardiovasc Pharmacol, 2003; 42(2): 232-236.
    130.Kozlowska H, Schlicker E, Kozlowski M, et al. Ligands at beta2-, beta3-, and the low-affinity state of beta1-adrenoceptors block the alpha1-adrenoceptor-mediated constriction in human pulmonary and rat mesenteric arteries. J Cardiovasc Pharmacol, 2005; 46 (1): 76-82.
    131.Matsushita M, Horinouchi T, Tanaka Y, et al. Characterization of beta3- adrenoceptor-mediated relaxation in rat abdominal aorta smooth muscle. Eur J Pharmacol, 2003; 482(1 - 3), 235-244.
    132.Kozlowska H, Szymska U, Schlicker E, et al. Atypical beta-adrenoceptors, different from beta 3-adrenoceptors and probably from the low-affinity state of beta 1-adrenoceptors, relax the rat isolated mesenteric artery. Br J Pharmacol, 2003; 140(1): 3-12.
    133.Chruscinski A, Brede M, Meinel L, et al. Differential distribution of beta-adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)- or beta(2)-adrenergic receptors. Mol Pharmacol, 2001; 60(5): 955-962.
    134.Shafiei M, Omrani G, Mahmoudian M, et al. Coexistence of at least three distinct beta-adrenoceptors in human internal mammary artery. Acta Physiol Hung, 2000; 87(3): 275-286.
    135.Rozec B, Serpillon S, Toumaniantz G, et al. Characterization of beta3-adrenoceptors in human internal mammary artery and putative involvement in coronary artery bypass management. J Am Coll Cardiol, 2005; 46(2): 351-359.
    136.Dennedy M, Houlihan D, McMillan H, et al. Beta2- and beta3-adrenoreceptor agonists: human myometrial selectivity and effects on umbilical artery tone. Am J Obstet Gynecol, 2002; 187(3): 641-647.
    137.Rouget C, Barthez O, Goirand F, et al. Stimulation of the ADRB3 adrenergic receptor induces relaxation of human placental arteries: influence of preeclampsia. Biol Reprod, 2005; 74(1): 209-216.
    138.Briones A, Daly C, Jimenez F, et al. Direct demonstration of beta(1)- and evidence against beta(2)- and beta(3)-adrenoceptors, in smooth muscle cells of rat small mesenteric arteries. Br J Pharmacol, 2005; 146(5): 679-691
    139.Dessy C, Moniotte S, Ghisdal P, et al. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependenthyperpolarization. Circulation, 2004; 110(8): 948-954.
    140.Dessy C, Saliez J, Ghisdal P, et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation, 2005; 112(8): 1198-1205.
    141.Cirino G, Sorrentino R, Villa B, et al. Involvement of beta 3-adrenergic receptor activation via cyclic GMP-but not NO-dependent mechanisms in human corpus cavernosum function. Proc Natl Acad Sci USA, 2003; 100(9): 5531-5536.
    142.Dumas M, Dumas J, Bardou M, et al. Influence of beta-adrenoceptor agonists on the pulmonary circulation. Effects of a beta3-adrenoceptor antagonist, SR 59230A. Eur J Pharmacol, 1998; 348(2-3): 223-228.
    143.Pourageaud F, Leblais V, Bellance N, et al. Role of beta(2)-adrenoceptors (ss-AR), but not ss(1)-, beta(3)-AR and endothelial nitric oxide, in beta-AR-mediated relaxation of rat intrapulmonary artery. Naunyn Schmiedeberg's Arch Pharmacol, 2005; 372(1): 14-23.
    144.Priest R, Hucks D, Ward J, et al. Noradrenaline, beta-adrenoceptor mediated vasorelaxation and nitric oxide in large and small pulmonary arteries of the rat. Br J Pharmacol, 1997; 122(7), 1375-1384.
    145.Tagaya E, Tamaoki J, Takemura H, et al. Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cyclic adenosine monophosphate-dependent pathway. Lung, 1999; 177(5), 321-332.
    146.Yousif M, Oriowo M. BRL 37344 inhibited adrenergic transmission in the rat portal vein via atypical beta-adrenoceptors. Pharmacol Res, 2002; 45(4): 313-317.
    147.Mallem M, Gogny M, Gautier F, et al. Evaluation of beta3-adrenoceptor-mediated relaxation in intact and endotoxin-treated equine digital veins. Am J Vet Res, 2003; 64(6): 708-714.
    148.Dumas J, Goirand F, Bardou M, et al. Role of potassium channels and nitric oxide in the relaxant effects elicited by beta-adrenoceptor agonists on hypoxic vasoconstriction in the isolated perfused lung of the rat. Br J Pharmacol, 1999; 127(2): 421-428.
    149.Viard P, Macrez N, Coussin F, et al. Beta-3 adrenergic stimulation of L-type Ca(2+) channels in rat portal vein myocytes. Br J Pharmacol, 2000; 129(7): 1497-1505
    150.Tamaoki J, Tagaya E, Isono K, et al. Atypical adrenoceptor mediated relaxation of canine pulmonary artery through a cAMP-dependent pathway. Biochem Biophys Res Commun, 1998; 248(3): 722-727.
    151.Moniotte S, Balligand J. Potential use of beta(3)-adrenoceptor antagonists in heart failure therapy. Cardiovasc Drug Rev, 2002; 20(1), 19-26.
    152.Morimoto A, Hasegawa H, Cheng H, et al. Endogenous beta3-adrenoreceptor activation contributes to left ventricular and cardiomyocyte dysfunction in heart failure. Am J Physiol Heart Circ Physiol, 2004; 286(6), H2425-H2433.
    153.El-Armouche A, Zolk O, Rau T, et al. Inhibitory Gproteins and their role in desensitization of the adenylyl cyclase pathway in heart failure. Cardiovasc Res, 2003; 60(3): 478-487.
    154.Kong Y, Li W, Tian Y, et al. Effect of beta3-adrenoreceptors agonist on beta3- adrenoreceptors expression and myocyte apoptosis in a rat model of heart failure. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2004; 16(3): 142-147.
    155.Toda N. Vasodilating beta-adrenoceptor blockers as cardiovascular therapeutics. Pharmacol Ther, 2003; 100(3): 215-234.
    156.Flather M, Shibata M, Coats A, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J, 2005; 26(3): 215-225.
    157.Ziskoven C, Grafweg S, Bolck B, et al. Increased Ca2+ sensitivity and protein expression of SERCA 2a in situations of chronic beta3-adrenoceptor deficiency. Pflugers Arch, 2007; 453:443-453
    158.Samuel L, Robert H, Schwinger, et al. Genetically changed mice with chronic deficiency or overexpression of the β-adrenoceptors—what can we learn for the therapy of heart failure? Eur J Physiol, 2008; 455:767-774
    159.de Champlain J. Do most antihypertensive agents have a sympatholytic action? Curr Hypertens Rep, 2001; 3(4): 305-313.
    160.Doggrell S, Surman A. Loss of maximum attenuation and receptor reserve for isoprenaline at the beta 2-adrenoceptors of the portal veins of hypertensive rats. J Hypertens, 1995; 13(9), 1023-1029.
    161.Werstiuk E, Lee R. Vascular beta-adrenoceptor function in hypertension and in ageing. Can J Physiol Pharmacol, 2000; 78(6): 433-452.
    162.Boonen H, Daemen M , Eerdmans P, et al. Mesenteric small artery changes after vasoconstrictor infusion in young rats. J Cardiovasc Pharmacol, 1993; 22(3): 388-395.
    163.Carvalho M, Scivoletto R, Fortes Z, et al. Reactivity of aorta and mesenteric microvessels to drugs in spontaneously hypertensive rats: role of the endothelium. J Hypertens, 1987; 5(3): 377-382.
    164.Mallem M, Toumaniantz G, Serpillon S, et al. Impairment of the low-affinity state beta1-adrenoceptor-induced relaxation in spontaneously hypertensive rats. Br J Pharmacol, 2004; 143(5): 599-605.
    165.Thuillez C, Richard V. Targeting endothelial dysfunction in hypertensive subjects. J Hum Hypertens, 2005; 19(Suppl 1): S21-S25.
    166.Corella D, Guillen M, Portoles O, et al. Gender specific associations of the Trp64Arg mutation in the beta3-adrenergic receptor gene with obesity-related phenotypes in a Mediterranean population: interaction with a common lipoprotein lipase gene variation. J Intern Med, 2001; 250(4): 348-360.
    167.Hao K, Peng S, Xing H, et al. Beta(3) adrenergic receptor polymorphism and obesity-related phenotypes in hypertensive patients. Obes Res, 2004; 12(1): 125-130.
    168.Melis M, Secchi G, Brizzi P, et al. The Trp64Arg beta3-adrenergic receptor amino acid variant confers increased sensitivity to the pressor effects of noradrenaline in Sardinian subjects. Clin Sci (Lond), 2002;. 103(4): 397-402.
    169.Agarwal A, Williams G, Fisher N, et al. Genetics of human hypertension. Trends Endocrinol Metab, 2005; 16(3): 127-133.
    170.Zhang C, Williams M, Edwards K, et al. Trp64Arg polymorphism of the beta3-adrenergic receptor gene, prepregnancy obesity and risk of pre-eclampsia. J Matern Fetal Neonatal Med, 2005a; 17(1): 19-28.
    171.Gallego M, Espina L, Casis O, et al. Blood pressure responsiveness to sympathetic agonists in anaesthetised diabetic rats. J Physiol Biochem, 2002; 58(2): 87-93.
    172.Xiu L, Weng J, Sui Y, et al. Common variants in beta 3-adrenergic-receptor and uncoupling protein-2 genes are associated with type 2 diabetes and obesity. Zhonghua Yi Xue Za Zhi, 2004; 84(5): 375-379.
    173.Steinle J, Zamora D, Rosenbaum J, et al. Beta 3-adrenergic receptors mediate choroidal endothelial cell invasion, proliferation, and cell elongation. Exp Eye Res, 2005; 80(1): 83-91.
    174.Stangl K, Cascorbi I, Laule M, et al. The beta3-adrenergic receptor Trp64Arg mutation is not associated with coronary artery disease. Metabolism, 2001; 50(2): 184-188.
    175.Gaudino M, Trani C, Luciani N, et al The internal mammary artery malperfusion syndrome: late angiographic verification. Ann Thorac Surg, 1997; 63(5): 1257-1261.
    176.Uydes B, Nebigil M, Aslamaci S, et al. The comparison of vascular reactivities of arterial and venous grafts to vasodilators: management of graft spasm. Int J Cardiol, 1996; 53(2): 137-145
    177.Chen J, Radford M, Wang Y, et al. Are beta-blockers effective in elderly patients who undergo coronary revascularization after acute myocardial infarction? Arch Intern Med, 2000; 160(7): 947-952.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.