影响秸秆营养价值的作物学因素及复合化学处理的效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用化学成分分析、活体外消化率测定、活体外瘤胃微生物动态发酵产气量测定以及绵羊饲养试验等研究手段,研究了包括作物品种、成熟期、施肥、植侏部位等在内的作物学因素对作物秸秆主要化学成分和活体外消化率的影响以及尿素—氢氧化钙复合处理对于改善作物秸秆营养价值的效果。
     试验一,用两个高油玉米品种(HOC647和HOC298)、两个普通玉米品种(CAU80 and CAU 3138)和—个饲料专用玉米品种(FC)作为试验材料,研究了不同玉米类型对秸秆养价值的影响。结果表明,籽粒成熟后,高油玉米秸秆的水溶性糖、淀粉和粗脂肪含量以及干物质、NDF、ADF消化率和48小时产气量,分别比普通玉米秸秆高18.8倍、2.5倍、1.0倍、38.3%、21.4%、25.6%和51.8%(P<0.001),而NDF、ADF和木质素含量分别比普通玉米秸秆低27.3%、32.0,/和39.7%(P<0.001)。高油玉米秸秆的营养价值不仅远高于普通玉米秸秆,而且也远高于饲料专用玉米秸秆。可见,籽粒成熟后的高油玉米秸秆具有营养物质含量高和消化率高的特点,是反刍动物理想的粗饲料和青贮饲料原料。
     试验二,以“农大108”玉米秸秆为试验材料,开展的玉米植株不同部位(叶片、叶鞘、茎皮、茎髓、茎常、苞叶)营养价值的比较结果表明,秸秆各部位间的化学成分、活体外消化率和产气量均存在显著或极显著差异(P<0.05或P<0.01),其中总糖含量以茎节、茎皮中最高,分别为20.7%、19.3%;粗脂肪含量在茎节和茎皮中最高,分别为5.80/和5.2%,而茎髓中最少;粗蛋白质含量以叶片中最高(14.9%),而苞叶中最少(6.9%);粗灰分、Ca和P含量均以叶片中最高,分别为10.5%、1.03%和0.1%;NDF在苞叶中含量最高(77.1%);ADF和木质素含量均以茎皮中最高,分别为52.0%、14.4%,苞叶中最低,分别为38.2%、6.7%。DM、NDF和ADF消化率以及最大产气量均以苞叶为最高,其次是叶片、茎髓、茎节和叶鞘,最低的是茎皮。可见,玉米秸秆各部位的营养价值存在明显差异,对其从高到低的排序为:苞叶>茎髓>叶片>叶鞘>茎节>茎皮。
     试验三,以两个高油玉米品种(HOC 298和HOC 647)、两个普通玉米品种(CAU 80和CAU 3138)和一个饲料用玉米品(FC)为试验材料,研究籽粒成熟期(1/2、3/4和4/4乳线期)对玉米秸秆主要营养成分含量和干物质、纤维组分消化率的影响。结果表明,随籽粒成熟度提高,高油玉米秸秆的水溶性糖、淀粉、粗脂肪含量和干物质、NDF消化率呈线性规律提高(L;P<0.01),而NDF、ADF和本质素含量则直线规律下降(L;P<0.001),其中,4/4乳线期的水溶性糖、淀粉含量和干物质消化率分别比1/2乳线期提高26.5倍、2.4倍和22.7%,而NDF、ADF和木质素含量分别比1/2乳线期减少24.1%、30.6%和38.4%;普通玉米品种秸秆的情况与高油玉米秸秆正相反,而饲料专用玉米秸秆情况则介丁高油玉米秸秆和普通玉米秸秆之间。可见,高油玉米秸秆是一种优质秸秆,随着籽粒成熟度的提高,它的营养成分和价值呈现与其它类型玉米秸秆完全不同的变化规律。
     试验四,用目前生产中普遍种植的青饲玉米品种白马牙(Zea mays L.)的秸秆作为试验材料,研究追施氮肥对玉米秸秆营养价值的影响。结果表明,随着追施尿素量的增加,氨基酸总量、非必需氨基酸总量和粗蛋白、真蛋白、各种必需氨基酸、Ca含量呈线性规律提高(L;P<0.001),而粗脂肪、ADF和木质素含量则均不受影响(P>0.05):尿素追施量小于75kg/ha时,总糖含量随尿素量的提高而增加,尿素量为75~450kg/ha时,总糖含量随尿素量的提高而减少。追施尿素能提高玉米秸秆的干物质、CP、NDF和ADF的消化率,但尿素追施量大于300kg/ha时,这种效果不再提高。用不同尿素追施量的青贮
Using chemical analysis, in vitro two-stage digestion and in vitro gas production and sheep feeding trials, five experiments were conducted to study the effect of botanic factors including crop variety, maturity stage, N fertilizer administration, plant position, on main chemical components and digestibility of crop residues, and to evaluate the response of lamb growth performance to the treatment with chemical combinations.In Expt 1, Com stalks from two varieties of high oil corn (HOC; 647 and 298), two varieties of typical corn (CAU 80 and CAU 3138) and one specific fodder corn (FC) were used as substrates in an in vitro fermentation experiment to examine the effect of corn types on the nutritional value. The result showed that HOC stalks harvested even at 4/4ML stage had 18.8,2.5 and 1.0 folds of water soluble carbohydrates (WSC), starch and crude fat higher (P<0.001) than typical corn stalks. The in vitro digestibility of DM , NDF and ADF, and gas production(48h) were 38.3%, 21.4%, 25.6% and 51.8% higher (P<0.001) for HOC stalks than typical com stalks. In comparison with typical com stalks, HOC stalks decreased the contents of NDF, ADF and lignin by 27.3%, 32.0% and 39.7% (P<0.001). The digestibilities of DM, NDF and ADF were not only much higher for HOC stalks than those of typical com stalks, but also much higher than those of specific fodder cornstalks, indicating that HOC stalks would be regarded as an ideal fodder or ensilage material for feeding ruminant animals.In Expt 2, using corn stalks from variety Nongda 108 as an experimental material, the six sections (leaf blade, leaf sheath, stem bark, stem pith, stem node, ear husk) were compared for their nutritional value. The result showed that there was significantly difference (P<0.05) in the chemical composition, in vitro digestibility and gas production of different sections. The stem nodes and barks had highest content of total carbohydrates (20.7% and 19.3% respectively) and of ether extract (5.8% and 5.2% respectively), while the stem pith had the lowest content of ether extract The content of crude protein was highest in leaf blades (14.9%), and lowest inear husks (6.9%). The contents of ash, Ca and P were all highest in leaf blade (10.5% 1.03% and 0.1% respectively). Although a highest content of NDF was found in ear husks (77.1%), the highest content of ADF and lignin was present in stem barks (52.0% and 14.4% respectively) and the lowest was in ear husks. The ear husks had highest the in vitro digestibilities of dry matter, NDF and ADF, and maximum gas production, followed by leaf blades, stem piths, stem nodes, leaf sheaths and stem bark. It was concluded that the various sections of com stalks are significantly different in the nutritive values, with the rank from highest to lowest being as follows: ear husks > stem piths > leaf blades > leaf sheaths > stem nodes > stem barks.In Exp. 3, using two varieties of high oil com (HOC; HOC 647 and HOC 298), two varieties of typical com (CAU 80 and CAU 3138) and a specific fodder com (FC) as experimental materials, the effects of maturity stage of kernels (1/2,3/4 and 4/4 milk line) on nutrient content and in vitro digestibility of com stalks were investigated. The results showed that as the com kernels matured, HOC stalks had linear increases (L; P<0.01) in the content of WSC, starch, and crude fat, and DMD and NDFD, but had a linear decrease in the content of both NDF, ADF and lignin (L; PO.001). Compared with the kernel maturity stage at 1/2 milk line, the 4/4 milk line maturity increased the content of WSC and starch, and dry matter digestibility by 26.5 folds, 2.4 folds and 22.7% but reduced the content of NDF, ADF and lignin by 24.1,30.6 and 38.4% respectively. With increasing the maturity stage of corn kernels, typical com stalks, however, showed an opposite change in chemical contents and nutrient digestibilities
    in contrast to HOC stalks. The results of this experiment indicated that the high oil com stalks are a good corn stalk source for animal feeing.In Exp. 4, com stalks from Zea mays L, were se
引文
[1] 白元生主编.饲料原料学.北京:中国农业出版社,1999,46.
    [2] 陈喜斌主编.饲料学(第一版)(M).北京:科学出版社,2003,74—75,96—98.
    [3] 陈绍江.高油玉米发展与回顾.玉米科学,2001,9(4):80~83.
    [4] 陈樵,徐志辉,等.菌糠在猪配合饲料中应用技术初报.饲料研究,1987,12:36~37.
    [5] 东北农学院主编.家畜饲养学,北京:农业出版社,1982,150~151.
    [6] 董德宽,金遐良,朱小军,等.碳铵石灰复合处理稻草饲喂生长牛试验.中国畜牧杂志,1992,28(5):22~23.
    [7] 尹君亮,芦晓峰,等.秸秆微贮技术在寒冷地区养羊业中应用方法和效果试验.中国养羊,1997.2:18~21.
    [8] 樊小林,李玲.氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应.植物营养与肥料学报,1998,4(2):131~137.
    [9] 方热军,邢廷铣,孟建华,等.氨化稻秆与精料添加喂马头山羊效果.饲料与畜牧,1995,(2):10~12.
    [10] 方热军,邢廷铣,陈惠萍.氨化稻秆与精料添补饲喂考湖半细毛羊的效果.中国养羊,1993,(4):16~18.
    [11] 冯仰廉,张子仪.低质粗饲料的营养价值及合理利用.中国畜牧杂志,2001,37(6):3~5.
    [12] 冯仰廉.中国畜牧兽医学会第十届全国代表大会暨学术年会论文集(畜牧卷).北京:中国农业大学出版社出版,1996,28~37.
    [13] 郭庭双主编.秸秆畜牧业.上海:上海科学技术出版社,1996,17~19,21~22,26~27.
    [14] 韩建林,徐振清,等.白腐真菌可提高秸秆利用率.中国饲料,1996,24:28~29.
    [15] 韩鲁佳,闫巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状.农业工程学报,2002,18(3):87~91.
    [16] 贺健,周秀英,侯桂枝,等.热喷技术与饲料资源开发.饲料工业,1989,5:2~7.
    [17] 何亚林.国外几种无环境污染的碱处理秸秆方法的综述.贵州畜牧兽医,1996,20(3):17~21.
    [18] 贾志海主编.现代羊羊生产.北京:中国农业大学出版社,1999,224~225.
    [19] 冀一伦.秸秆饲料营养价值研究的进展[J].中国畜牧杂志,1990,26(4):60~62.
    [20] 金曙光,候先志,等.玉米秸秆加鸡粪、洒糟发酵制作黄贮的研究内蒙古农牧学院学报,1998,19(2):30~36.
    [21] 库丽霞,陈彦惠,岳建芝,等.玉米秸秆能量指标的测定和利用研究[J].玉米科学,2004,12(1):114—118.
    [22] 雷培基.推广菌糠饲料发展畜牧业.四川农业科技,1986,6:21~22.
    [23] 雷培基,赵双玉,等.菌糠饲喂育肥猪试验报告.四川农业科技,1984,3:19~20.
    [24] 李飞,李胜利.生物处理对秸秆的瘤胃干物质降解率的影响.中国草食动物,2000,2(1):3~5.
    [25] 李浩波主编.秸秆饲料学.西安:西安地图出版社,2003,38~41,183~187.
    [26] 李相成,何泽修,等.用菌糠饲喂北京中鸭试验.饲料工业,1990,4:25~26.
    [27] 刘晋平,李宏全平菇菌糠常规营养成分及氨基酸含量分析.畜牧兽医杂志,1996,15(1):33~34.
    [28] 刘建新,吴耀明,叶均安,等.我国南方提高秸秆饲料利用效率的模式研究见:中国动物营养学分会编.动物营养研究进展.北京:中国农业大学出版社,1997,274~283.
    [29] 刘学剑.秸秆微生物处理技术推广要慎重.饲料与畜牧,1999,1:29~30.
    [30] 卢庆萍,王加启.秸秆处理技术的研究.中国饲料,1999,(10):26~28.
    [31] 卢庆萍,王加启.秸秆处理技术研究进展.中国饲料,1999,(2):7~9.
    [32] 陆景陵主编.植物营养学(上册)(第二版)(M).北京:中国农业大学出版社,2003,23,36,61.
    [33] 毛华明.尿素和氢氧化钙处理作物秸秆提高营养价值的研究中国畜牧杂志,1991,(5):3~5.
    [34] 毛华明,邓卫东,冯仰廉.复合化学处理与成型加工工艺条件对秸秆营养价值影响的研究中国饲料,1999,7:8~9.
    [35] 马玉胜.食用菌糠饲喂奶山羊经济效益显著.饲料研究,1996,3:14~15.
    [36] 幺枕安.高油玉米的开发利用.中国饲料,2000,(17):30~31.
    [37] 孟冬丽.秸秆厌氧发酵活干菌的研究及应用.饲料研究,2001,5:30~32.
    [38] 孟庆翔,熊易强秸秆氨化与精料添加对羔羊生产性能的影响.畜牧兽医学报,1993,24(1):23~28.
    [39] 孟庆翔,肖训军,等.微生物处理小麦秸作为生长肥育牛饲料的营养价值中国畜牧杂志,1999,35(6):3~5.
    [40] 莫放,冯仰廉,杨雅芳.化学处理对秸秆秕壳的瘤胃有机物降解率的影响.动物营养学报,1996,8(1):22~27.
    [41] 莫月华,韩张兴,等.香菇菌糠饲喂黑白花小母牛试验.饲料与畜牧,1991,3:22~23.
    [42] 宁开桂编著.实用饲料分析手册.北京:中国农业科技出版社,1993,52,83~89.
    [43] 宁康健,应如海,等.蘑菇菌糠饲养肉仔鸡效果的研究.中国饲料,1994,12:33~34.
    [44] 汝英俊.SO_2处理饲料的研究进展.国外畜牧学—草食家畜,1991,3:35~38.
    [45] 汝应俊,苗志虹,刘世民.臭氧(O_3)处理粗饲料的进展.甘肃畜牧兽医,1991,21(4):27~29.
    [46] 尚兴甲,王梅芳,张兰稳,等.冬小麦不同时期追施尿素的效果.核农学报,2003,17(6):485~487.
    [47] 宋同明.迎接高油玉米新世纪.种子科技,2001,(5):279~281.
    [48] 史兴乔,边革,刘玉英.秸秆饲料的调制技术.辽宁畜牧兽医,1998,(5):30~31.
    [49] 宋国隆.高油玉米组织学化学、营养价值及其评定方法学研究.中国农业大学博士毕业论文,2004,26~32.
    [50] 宋同明,苏胜宝,陈绍江,等.高油玉米前途光明.玉米科学,1997,5(3):73~77.
    [51] 隋华,刘克祥,张义林,等.高油玉米青贮秸秆饲喂试验研究天津农林科技,1999,(5):1~3
    [52] 孙竹莹.玉米秸秆皮穰分离利用.饲料博览,1999,11(9):32.
    [53] 孙竹莹,梁鸿馨.玉米秸皮穰分离及其综合利用研究.农牧产品开发,1999,(5):17~18.
    [54] 唐世凤,童朝阳.氨化与微贮麦秸饲喂黄牛试验初报.辽宁畜牧兽医,1995,4:12~13.
    [55] 王彪,单会,等.利用纤维素分解酶、秸秆发酵活干菌作为青黄贮外加剂的试验报告.饲料博览,1995,5:10~11.
    [56] 王俊峰,刘景鼎.谷草氨碱化复合处理与玉米秸秆青贮对育成牛饲喂效果研究.当代畜牧,1999,2:32.
    [57] 王佳堃,刘建新.预处理改善农副产品饲料价值机理的研究进展.见:李得发主编,动物营养研究进展.北京:中国农业科学技术出版社,2004,272~284.
    [58] 王敬华,辛承松,李焕玲,等.尿素、石灰处理麦秸喂绵羊试验.饲料工业,1989,(8):17~18.
    [59] 王敬华,辛承松,李焕玲,等.不同处理方法麦秸化学成分和消化率的影响.山东农业科学,1990,1:44~45.
    [60] 王鹏文,王国琴.高油玉米与普通玉米品质的对比研究天津农业科学,2000,6(4):16~18.
    [61] 吴克谦.秸秆饲料的利用与营养评价的研究见:中国动物营养学分会.动物营养研究进展论文集.北京:中国农业大学出版社,1997,268~273.
    [62] 席冬梅,邓卫东,等.白腐真菌降解木质素的机理及培养的营养调控中国饲料,2000,9:8~10.
    [63] 谢选武,李用城,蒋德福,等编.反刍动物饲料.成都:四川科学技术出版社,1989,36~52.
    [64] 刑廷铣主编.农作物秸秆营养价值及其利用.长沙:湖南科学技术出版社,1995,20~25,36~37,44~174.
    [65] 许国英,热合木都拉,马英杰.棉花秸秆的饲用价值研究[J].新疆畜牧业,1998,(3):10—11.
    [66] 薛志民,邹霞青,等.氨化与微贮稻草显微组织结构的比较福建农业大学学报,1997,26(2):223~227.
    [67] 杨福有,李彩凤,许彩萍,等.玉米植株营养含量及变化规律研究西北农业学报,1997,6(4):88~90.
    [68] 杨胜主编.饲料分析及饲料质量检测技术.北京:中国农业大学出版社,1993,19~22,27~33.
    [69] 杨致玲,张栓林.不同化学方法处理对秸秆营养成分的影响.饲料与畜牧,1999,2:25~26.
    [70] 姚亮,梁学武,等.化学处理对菌糠结构性碳水化合物瘤胃降解率的影响.黄牛杂志,2001,27(5):10~13.
    [71] 翟少伟,齐广海,刘福柱.高油玉米在家禽生产中应用的研究进展.饲料工业,2002,23(3):12~14.
    [72] 张吉旺,王空军,胡昌浩,等.高油玉米品种比较试验.杂粮作物,2002,22(5):265~266.
    [73] 张浩.不同处理稻草的营养成分及干物质降解率比较.中国畜牧杂志,2000,36(6):25~27.
    [74] 张山林,耿二强,等.秸秆微贮养牛效果研究.黄牛杂志,1997,23(4):34~35.
    [75] 张文举,王加启,等.秸秆饲料资源开发利用的研究进展.国外畜牧科技,1,2001,28(3):15~18.
    [76] 张子仪主编.中国饲料学.北京:中国农业出版社,2000,870.
    [77] 郑国华,戴荣衮,等.菌糠的营养价值及其喂猪的效果(二报).饲料工业,1990,4:21~23.
    [78] 周江明,徐大连,薛才余.稻草还田综合效益研究.中国农学通报,2002,18(4):7~10.
    [79] 邹霞青,梁学武,刘庆华,等不同氨源氨化稻草饲养奶牛对比试验.中国奶牛,1993,4:47~49.
    [80] 中国农业年鉴编辑委员会.1997年中国农业年鉴.北京:中国农业出版社,1998,13.
    [81] 钟德山,彭光明,等.蘑菇菌糠饲用价值的研究.中国饲料,1994,8:19~21.
    [82] 钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用.资源科学,2003,25(4):62~67.
    [83] 钟云鹤.菌糠饲料喂猪试验.饲料研究,1989,1:17~18.
    [84] Larry L.,Bitney等.(刘金银,王赛玉译).高油玉米种植及用于猪日粮的可行性.国外畜牧科技,2000,27(5):19~20.
    [85] Adams, M. H., S. E. Watkins, A. L. Waldroup, et al. Utilization of high-oil com in diets for broiler chickens. Journal of Applied Poultry Research. 1994, 3(2): 146~156.
    [86] Adugna Tolera. Integrated food and feed production on small-holder mixed farms: effect of early harvesting or variety on maize grain and stover yield and nutritive value ofstover. Second National Maize Workshop of Ethiopia., 2001, 12-16: 187~194.
    [87] Akin, D. E., and E E. Barton. Rumen microbial attachment and degradation of plant cell wallsfeal. Fed. Proc., 1983, 42: 114~121.
    [88] Akin, D. E., L. L. Rigsby, M. K. Theodorove, et al. Population changes of fibrolytic rumen bacteria in the presence of phenolic acids and plant extracts. Anim. Feed Sci. Technol., 1988, 19: 261-275.
    [89] Andrae, J. G., S. K. Duckett, C. W. Hunt, et al. Effects of feeding high-oil corn to beef steers on carcass characteristics and meat quality. Journal of Anirnal Science. American Society of Animal Science, Savoy, USA: 2001, 79(3): 582~588.
    [90] Andrae, J. G., C. W. Hunt, S. K. Duckett, et al. Effect of high-oil corn on growth performance, diet digestibility, and energy content of finishing diets fed to beef cattle. Journal of Animal Science, Savoy, USA, 2000, 78(9): 2257~2262.
    [91] Atwell, D. G, E. H. Jaster, K. J. Moore, et al. Evaluation of high oil corn and corn silage for lactating cows. Journal of Dairy Science. 1988, 71 (10): 2689~2698.
    [92] Bal, M. A., J. G. Coors, and R. D. Shaver. Kernel milk line stage effects on the nutritive value of corn silage for lactating dairy cows. J. Dairy SCi., 1996, 79 (Suppl. 1): 150.
    [93] Balasubramanian, V., Singh, L. Efficiency of nitrogen fertilizer use under rainfed maize and irrigated wheat at Kadawa, northem Nigeria. Fertilizer Research (Netherlands)., 1982, 3(4): 315~324.
    [94] Bandla Srinivas, Gupta, B. N. Rumen degradable protein content and gas production on rumen fermentation of some concentrate ingredients and their relationship. Indian Journal of Animal Nutrition, 1994, 11(3): 171-175.
    [95] Barton, E E., Wolsink, J. H. and Vedder, H. M. Near infrared reflectance speetmscopy of untreated and ammoniated barley straw. Anim. Feed Sci. Tech., 1986, 15: 189~196.
    [96] Ben-Ghedlia, D, Miron, J. Effect of sodium hydroxide, ozone and sulphur dioxide on the composition and in vitro digestibility of wheat straw. J. Sci. Food Agric., 1981, 32: 224~228.
    [97] Ben-Ghedalia, D, Shefet, G. Chemical treatments for increasing the digestibility of cotton straw: 1. Effect of ozone and sodium hydroxide treatment on rumen metabolism and on the digestibility of cell walls and organic matter. J. Agr. Sci., 1983, 100 (2): 393~400.
    [98] Berger, L. L., Fahey, J. G. C., Bourquin, L. D., et al. Modification of forage quality after harvest. In: Fahey J. G. C.(ed). Forage quality, evaluation and utilization. Inc., Madison: American Society of Agronomy, 1994, 922~966.
    [99] Binford G. D., Blackmer A. M. and El Hout N. M. Tissue test for excess nitrogen during com production. Agronomy Journal (USA), 1990, 82 (1): 124~129.
    [100] Billa E., Koullas D. P., Monties B. and et al. Structure and composition of sweet sorghum stalk components. Special issue. Selected papers from the Third European Symposium on Industrial Crops and Products, Reims, France, 22-24 April 1997, 6: 3-4, 297-302.
    [101] Broderick, G A., and Kang J. H. Automated simultaneous determination of ammonia and total amino acid in ruminal fluids and in vitro media. J. Dairy Sci., 1980, 63(1): 64~75.
    [102] Buttner, M. R., Lechtenherg, V. L., Hendrix, K. S., et al. Composition and digestion of ammoniated tall fescue (Festuca arundinacea Schreb) hay. J. Anim. Sci., 1982, 54(1): 173~178.
    [103] Campling, R. C., Freer, M. and Balch, C. C. Factors affecting the voluntary intake of food by cows. 3. The effect of urea on the voluntary intake of oat straw. Br. J. Nutr., 1962, 16: 115~124.
    [104] Chang, V. S., Nagwani, M., and Holtzapple, M. T. Lime pretreatment of erop residues bagasse and wheat straw. Applied biochemistry and biotechnology(USA ), 1998, 74(3): 135~159.
    [105] Cone, J. W., Gelder, A. H. Van. Influence of protein fermentation on gas production profiles. Animal Feed Science and Technology, 1999, 76(3/4): 251~264.
    [106] Cowling, E. B. and W. Brown. Struetural features of cellulosic materials in relation to enzymatic hydrolysis. In celluloses and their applications. Hajny GJ and Reese ET. Advanced Chemical Series., 1969, No. 95: 152~187.
    [107] Crandell, H. J. and J. W. Wodey. Optimization of a device for separating sweet sorghum pith. Paper, American Society of Agricultural Engineers, 1988, No. 88-6550, 12.
    [108] Crofcheck, C. L. and M. D. Montross. Effect of stover fraction on glucose production using enzymatic hydrolysis. Tranactions of the ASAE. American Society of Agricultural Engineers, St Joseph, USA., 2004, 47(3): 841-844.
    [109] Crookston, R. K., and J. E. Kurle. Using the kernel milk line to determine when to harvest com for silage. J. Prod. Agric., 1988, (1): 293~295.
    [110] Cummins, D. G. Quality and yield of com plants and component parts when harvested for silage at different maturity stages. Agron. J., 1970, 62: 781~784.
    [111] Das, M. M.; Kundu, S. S. 1994. The effect of calcium hydroxide, urea and calcium hypochlodte treatment on composition and degradability of wheat straw. Indian J. Dairy Science. 47(1): 59~61.
    [112] Daynard, T. B. and Duncan, W. G. The black layer and grain maturity in com. Crop Sci., 1969, (9): 473~476.
    [113] Erwin, E. S., Marco, G. J., and Emery, E. M. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci., 1961, 44: 1768~1771.
    [114] Flachowsky, G., Tiroke, K., and Schein, G. Botanical fractions of straw of 51 cercel varieties and in sacco of various fractions. Anim. Feed Sci. Technol., 1991, 34: 279~289.
    [115] Francis, D. J. Nitrogen uptake by com from fertilizer and irrigation sources. Dissertation Abstracts International. B, Sciences and Engineering, 1990, 50(7): 2681B~2682B.
    [116] Ganoe, K. H., and G. W. Roth. Kernel milk line as a harvest indictor for com silage in Pennsylvania. J. Prod. Agric., 1992, 5: 519~523.
    [117] Ganegoda, G. A. P., and Ekanayake, E. M. C. Chemical composition office straw: varietal difference and effect of nitrogen fertilizer application. Ceylon Veterinary Journal, 1979, 27(1/4): 31.
    [118] Goto, M., Yokoe, Y., Takable, K., et al. Effect of gaseous ammonia on chemical and structural feature of cell wall in spring barley straw. Animal Feed Science and Technology, 1993, 40: 207~221.
    [119] Goto, M. and Yokoe, Y. Ammoniation of barley straw. Effect on cellulose crystallinity and water-holding capacity. Anita. Feed Sci. Tech., 1996, 58: 239~247.
    [120] Goto, M., Yokoe, Y., Takabe, K., et al. Effects of gaseous ammonia on chemical and structural features of cell walls in spring barley straw. Anim. Feed Sci. Tech., 1993, 40: 207~221.
    [121] Grethlein, H. E., and Converse, A. O. Common aspects of acid prehydrolysis and steam explosion for pretreating wood. Bioresource Tech., 1991, 32: 235~242.
    [122] Harbers, L. H., Kretner, G. L. and Davis, J. G. V. Ruminal digestion of ammonium hydroxide-treated wheat straw observed by scanning eleetron microscopy. J. Anim. Sci., 1982, 54(6): 1308~1319.
    [123] Huber, J. T., G. C. Graf, and R. W. Engel. Effect of maturity on nutrition value of corn silage for lactating cows. J. Dairy Sci., 1965, 48: 1121~1128.
    [124] Hunt, C. W., W. Kezar, and R. Vinande. Yield, chemical composition and ruminal fermentability of corn whole plant, ear and stover as affected by maturity. J. Prod. Agric., 1989, (2): 357~365.
    [125] Innocenti E., Mowat D. N., and I. B. Mandell. Effect of sulphur dioxide and ammonia on chemical composition and in vitro digestibility of corn strover and barley straw. Can. J. Anim. Sci., 1989, 69: 963~972.
    [126] Ito, H., Terashima, Y., Ueda, K. et al. Nitrogen distribution in rice straw and rice hulls treated with sodium chlorite and ammonia. Jpn. J. Zootech. Sci., 1981, 52: 519~524.
    [127] Jackson, M. G. The alkali treatment of straw. Animal Feed Science and Technology, 1977, (2): 105~130.
    [128] Jagruti Gandi, Holtzapple, M. T., Ferret, A., et al. Lime treatment of agricultural residues to improve tureen digestibility. Animal Feed Science and Technology, 1997, 68(3/4): 195~211.
    [129] Johnson L. M., J. H. Harrison. Nutrition value of corn silage as affected by maturity and mechanical processing: a contemporary review. J. Dairy Sci., 1999, 82: 2813~2825.
    [130] Kakati, P. K., Kalita, M. M. Response of Indian mustard (Brassica juncea) varieties to nitrogen. Indian Journal of Agronomy, 1996, 41(2): 338~345.
    [131] Kamstra, L. D., A. L. Moxon and O. G. Bentley. The effect of stage of maturity and Iignification on the digestion of cellulose in forage plants by rumen micro-organism in vitro. J. Anim. Sci., 1958, 17: 199~208.
    [132] Karunanandaa, K., Varga, G. A., et al. Butanical fractions of rice straw colonized by white-rot fungi: changes in chemical composition and structure[J]. Animal-Feed-Science-and-Technology, 1995, 55 (3-4): 179~199.
    [133] Kerley, M. S., Fahey, G, C., Berger, L. L., et al. Effects of alkaline hydrogen peroxide treatment of wheat straw of site and extent of digestion in sheep. J. Anim. Sci., 1986, 63: 868~878.
    [134] Kerley, M. S., Garleb, K. A., Fahey, G. C., et al. Effects of alkaline hydrogen peroxide treatment of cotton and wheat straw on cellulose crystallinity and on composition and site and extent of disappearance of wheat straw cell wall phenolics and monosaccharides by sheep. J. Anim. Sci., 1988, 66: 3235~3244.
    [135] Kraiern, K., Abdouli, H. and Goodrich, R. D. Comparison of the effects of urea and ammonia treatment of wheat straw on intake, digestibility and performance of sheep. Livestock Production Science, 1991, 29: 311~321.
    [136] LaCount, D. W., J. K. Drackley, T. M. Cicela, et al. High oil com as silage or grain for dairy cows during an entire lactation. Journal of Dairy Science, 1995, 78 (8): 1745~1754.
    [137] Lapa, V. V., lvakhnenko, N. N., Polonskaya, L. Yu., et al. Effect of mineral fertilizers on the productivity and quality of spring wheat Ivolga on a demopodzolic loamy sand. Soil-research-and-the-use-of-fertilizers. 1997, 12-20: 197.
    [138] Leask, W. C., and Daynard, T. B. Dry matter yield, in vitro digestibility, percent protein, and moisture of corn stover following grain maturity. Can. J. Plant Sci., 1973, 53: 515~522.
    [139] Lee, B. D., D. J. Kim, and S. J. Lee. Nutrifive and economic values of high oil corn in layer diet. Poultry Science. Poultry Science Association, Savoy, USA, 2001, 80(11 ): 1527~1534.
    [140] Lee, H. J., Lee, S. C., Kirn, J. D., et al. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Australasian Journal of Animal Sciences. Asian-Australasian Association of Animal Production Societies, Kyunggi-do, Korea Republic. 2003, 16(8): 1143~1150.
    [141] Lewandowski, I., and Kauter, D. The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Industrial Crops and Products. Elsevier Science Ltd, Oxford, UK., 2003, 17(2): 103~117.
    [142] Mader, T. L., Turgeon, O. A. Jr., Klopfenstein, T. J., et al. Effects of previous nutrition, feedlot regimen and protein level on feedlot performance of beef cattle. Journal of Animal Science, 1989, 67(2): 318~328.
    [143] Masakazu Goto. Effect of gaseous ammonia on barley straws showing different rumen degradabilities. J. Food Science and Agric., 1991, 56: 141~153.
    [144] Menke, K. H., L. Raab, A. Salewski, et al. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agfic. Sci., (Camb.), 1979, (93): 217~222.
    [145] Menke, K. H., and Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev, 1988, 28: 7~55
    [146] Miron, J., and Ben-Ghedalia, D. Digestibility by sheep of total and cell wall monossaccharides of wheat straw treated chemically or chemically plus enzymaticalLy. J. Dairy Sci., 1987, 70: 1876~1884.
    [147] Moniruzzaman, M. Effect of steam explosion on the physicochemical properties and enzymatic sacchadfication office straw. Appl. Biochem. Biotech., 1996, 59: 283~297.
    [148] Moss, A. R., Givens, D. I. and Everinngton, J. M. The effect of sodium hydroxide treatment on the chemical composition digestibility and digestible energy content of wheat, badey and oat straw. Animal Feed Sci. and Technology, 1990, 29: 73~87.
    [149] Okamoto, M., Yamakawa, M., and Abe, H. Improvement of nutrive value of cereal straw by soild state fermentation using pleurotus ostreatus. Tropical Agriculture Research Series, 1992, 25: 178~185.
    [150] Owert, F. G. Factors affecting nutritive value of com and sorghum silage. J. Dairy Sci., 1967, 50: 404~416.
    [151] Pichard D. G., Tesser O. B., and Bianco R. A. M. Interference of nitrogenous compounds in techniques of in-vitro ruminal gas production. Ciencia e lnvestigaeion Agraria, 1998, 25(2): 81~90.
    [152] Richard O. Kellems, and D. C. Church. Livestock feeds and feeding[M]. 5th ed. Upper Saddle River, NJ.: Prentice Hall, 2002, 112, 129.
    [153] Robertson, M. J., Muchow, R. C., Wood, A. W., et al. Accumulation of reducing sugars by sugarcane: effects of crop age, nitrogen supply and cultivar. Field Crops Research, 1996, 49(1): 39~50.
    [154] Russell, J. R. Influence of harvest date on the nutritive value and ensiling characteristics of maize stover. Animal Feed SCi. and Technol., 1986, 14: 11~27.
    [155] SAS. SAS/STAT(?) User's Guide (Release 8.2). SAS Inst. Inc., Cary, NC., 1999.
    [156] Shafshak, S. A., EI Geddawy, I. H., Allam, S. A. H., et al. Effect of planting densities and nitrogen fertilizer on: 1-growth criteria, juice quality and chemical constituents of some sugar cane varieties. Pakistan Sugar Journal. Shakarganj Sugar Research Institute, Jhang, Pakistan, 2001, 16(4): 2~11.
    [157] Shand, W. J., Orskov, E. R., and Morrice, L. A. F. Rumen degradation of straw. 5. Botanical fractions and degradability of different varieties of oat and wheat straws. Animal Production. 1988, 47(3): 387~392.
    [158] Sheperd A. C., and L. Kung. Effects of an enzyme additive on composition of corn silage ensiled at various stages of maturity. J Dairy SCi., 1996,79(10): 1767~1773.
    [159] Sifiva, Ayona. T., and Orskov, E. R. Fibre degradadation in the rumens of animals receiving hay, untreated or ammonia treated straw.Animal Feed Science and Technology, 1988, 19: 277~287.
    [160] Singh, G. P., Klopfensteirt, T. J. Kinetics of microbial protein production and in vitro digestibility of straw ammoniated and/or supplemented with NPN and protein. Indian Journal of Animal Sciences, 1994, 64(8): 867~871.
    [161] Song, G. L., D. F. Li, X. S. Piao, et al. True amino acid availability in Chinese high-oil corn varieties determined in two types of chickens. Poultry Science. Poultry Science Association, Savoy, USA, 2004, 83(4): 683~688.
    [162] Song, G. L., D. F. Li, X. S. Piao, et al. Apparent ileal digestibility of amino acids and the digestible and metabolizable energy content of high-oil corn varieties and its effects on growth performance of pigs. Archives of Animal Nutrition. Taylor & Francis Ltd, Abingdon, UK., 2003, 57(4): 297~306.
    [163] Stapleton, A. R. A., Wagenet, R. J., and Turner, D. L. Corn growth and nitrogen uptake under irrigated, fertilized conditions. Irrigation Science, 1983, 4(1): 1~15.
    [164] Surendra Kumar, Choudhary, G. R., and Chaudhari, A. C. Effects of nitrogen and biofertilizers on the yield and quality of coriander (Coriandrum sativum L.). Annals of Agricultural Research. Indian Society of Agricultural Science, New Delhi, India., 2002, 23(4): 634~637.
    [165] Tilly, J. M. A., and R. A. Terry. A two stage technique for the in vitro digestion of forage crops. J. Br. Grassland Soc., 1963, 18: 104~111.
    [166] Tomlin, D. C., R. R. Johnson and B. A. Dehority. Relationship of lignification to in vitro cellulose digestibility of grasses and legumes. J. Anita. Sci., 1964, 23: 161.
    [167] Toussaint, B., Excoffier, G, and Vignon, M. R. Effect of steam explosion treatment on the physico-chemical characteristics and enzymatic hydrolysis of poplar cell wall components. Anim. Feed Sci. Tech., 1991, 32: 235~242.
    [168] Twain Butler, Ken Stokes, Sandy Stokes. Forages Corn Silage production.Texas, USA: Texas Cooperative extension, the Texas A&M university system, 2003, 3.
    [169] Umunna, N. N., Bartling, R. R., and Klopfenstein T. J. High temperature and pressure processing of maize cobs: animal response and effect of sodium metabisulphite. Anim. Feed Sci. Tech., 1986, 14: 161~139.
    [170] Van Soest, P. J. Nutritional ecology of the ruminant book. Inc., Corvallis OR., 1982, 374.
    [171] Van Soest, P. J., J. B. Robertson, and B. A. Lewis. Methods for dietary fiber, neutral detergent fiber, and nonstarch polycarbohydratess in relation to animal nutrition. J. Dairy Sci., 1991, 74: 3583~3597.
    [172] Vasilica, C., Mogarzan, A. Effect of different organic fertilizer in combination with mineral fertilizer on yield and quality of sugar beet, winter wheat and com. Arch. Acker. Pfl. Roden., 1999, 44: 93~102.
    [173] Vhrk, A. S., Kamphues, J. Urea ammoniation of crop residues nutritional enrichment vis-a-vis envimnmentai pollution. Journal ofEcotoxicology & Environmental Monitoring. 1995, 5(2): 89~98.
    [174] Virk, A. S., Prasad, D., Tewatia, B. S., et al. Improvement of the nutritive value of urea-treated wheat straw. Buffalo Bulletin, 1996, 15(2): 27~30.
    [175] Well, J., Westgate, P., Kohlmann, K. et al. Cellulose pretreatments of lignocellulosic substrates. Enzyme Microbial Tech., 1994, 16: 1002~1004.
    [176] Weiss W. P., Wyatt D. J. Effect ofoil content and kernel processing of corn silage on digestibility and milk production by dairy cows. Journal of Dairy Science. 2000, 83(2): 351~358.
    [177] Whitlock, L. A., D. J. Schingoethe, A. R. Hippen, et al. Milk production and composition from cows fed high oil or conventional corn at two forage concentrations. Journal of Dairy Science. American Dairy Science Association, Savoy, USA., 2003, 86(7): 2428~2437.
    [178] Wiersma, D. W., P. R. Charter, K. A. Albrecht, et al. Kernel milk line stage and corn forage yield, quality and dry matter content. J. Prod. Agfic., 1993, (6): 94.
    [179] Xiong, Y., S. J. Bartle, and R. L. Preston. Improved enzymatic method to measure processing effects and starch availability in sorghum grain. J. Animal SCi., 1990, 68: 3861~3870.
    [180] Zafar S. l., Qalsem-sheeraz. Degradation of the lignocellulosic component on wheat straw- Coriolus versicolor solid state fermentation under nitrogen-starved conditions. Biological Wastes, 1989, 27(1): 67~70.
    [181] Zafar S. I., Abdullah, N. Influence of nutrient amendment on the biodegradation of wheat straw during solid state fermentation with Trametes versicolar. International Biodetefiomfion and Biodegradation, 1996, 38(2): 83~87.
    [182] Zaman, M. S., Owen, E. The effect of calcium hydroxide and urea treatment of barley straw on chemical composition and digestibility in vitro. Animal Feed Science and Technology, 1995, 51(1/2): 165~171.
    [183] Zaman, M. S., Owen, E., Pike, D. J. The calculations method used for optimising conditions of treatment of barley straw with calcium hydroxide: effects of level of calcium hydroxide and urea, moisture, treatment time and temperature on in vitro digestibility. Animal Feed Science and Technology, 1994, 45: 271~282.
    [184] Zaman, M. S., Owen, E. Effect of calcium hydroxide or urea treatment of barley straw on intake and digestibility in sheep. Small Ruminant Research, 1990, 3(3): 237~248.
    [185] Zhang-Jian Guo, Kumal, S. et al. Effects of additives of lactic acid bacteria and cellulases on the fermentation quality and chemical composition of naked barley (Hordeum vulgare L.emand Lam)straw silage. Grassland Science, 1997, 43(2): 88~94.
    [186] Zhang-Jian Guo, Kumai, S. et al. Effects of microwave radiation and cellulase addition on silage quality of fresh straw of rice(Oryza Sativa L.). Animal Science and Technology, 1997, 68(2): 131~137.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.