共振光散射光谱探针在DNA杂交及多态性检测中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA杂交及多态性检测分析广泛的应用于病毒及遗传疾病的诊断,已经引起分子生物学、药学、生物化学以及分析化学等领域工作者的高度关注。本论文在课题组多年研究的积累及大量文献调研的基础上,合成了荧光高分子聚合物聚[5-甲氧基-2-(3-磺酰化丙氧基)-1,4-苯撑乙烯(MPS-PPV)作为共振光散射光谱探针,及采用三苯甲烷染料溴甲酚绿(BG),表面活性剂十六烷基三甲基溴化铵(CTAB),多环芳烃萘及金属卟啉铜作为探针,结合多种光谱法和电镜分析,探讨其作用机理,建立了5个能够识别完全互补和碱基错配的DNA的新方法,其方法对疾病诊断方面有潜在应用价值;2个测定纳克级核酸、蛋白质的新方法,方法准确度和灵敏度高,简便、快速。
     1)合成了水溶性荧光高分子聚合物MPS-PPV,采用1H-NMR,IR对聚合产物的分子结构进行了表征,研究了聚合产物的紫外吸收,荧光性质,并用扫描电镜研究了聚合物的表面形态。将MPS-PPV应用到杂交检测,在pH 7.2的生理Tris-HCl缓冲溶液中,在40℃温度时,杂交反应30 min,在460 nm处产生最大RLS信号。研究了其RLS光谱,荧光光谱性质,反应的电化学性质,探讨了反应机理,机理研究表明,MPS-PPV可以通过CTAB的桥梁作用与带负电荷的双链DNA(P1≈T1)发生静电结合作用,这种作用减弱了Pl≈T1骨架上的负电荷,增强了其骨架的疏水性,最终诱导了MPS-PPV-CTAB和P1≈T1之间相互聚集,导致大的聚集体的形成,这种大的聚集体表现出强的RLS信号放大作用。通过测定放大的RLS信号,完全互补和有碱基错配的DNA序列能很容易地被检测和识别。这种方法不需要对探针DNA和目标DNA序列进行标记,实现了完全互补序列与单碱基错配序列及非互补碱基序列的区分,建立了简单、快速、免标记的DNA杂交检测方法,在疾病的诊断方面有潜在的应用价值。
     2)以MPS-PPV为DNA的RLS探针,研究了二者相互作用的机理和反应的RLS光谱,荧光光谱,紫外光谱,原子力显微镜(AFM)特性,建立了纳克级DNA测定的新方法。在pH 5.0的BR缓冲溶液中,MPS-PPV对脱氧核糖核酸与阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)的共振光散射光谱有协同增强作用,在共振光散射波长为342 nm处,发生较大的共振光散射信号。在最佳实验条件下,体系的△IRLS值与鱼精DNA(fsDNA)在一定范围内呈良好的线性关系,其相关系数为0.9996,检测限最低可达3.10 ng/mL。机理研究表明,MPS-PPV、CTAB和DNA之间的结合以静电作用为主,同时还有一定的疏水作用和扦插作用。
     3)以MPS-PPV为蛋白质的RLS探针,研究了反应的RLS光谱,荧光光谱,紫外光谱,原子力显微镜(AFM)特性,探讨了二者相互作用的反应机理,建立了纳克级蛋白质测定的新方法。在pH 3.22的BR缓冲溶液中,MPS-PPV与蛋白质通过静电作用和疏水作用,在共振光306 nm处发生较大的共振光散射信号,体系的△IRLS值与牛血清白蛋白(BSA)在一定范围内呈良好的线性关系,其相关系数为0.9991,检测限最低可达3.99 ng/mL。
     4)以三苯甲烷类染料溴甲酚绿作为杂交检测探针,探讨了其他不同种三苯甲烷类染料甲基紫,铬天青,亮绿,二甲酚橙和碱性品红与ssDNA,dsDNA的RLS光谱特征,并用Gaussian03计算了染料分子体积对其与DNA作用的影响。研究了溴甲酚绿与dsDNA作用的RLS光谱,荧光光谱性质,紫外光谱,AFM特性,探讨了反应机理,建立了完全互补序列与单碱基错配序列及非互补碱基序列的区分方法。机理研究表明,BG与P1≈T1之间一定存在沟槽作用,这种沟槽作用减弱了P1≈T1骨架上的负电荷,增强了其骨架的疏水性,最终诱导BG-P1≈T1之间相互聚集,从而引起聚集体的形成和强的RLS信号放大作用。
     5)以表面活性剂CTAB作为杂交检测探针,探讨了其他不同表面活性剂,阳离子表面活性剂:十六烷基三甲基溴化铵(Cetyltriethylammnonium bromide, CTAB)和溴化十六烷基吡啶(Cetylpyrinium bromide, CPB);阴离子表面活性剂:十二烷基苯磺酸钠(Sodium dodecylbenzene sulphonate, SDBS)和十二烷基磺酸钠Sodium dodecyl sulphonate (SDS),非离子表面活性剂:曲拉通-100(Triton-100, TX-100)和吐温-80(Tween-80, T-80)与sDNA,dsDNA的RLS光谱特征。研究了CTAB与dsDNA作用的RLS光谱,荧光光谱性质,紫外光谱,AFM特性,探讨了反应机理,建立了完全互补序列与单碱基错配序列及非互补碱基序列的区分方法。机理研究表明,CTAB与P1≈T1之间存在静电作用与疏水作用的协同影响,诱导CTAB-P1≈T1聚集,从而引起聚集体的形成和强的RLS信号放大作用。
     6)以多环芳烃萘作为杂交检测探针,探讨了其他多环芳烃蒽、荧蒽、芘、菲与sDNA,dsDNA的RLS光谱特征。研究了萘与dsDNA作用的RLS光谱,荧光光谱性质,紫外光谱,AFM特性,探讨了反应机理,建立了完全互补序列与单碱基错配序列及非互补碱基序列的区分方法。萘能和双链DNA(P1≈T1)发生沟槽结合作用,这种结合作用依赖于DNA的G-C碱基序列和萘分子的大小。这种结合减小了P1≈T1骨架的负电荷,增强了其疏水性,从而诱导了萘-P1≈T1之间的疏水结合作用,导致大的聚集体的形成。这种大的聚集体表现出强的RLS信号放大作用,通过测定这种放大的RLS信号,能够准确、简便、快速的检测和识别完全互补和有碱基错配的DNA序列。此方法不需要对探针DNA和目标DNA序列进行标记。在疾病的诊断方面有潜在的应用价值。
     7)以卟啉铜作为杂交检测探针,探讨了其他金属卟啉钴,卟啉铬,卟啉镁,卟啉锌,卟啉镍与sDNA,dsDNA的RLS光谱特征。研究了卟啉铜与dsDNA作用的RLS光谱,荧光光谱性质,紫外光谱,AFM特性,探讨了反应机理,实现了完全互补序列与单碱基错配序列及非互补碱基序列的区分。机理研究表明,疏水型金属卟啉Cu(Ⅱ)-TAOPP能和双链DNA(P1≈T1)发生缔合作用,导致大的聚集体的形成。这种大的聚集体表现出强的RLS信号放大作用及荧光猝灭现象。通过测定这种放大的RLS信号,能够准确、简便、快速的检测和识别完全互补和有碱基错配的DNA序列。这种方法不需要对探针DNA和目标DNA序列进行标记,在疾病的诊断方面有潜在的应用价值。
Detection of DNA hybridization and polymorphism widely used in the diagnosis of viral and genetic diseases, has caused the attention of molecular biology, pharmacology, biochemistry and analytical chemistry and other workers. On the basis of the accumulation of years of research and the investigation and research a large number of references, we synthesis the fluorescent polymer poly [5- methoxy -2-(3-sulfonated propoxy) -1,4- phenylene vinylene (MPS-PPV) as a resonance light scattering probe, and use of triphenylmethane dyes bromocresol green (BG), surfactant cetyltrimethylammonium bromide (CTAB), polycyclic aromatic hydrocarbons naphthalene (NAP) and metal Cu (Ⅱ)meso-(4-alkoxyphenyl) porphyrin (Cu(Ⅱ)-TAOPP) as probes, and used various of spectra means and electron microscopic technology to study the mechanism of the reactions. established 5 new methods of accurate, simple and quickly identify fully complementary and mismatched DNA base pairs and 2 new analytical methods of nucleic acids and protein.
     1) Synthesized a water soluble fluorescent polymer poly [5-methoxy-2-(3-sulfonyl isopropoxide)-1, 4-PPV (MPS-PPV), used 1H-NMR, IR to characterize the molecular structure, researched the UV absorption, fluorescence properties of polymer and utilized scanning electron microscope to study on surface morphology of the polymer. The results showed that the maximum UV-vis spectra of polymer was at 450nm with a wide absorption peak, fluorescence peak located at 550 nm and its surface has a microporous honeycomb structure with an irregular appearance which closed to a ball shape.We applied MPS-PPV into the determination of DNA hybridization,inspected the best conditions of the reaction, studied the properties of RLS spectra, fluorescence spectra and electrochemical reaction, discussed the reaction mechanism, proposed a simple and speedy assay for specific oligonucleotide sequences and single-base mismatch based on the different RLS signals of polymer/ssDNA and polymer/dsDNA, and established a new non-labeled methods for the determination of DNA hybridization. In pH7.2 Tris-HCl buffer, at 40 oC, hybridization reaction for half an hour, RLS of polymer-DNA system with the maximum scattering peak located at 460 nm. Under the optimum conditions,the enhanced RLS intensity was proportional to the concentration of target DNA over the range of 0.3×10-7~1.0×10-7mol/L. Mechanism research indicated that MPS-PPV can interact with negatively charged double-stranded DNA (dsDNA, P1≈T1) by electrostatic binding in the presence of CTAB. The binding effect weakened the negative charge of P1≈T1 skeleton, enhanced its skeleton’s hydrophobicity, and led the aggregation of MPS-PPV-CTAB and P1≈T1, resulting in the amplification of RLS signal. By measuring the amplification of RLS signal, complete complementary and bases mismatched DNA sequences can easily be detected and identified. This method does not need to lable the target DNA and probe DNA sequence. The novel method is simple and fast, and has potential application value in disease diagnosis.
     2) We applied MPS-PPV into the determination of DNA, studied the properties of RLS spectra, fluorescence spectra, UV absorption spectra and AFM, discussed the reaction mechanism, and proposed a simple and speedy assay for DNA determination. In pH5.0 BR buffer, MPS-PPV has synergistic effect in the RLS signal of CTAB-DNA with the maximum scattering peak located at 342 nm. Under the optimum conditions , the enhanced RLS intensity was proportional to the concentration of fsDNA, the related coefficient is 0.9996, and the limit of detection is 3.10 ng/mL. Mechanism research indicated that electrostatic force is the main force among MPS-PPV, CTAB and DNA, together with hydrophobic effect and intercalation.
     3) We applied MPS-PPV into the determination of protein, studied the properties of RLS spectra, fluorescence spectra, UV absorption spectra and AFM, discussed the reaction mechanism, and proposed a simple and speedy assay for protein determination. In pH 3.22 BR buffer, MPS-PPV interacted with BSA (Bovine Serum Albumin) by electrostatic force and hydrophobic effect with the maximum scattering peak located at 342 nm. The enhanced RLS intensity was proportional to the concentration of BSA, the related coefficient is 0.9991, and the limit of detection is 3.99 ng/mL.
     4) We applied triphenylmethane dye Bromocresol Green (BG) into the determination of DNA hybridization, discussed the properties of RLS spectra of other different kinds of triphenylmethane dyes methyl violet, chromazurine, bright green, xylenol orange and alkaline magenta with double strand DNA (dsDNA) and single strand DNA (ssDNA) and utilized Gaussian03 to calculate the molecular volume of those dyes and the effects on the interaction with DNA. We studied the properties of RLS spectra, fluorescence spectra, UV absorption spectra and AFM of BG-dsDNA, discussed the reaction mechanism, proposed a simple and speedy assay for specific oligonucleotide sequences and single-base mismatch based on the different RLS signals of BG/ssDNA and BG/dsDNA , and established a new non-labeled methods for the determination of DNA hybridization. Mechanism research indicated that BG can interact with negatively charged double-stranded DNA (dsDNA, P1≈T1) by groove binding. The binding effect weakened the negative charge of P1≈T1 skeleton, enhanced its skeleton’s hydrophobicity, and led the aggregation of BG and P1≈T1, resulting in the amplification of RLS signal.
     5) We applied cationic surfactant CTAB into the determination of DNA hybridization, discussed the properties of RLS spectra of other different kinds of surfactants CPB, SDBS, SDS, TX-100 and T-80 with dsDNA and ssDNA. We studied the properties of RLS spectra, fluorescence spectra, UV absorption spectra and AFM of CTAB-dsDNA, discussed the reaction mechanism, proposed a simple and speedy assay for specific oligonucleotide sequences and single-base mismatch based on the different RLS signals of CTAB/ssDNA and CTAB/dsDNA,and established a new non-labeled methods for the determination of DNA hybridization. Mechanism research indicated that CTAB can interact with dsDNA (P1≈T1) by electrostatic force and hydrophobic effect leading the aggregation of CTAB and P1≈T1,resulting in the amplification of RLS signal.
     6) We applied PAH (polycyclic aromatic hydrocarbon) naphthalene into the determination of DNA hybridization, discussed the properties of RLS spectra of other different kinds of PAHs anthracene, fluoranthene, pyrene, phenanthrene with dsDNA and ssDNA. We studied the properties of RLS spectra, fluorescence spectra, UV absorption spectra and AFM of naphthalene-dsDNA, discussed the reaction mechanism, proposed a simple and speedy assay for specific oligonucleotide sequences and single-base mismatch based on the different RLS signals of naphthalene/ssDNA and naphthalene/dsDNA, and established a new non-labeled method for the determination of DNA hybridization. Mechanism research indicated that naphthalene can interact with dsDNA (P1≈T1) by groove binding which depends on G-C sequenees of dsDNA and the volume of naphthalene. The binding effect weakened the negative charge of P1≈T1 skeleton, enhanced its skeleton’s hydrophobicity, and led the aggregation of naphthalene and P1≈T1, resulting in the amplification of RLS signal. By measuring the amplification of the RLS signal, entirely complementary and bases mismatched DNA sequences can easily be detected and recognized. The method has potential application value in disease diagnosis.
     7) We applied Cu (Ⅱ)meso-(4- alkoxyphenyl) porphyrin(Cu(Ⅱ)-TAOPP) into the determination of DNA hybridization, discussed the properties of RLS spectra of other different kinds of metalloporphyrin Co(Ⅱ)-TAOPP, Cr(Ⅱ)-TAOPP, Mg(Ⅱ)-TAOPP, Zn(Ⅱ)-TAOPP and Ni(Ⅱ)-TAOPP with dsDNA and ssDNA. We studied the properties of RLS spectra, fluorescence spectra, UV absorption spectra and AFM of Cu(Ⅱ)-TAOPP-dsDNA, discussed the reaction mechanism, proposed a simple and speedy assay for specific oligonucleotide sequences and single-base mismatch based on the different RLS signals of Cu(Ⅱ)-TAOPP/ssDNA and Cu(Ⅱ)-TAOPP/dsDNA, and established a new non-labeled methods for the determination of DNA hybridization. Mechanism research indicated that hydrophobic Cu(Ⅱ)-TAOPP can interact with dsDNA(P1≈T1) leading the aggregation of Cu(Ⅱ)-TAOPP and P1≈T1. The large aggregates showed strong RLS signal amplification and fluorescence quenching. By measuring the amplification of the RLS signal, entirely complementary and bases mismatched DNA sequences can easily be detected and recognized. The method has potential application value in disease diagnosis.
引文
[1]程琼,纳米磁性功能微球在免疫分析中的应用及生物传感器的研究。浙江大学博士论文,2006.
    [2]王延华,冯忠堂, Merlio J P.分子杂交理论与技术[M].北京:科学出版社, 2005:1-2.
    [3] Wood K, Little C S, Little R R, Hammond P T. A Family of Hierarchically Self-Assembling Linear-Dendritic Hybrid Polymers for Highly Efficient Targeted Gene Delivery [J]. Angew. Chem., Int. Ed. 2005, 44: 6704-6408.
    [4] Behr J P. Synthetic gene-transfer vectors [J]. Acc. Chem. Res. 1993, 26, 274-278.
    [5] Sterrenburg E, Turk R, Boer J M, van Ommen G. B, den Dunnen J T. Dunnen, A common reference for cDNA microarray hybridizations [J]. Nucleic Acids Res. 2002, 30(21): e116-e116.
    [6] Wang L, Yang C J, Medley C D, Benner S A, Tan W H. Locked Nucleic Acid Molecular Beacons [J]. J. Am. Chem. Soc. 2005, 127(45): 15664-15665.
    [7] Hutter E, Pileni M P. Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy [J]. J. Phys. Chem. B 2003, 107(27): 6497-6499.
    [8] Elghanian R, Storhoff J J, Mucic R C, letsinger R L, Mirkin C A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles [J]. Science 1997, 277: 1078-1081.
    [9] Lin V S Y, Motesharei K, Dancil K P S, Sailor M J, Ghadiri M R. A porous silicon-based optical interferometric biosensor [J]. Science 1997, 278: 840-843.
    [10] Pan S, Rothberg L. Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates[J]. J. Nano Lett. 2003, 3: 811-814.
    [11] Miao W J, Bard A J. Electrogenerated Chemiluminescence DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres [J] .Anal. Chem. 2004, 76: 5379-5386.
    [12] Kuhnast B, Dolle F, Terrazzino S, Rousseau B, Loch C, Vaufrey F, Hinnen F, Doignon I, Pillon F, David C, Crouzel C, Tavitian B. General Method to Label Antisense Oligonucleotides with Radioactive Halogens for Pharmacological and Imaging Studies [J]. Bioconj. Chem. 2000, 11(5): 627-636.
    [13] Yu F, Yao D, Knoll W. Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS) [J]. Nucleic Acids Res. 2004, 32: e75-e75.
    [14] Peterson A W, Wolf L K, Georgiadis R M. Hybridization of Mismatched or Partially Matched DNA at Surfaces [J]. J. Am. Chem. Soc. 2002, 124: 14601-14607.
    [15] Watts H J, Yeung D, Parkes H. Real-time detection and quantification of DNA hybridization by an optical biosensor [J]. Anal. Chem. 1995, 67(23): 4283-4289.
    [16] Li H X, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles [J]. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101(39): 14036-14039.
    [17] Wang J. Electrochemical nucleic acid biosensors[J]. Anal. Chim. Acta 2002, 469(1): 63-71.
    [18] Hook F, Ray A, Norden B, Kasemo B. Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements [J]. Langmuir 2001, 17(26): 8305-8312.
    [19] Fritz J, Baller M K, Lang H P, Rothuizen H, Vettiger P, Meyer E, Guntherod H J, Gerber C, Gimzewski J K. Translating Biomolecular Recognition into Nanomechanics [J]. Science 2000, 288: 316-318.
    [20] Jassny B R, Kennedy D. The Human Genome [J]. Science 2002, 291, 1153-1153
    [21] Gilles P N, Wu D J, Foster C B, Dillon P, Chanoek S J. Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips [J]. Nat. Biotechnol. 1999, 17: 365-370.
    [22] Marras S A, Kramer F R, Tyagi S. Multiplex detection of single -nucleotide variations using molecular beacons [J]. Genet. Anal. 1999, 14: 151-156.
    [23] Ross P L, Lee K, Belgrader P. Discrimination of Single-Nucleotide Polymorphisms in Human DNA Using Peptide Nucleic Acid Probes Detected by MALDI-TOF Mass Spectrometry [J]. Anal. Chem. 1997, 69: 4179-4202
    [24] Tato T A, Mirkin C A, Letsinger R L. Scanometric DNA Array Detection with Nanoparticle Probes[J]. Science 2000, 289: 1757-1760.
    [25] Okamoto A, Kanatani K, Saito O. Pyrene-Labeled Base-Discriminating Fluorescent DNA Probes for Homogeneous SNP Typing [J]. J. Am. Chem. Soc. 2004, 126(15): 4820-4827.
    [26] Gaunt T R, Hinks L J, Rassoulian H, Day I N. Manual 768 or 384 well microplate gel‘dry’electrophoresis for PCR checking and SNP genotyping [J]. Nucleic Acids Res. 2003, 31(19): e48-e48.
    [27] Fei Z, Smith L M. Analysis of single nucleotide polymorphisms by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Rapid Commun. Mass. Spectrom. 2000, 14: 950-959.
    [28] Hebert N E, Brazil S A. Microchip capillary gel electrophoresis with electrochemical detection for the analysis of known SNPs [J]. Lab. Chip, 2003, 3: 241-247.
    [29] Liu G D, Lee T M H, Wang J. Nanocrystal-Based Bioelectronic Coding of Single Nucleotide Polymorphisms [J]. J. Am. Chem. Soc. 2005, 127(1): 38-39.
    [30]李天剑,沈含熙,罗云敬,乙基紫标记分光光度法测定脱氧核糖核酸[J],分析化学. 1998, 26(11): 1372-1374.
    [31] Felipe R V, Marina M. C, Eduardo G. P, Hilario R. A procedure for eliminating interferences in the lowry method of protein determination. Anal. Biochem., 1989, 183(2): 275-278.
    [32] Smith P K, Krohn R I, Hermanson G T, Mallia A K, Gartner F H, et al. Measurement of Protein using bicinchoninic acid. Anal. Biochem., 1985, 150: 76-85.
    [33]迟燕华,庄稼,李克安,李娜,董发勤,童沈阳,茜素红S与人血清白蛋白相互作用的分光光度研究.分析测试学报,1999, 18(1): 9-12.
    [34]朱锵,童沈阳,牛血清白蛋白与有机小分子偶氮磺Ⅲ、溴偶氮磺Ⅲ相互作用的研究[J].分析化学. 1996, 24(11): 1263-1268.
    [35] Oshawa K, Ebata N. Sliver stain for detecting 10-femtogram quantities of protein after polyacrylamide gel electrophoresis. Anal. Biochem., 1983, 135: 409-415.
    [36] Li W Y, Xu J G, Gou X Q, Zhu Q Z, Zhao Y B. A novel Fluorometric method for DNA and RNA determination [J]. Anal.Lett, 1997, 30(3): 527-536.
    [37] Chen Q Y, Li D H, Zhao Y, Yang H H, Zhu Q Z, Xu J G. Interaction of a novel Red-reigion fluorescent probe Nile Blue with DNA and its application to nucleic acids assay [J]. Alalyst, 1999, 124: 901-906.
    [38] Gou X Q, Li F, Zhao Y B. Fluoresence investigation of the interaction of safranine T with DNA [J]. Anal Lett, 1998, 31(6): 991-1005.
    [39] Shepherd G R, Noland B J. A fluorescence assay suitable for histone solutions [J]. Anal. Biochem., 1965,11: 443.
    [40]李东辉,杨黄浩,郑洪,陈秋影,许金钩,用四磺基铝钛菁直接测定血清中白蛋白[J].分析化学,1999, 27(9): 1018.
    [41] Kennedy D G., Nelson J, van der Berg H W, Murphy R F. Assessment of cisplatin reactivity with peptides and proteins using reverse-phase high-performance liquid chromatography and flameless atomic absorption spectroscopy [J]. Anal.Biochem, 1982, 124: 167-179.
    [32] Zhu Q, Liu F, Xu J, Su W, Huang J. Mimetic-enzyme fluorescence immunoassay using a thermal phase separating polymer [J]. Analyst, 1998, 123(5):1131-1134
    [43] Hill B T, Whatley S, A simple, rapid microassay for DNA [J]. FEBS Lett, 1975, 56(1): 20-23.
    [44] Guo Z, Li L, Shen H, Cong X. Bromopyrogallol red enhanced resonance light-scattering spectroscopic determination of DNA with 5, 10, 15, 20-tetrakis [4-(trimethylammoniumyl) phenyl] porphine [J]. Analytica Chimica Acta. 1999, 379: 45-51.
    [45] Wang M, Yang J, Wu X, Huang F. Study of the interaction of nucleic acids with acridine red and CTAB by a resonance light scattering technique and determination of nucleic acids at nanogram levels [J]. Analytica Chimica Acta, 2000, 422: 151-158.
    [46] Chen Z, Zhang T, Ren F, Ding W. Determination of Proteins at Nanogram Levels Based on Their Resonance Light Scattering Decrease Effect on the Dibromo-o-Nitrophenylfluorone-Sodium Lauroyl Glutamate System [J]. Microchim Acta, 2006, 153: 65-71.
    [47] Chen Z, Liu J, Han Y, Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sodium lauroyl glutamate [J]. Talanta 2007, 71: 1246-1251.
    [48] Huang C Z, Pu Q H, Lai L J, Li Y F. Interactions of nile blue sulphate with nucleicacids as studied by resonance light scattering measurements and determination ofnucleic acids at nanogram levels [J]. Analytical Letters, 1999, 32(12): 2395-2415.
    [49]刘晨,陈小明.灿烂甲酚蓝共振光谱散射法测定脱氧核糖核酸[J].分析化学,2001, 29(6): 685-688
    [50] Wang Y T, Li K A, Tong S Y, Zhao F L. Molecular spectroscopy study of the reaction of nucleic acids with brilliantcresol blue [J]. Spectro chimica acta Part A, 2000, 56(9): 1827-1833.
    [51] Chen L H, Nie Y T, Liu L Z, Shen H X.Determination of nucleic acids on the basis of enhancement effect of resonance light scattering of toluidine blue [J]. Analytical Letters, 2003, 36(1): 107-122.
    [52] Song G W, Cai Z X, Li L. Determination of Nucleic Acid Using the Resonance Light Scattering Technique with the Mixed Complex La(phen)(o-phthalic acid) [J].Microchimica Acta, 2004, 144(1/3): 23-27.
    [53] Li Y X, Chen J L, Zhuo S J, Wu Y Q, Zhu C Q, Wang L.Application of L-cysteine-capped ZnS nanoparticles in the determination of nucleic acids using the resonancelight scattering method [J]. Microchimica Acta, 2004, 1 46(1): 13-19.
    [54]朱昌青,李东辉,郑洪,朱庆枝,许金钩.核酸对氯化银胶体溶液共振光散射的猝灭作用及其应用[J].分析化学,2000,28(12): 1485-1488.
    [55]刘绍璞,胡小莉,范莉,罗红群,彭敬东.用新洁尔灭测定核酸的共振瑞利散射法研究[J].西南师范大学学报, 2002, 27(2): 188-192.
    [56] Shi D R, Zhang T, Ren L P, Yu J L, Zhang C R, Rao Z H. Reaction of Atrazine with Protein and Its Application to Detection Protein [J]. Spectroscopy and Spectral Anal. 2006, 26(3): 509-512.
    [57] Wang L Y, Wang L, Dong L, et al. Determination of y-globulin at nanogram levels by its enhancement effect on the resonance light scattering of functionalized HgS nanoPartieles [J]. Tanlanta, 2004, 62: 237-240.
    [58] Eric L. Application of SNP technologies in medicine: lessons learned and future challenges. Genome Res, 2001, 11: 927-929.
    [59]陈冬,吴登俊,单核苷酸多态性检测方法的研究进展,生物技术通报,2008, 2: 93-104.
    [60] Erdem A, Pividori M I, Lermo A, Bonanni A, Del Valle M, Alegret S. Genomagnetic Assay Based On Label-Free Electrochemical Detection Using Magneto-Composite Electrodes [J]. Sensor. Actuat. B-Chem, 2006, 114: 591-598
    [61] Wang Q, Yang X H, Wang K M. Enhanced surface Plasmon resonance for detection of DNA hybridization based on layer-by-layer assembly films [J]. Sensor. Actuat. B-Chem, 2007, 123: 227-232.
    [62] Sosnowski R G, Tu E, Butler W F, O'Connell J P, Heller M J. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control Proc [J]. Natl. Acad. Sci. U.S.A. 1997, 94: 1119-1123.
    [63] Edman C F, Raymond D E, Wu D J, et al. Electric field directed nucleic acid hybridization on microchips [J], Nucleic Acids Res. 1997, 25: 4907-4914.
    [64] Sauer S, Gelfand D H, Boussicault F, Bauer K, Reichert F, Gut I G.. Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry [J]. Nucleic Acids Res, 2002, 30(5): e22-e22.
    [65] Andreasson H, Mitochondrial D-loop and coding sequence analysis using pyrosequencing [J]. Int. J. Legal Med. 2006, 2 (2): l-8.
    [66] Pritchard N J, Blake A, Peacocke A R. Modified Intercalation Model for the Interaction of Amino Acridines and DNA [J]. Nature, 1966, 212 (5068): 1360-1361.
    [67] Long E C, Barton J K. On demonstrating DNA intercalation [J]. Acc. Chem. Res. 1990, 23 (9): 271-273.
    [68] Kumar C V, Turner R S, Asuncion E H. Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect [J]. J. Photochem. Photobiol. A: Chem., 1993, 74 (2-3): 231-238.
    [69] Pattarkine M V, Ganesh K N. DNA-Surfactant Interactions: Coupled Cooperativity in Ligand Binding Leads to Duplex Stabilization [J]. Biochem. Biophys. Res. Commun., 1999, 263 (1): 41-46.
    [70] Solimani R. Quercetin and DNA in solution: analysis of the dynamics of their interaction with a linear dichroism study [J]. Int. J. Biol. Macromol. 1996, 18 (4): 287-295.
    [71] Carvlin M J, Mark E, Fiel R J. Intercalative and nonintercalative binding of large cationic porphyrin ligands to polynucleotides [J]. Nucleic Acids Res., 1983, 11 (17): 6141-6154.
    [72] Peng X B, Cai J, Yuan G Q. The interaction between the assembly of chiral zinc (Ⅱ) prophyrin and DNA: Electron absorption spectrum and CD spectrum studies [J], Acta Chimi. Sinica, 2001, 59(5): 746-750.
    [73]章开城,陈建华,李志良.筛选抗癌药物的荧光试验法,高等学校化学学报.1991, 124: 464-465.
    [74] Isola N R, Stokes D L, Vo-Dinh T. Surface-enhanced raman gene probe for HIV detection [J]. Anal. Chem., 1998, 70(7): 1352-1356
    [75] Langlais Marc, Tajmir All Riahi H A , Savoie R. Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+, and Cd2+ ions on calf thymus DNA: Binding sites and conformational changes [J]. Biopolymers, 1990, 30(7-8): 743-752.
    [76] Neault J F, Tajmir-Riahi H A. Aspirin-DNA interaction studied by FTIR and laser Raman difference spectroscopy [J]. J. Biol. Chem., 1996, 271(14): 8140-8143.
    [77] Neault J F, Tajmir-Riahi H A. DNA-Chlorophyllin Interaction [J]. J. Phys. Chem. B, 1998, 102 (6): 1610-1614.
    [78] Zhou Y L, Li Y Z. Studies of the interaction between poly(diallyldimethyl ammonium chloride) and DNA by spectroscopic methods [J]. Colloid Surface A, 2004, 233(123): 129-135.
    [79] Zhou N, James T L, Binding of actinomycin D to [d(ATCGAT)]2: NMR evidence for multiple complexes[J].Shafer R H. Biochemistry, 1989, 28(12): 5231-5239.
    [80] Jung A, Bamanm C, Kremer W, Kalbitzer H R, Brunner E. High-temperature solution NMR structure of TmCsp [J]. Protein Sci., 2004, 13(2): 342-350.
    [81] Iannitti-Tito P, Weimann A, Wickham G, Sheil M M. Structural analysis of drug–DNA adducts by tandem mass spectrometry [J]. Analyst, 2000, 125: 627-634.
    [82] Esmans E L, Broes D, Hoes I, Lemiere F, Vanhoutte K. Liquid chromatography– mass spectrometry in nucleoside, nucleotide and modified nucleotide characterization [J]. J. Chromatogr. A, 1998, 794 (1-2): 109-127.
    [83] Rosu F, De Pauw E, Guittat L, Alberti P, Lacroix L, Mailliet J F, Riou P, Mergny J L. Interactions of cryptolepine and neocryptolepine with unusual DNA structures[J]. Biochem. 2003, 42(35): 10361-10371.
    [84] Rodoriguez M, Bard A J. Electrochemical studies of the interaction of metal chelates with DNA. 4. Voltammetric and electrogenerated chemiluminescent studies of the interaction of tris(2,2'-bipyridine)osmium(II) with DNA [J]. Anal. Chem., 1990, 62(24): 2658-1662.
    [85] Pang D W, Abruna H D. Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules [J]. Anal. Chem., 1998, 70 (15): 3162-3168.
    [86] Zhao Y D, Pang D W, Wang Z L, Cheng J K, Qi Y P. Electrochemical characterization of gold electrodes modified with DNA [J]. J. Electroanal. Chem., 1997, 431(2): 203-209.
    [87]胡劲波,黄清泉,李启隆.博莱霉素与DNA在镍离子注入修饰电极上的相互作用及其应用[J].化学学报.2001, 59(6): 836-841.
    [88] Zhao, G. C, Zhu J J, Zhang J J, Chen H Y. Voltammetric studies of the interaction of methylene blue with DNA by means of beta-cyclodextrin [J]. Anal. Chim. Acta., 1999, 394 (2-3): 337-344.
    [89]易平贵,商志才,俞庆森.微量热法研究[Cu(phen)2]2+、[Cu(bpy)2]2+与DNA的作用[J].无机化学学报.2001, 17(1): 77-81.
    [90] Eis P S, Millar D P. Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer [J]. Biochem., 1993, 32 (50): 13852-13860.
    [91] Sixou S, Szoka F C Jr, Green G A, Giusti B, Zon G, Chin D J. Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET) [J], Nucleic Acids Res, 1994, 22(4): 662-668.
    [92] Fiel R J, Howard J C, Mark E H, Datta Gupta N. Interaction of DNA with a porphyrin ligand: evidence for intercalation. Nucleic ... Binding of meso-tetra (4-N- methylpyridyl) porphine to DNA [J]. Nucleic Acids Res., 1980, 8(12): 2835-2842.
    [93] Lerman L S. Structural considerations in the interactions of deoxyribonucleic acid and acridines. J. Mol. Biol., 1961, 3: 18-30.
    [94] Chen Z G, Liu G L, Chen M Z, Xu B J, Peng Y R, Chen M H, Wu M Y. Screen anticancer drug in vitro using resonance light scattering technique [J]. Talanta, 2009, 77: 1365-1136.
    [95]陶慰孙,李惟,姜涌明主编.蛋白质分子基础.高等教育出版社,1995
    [96]黄诸森,张光毅,生物化学与分子生物学.北京:科学出版社,2003
    [97] Gow A J, Chen Q P, Hess D T, Day B J, Ischiropoulos H, Stamler J S. Basal and stimulated protein S-nitrosylation in multiple cell types and tissues [J]. J. Bio1. Chem. 2002, 277(12): 9637-9640.
    [98] Wilkins M R, Williams K L. Cross-species protein identification using alTlinoAcid composition, peptide mass fingerprinting, isoelectric point and molecular mass: a theoretical evaluation [J]. J. Theor. Bio1. 1997, 186(1): 7-15.
    [99]蒋敏.酚酸类化合物和血清白蛋白相互作用机理的光谱学研究.北京师范大学硕士论文,2006
    [100] Bradford M M. Rapid and Sensitive Method for Quantitation of Microgram Quantitiesof Protein Utilizing Principle of Protein-dye Binding [J]. Anal. Biochem., 1976, 72: 248-254.
    [101]吴会灵,李文友,何锡文,依波西隆蓝与蛋白质作用的共振散射光谱及其分析应用[J].分析化学, 2003, 31(8): 889-891.
    [102] Yao G, Li K A, Tong S Y. Study on the interaction of protein with Sulfonazo III by Rayleigh light scattering technique and its application [J]. Anal. Chim. Acta. 1999, 398: 319-327.
    [103]赵择卿,陆大年,杨定超,光散射技术,北京:纺织工业出版社,1989,74.
    [104] Liu Y, Yang J, Liu S, Wu X, Su B, Wu T. Resonance light scattering technique for the determination of protein with rutin and cetylpyridine bromide system [J]. Spectrochimica Acta Part A, 2005, 61(4): 641-646.
    [105] Chen Z G, Liu J B, Han Y L. Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sodium lauroyl glutamate [J], Talanta, 2007, 71: 1246-1251.
    [106] Liu R T, Yang J H, Sun C X, Wu X, Li L, Li Z M. Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate [J]. Anal Bioanal Chem. 2003, 377: 375-379.
    [107] Liu S P, Yang Z, Liu Z F, Kong L. Resonance Rayleigh- scattering method for the determination of proteins with gold nanoparticle probe [J]. Anal. Biochem. 2006, 353: 108-116.
    [108] Pasternack R F, Bustamante C, Collings P J, Giannetto A, GiBPB E J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique [J]. J. Am. Chem. Soc. 1993, 115: 5393-5399.
    [109] Huang C Z, Li K A, Tong S Y. Determination of Nucleic Acids by a Resonance Light-Scattering Technique withα,β,γ-Tetrakis [4-(trimethyl ammoniumyl) phenyl] porphine [J]. Anal. Chem. 1996, 68: 2259-2263.
    [110] De Paula J C, Robblee J H, Pasternack R F. Aggregation of chlorophyll a probed by resonance light scattering spectroscopy [J]. Biophys. J. 1995, 68: 335-341.
    [111] Chen Z G, Ding W F, Liang Y Z, Ren F L, Han Y L, Liu J B. Determination of nucleic acids based on their resonance light scattering enhancement effect on metalloporphyrin derivatives [J]. Microchim. Acta. 2005, 150: 35-42.
    [112] Chen Z G, Liu G L, Chen M H, Peng Y R, Wu M Y. Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant [J]. Anal. Biochem. 2009, 384(2): 337-342.
    [113] Wu T, Liu C, Tan K J, Hu P P, Huang C Z. Highly selective light scattering imaging of chromium (III) in living cells with silver nanoparticles [J]. Anal Bioanal Chem, 2010, 397: 1273-1279.
    [114] Jiang Z L, Liu Q Y, Liu S P. Catalytic resonance scattering spectral method for the determination of trace amounts of Se [J]. Talanta, 2002, 58: 635-640.
    [115] Chen Z G, Zhu L, Chen J H, Liu J B, Han Y L. A sensitive rutin assay using a simple probe manganese sulfate based on its novel resonance light scattering decrease phenomenon [J]. Spectrochim. Acta, Part A. 2008, 71: 344-349.
    [116] Kong L, Liu Z F, Hu X L, Liu S P. Absorption, fluorescence and resonance Rayleigh scattering spectra of hydrophobic hydrogen bonding of eosin Y/Triton X-100 nanoparticles and their analytical applications [J]. Sci. China, Ser. B, 2010, 53(11): 2363-2372.
    [117] He Y Q, Liu S P, Liu Q, Liu Z F, Hu X L. Absorption, fluorescence and resonance rayleigh scattering spectral characteristics of interaction of gold nanoparticle with safranine [J]. Sci. China, Ser. B, 2005, 48(3): 216-226.
    [118] Dai X X, Li Y F, He W, Long Y F, Huang C Z. A dual-wavelength resonance light scattering ratiometry of biopolymer by its electrostatic interaction with surfactant [J]. Talanta, 2006, 70: 578-583.
    [119] Huang C Z, Lu W, Li Y F. Total internal reflected resonance light scattering detection of DNA at water/tetrachloromethane interface with acrindine orange and cetyltrimethylammonium bromide [J]. Anal. Chim. Acta., 2003, 494: 11-19.
    [120] Wang Y H, Guo H P, Tan K J, Huang C Z. Backscattering light detection of nucleic acids with tetraphenylporphyrin-Al(III)-nucleic acids at liquid/liquid interface [J]. Anal. Chim. Acta., 2004, 521: 109-115.
    [121] Zhao H W, Huang C Z, Li Y F. Immunoassay by detecting enhanced resonance light scattering signals of immunocomplex using a common spectrofluorometer [J]. Talanta, 2006, 70: 609-614.
    [122] Liu X D, Huang C Z, Guo H P, Huang Y M. Resonance Light Scattering Imaging Detection of Single Suprahelical Species of DNA Induced by Porphine-5,10,15,20-tetrakis(p-phenyltrimethylaminium) [J]. Chin. J. Chem., 2006, 24(1): 89-94.
    [123] Beatriz S, Fernandez B, et al. Resonance light scattering and derived techniques in analytical chemistry: past, present, and future [J]. Microchim. Acta. 2007, 58, 29-58.
    [124]李原芳,黄承志,胡小莉,共振光散射技术的原理及其在生化研究和分析中的应用[J],分析化学, 1998, 26(12): 1508-1515.
    [125] Miller G A. Fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing media [J]. J. Phys. Chem. 1978, 82(5), 616-618.
    [126] Anglister J, Steinberg I Z. Measurement of the depolarzation ratia of Rayleigh scattering at absorption bands [J]. J. Phys. Chem., 1981,74(2): 786-791.
    [127]魏永巨,北京大学博士学位论文,1997.
    [128] Pasternack R F, Colllings P J. Resonance light scattering: A new technique for studying chromophore aggregation [J]. Science, 1995, 269: 935-939.
    [129] Pasternack R F, Schaefer K S, Hambright P. Resonance light-scattering studies of porphyrin diacid aggregates [J]. Inorg. Chem., 1994, 33: 2062-2065.
    [130] De Paula J C, Robblee J H, Pasternack R F. Aggregation of chlorophyll a probed by resonance light scattering spectroscopy [J]. Biophys. J. 1995, 68: 335-341.
    [131] Huang C Z. The Studies on the Interactions of Bioactive Substances with Spectroscopic Probes and the Analytical Applications [J]. Ph D. Dissertation. Peking: Peking University, 1996.
    [132] Pasternack R F, Bustamante C, Collings P J, Giannetto A, Gibbs E J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique [J]. J. Am. Chem. Soc. 1993, 115: 5393-5399.
    [133] Huang C Z, Li K A, Tong S Y. Determination of nanograms of nucleic acids by a resonance light-scattering technique withα,β,γ,δ-Tetrakis [4-(trimethyl ammoniumyl)prophine [J]. Anal. Chem, 1996, 68: 2259-2263.
    [134] Huang C Z, Li K A, Tong S Y. Determination of nanograms of nucleic acids by their enhancement effctonthe resonance light scattering of the Cobalt(II)/4 -[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene complex [J]. Anal. Chem. 1997, 69(3): 514-520.
    [135] Huang C Z, Zhu J X, Li K A, Tong S Y. Determination of Albumin and Globulin at Nanogram Levels by a ResonanceLight-Scattering Technique with Tetrakis (4-sulfophenyl) porphine [J]. Anal. Sci. 1997, 13(2): 263-268.
    [1] Gowri R, Mandal D, Shivkumar B, Ramakrishnan S. Synthesis of novel poly [(2, 5-dimethoxy-p-phenylene) vinylene] precursors having two eliminatable groups: an approach for the control of conjugation length[J]. Macromolecules, 1998, 31:1819-1826.
    [2] Neef C J, Ferraris J P. MEH-PPV: improved synthetic procedure and molecular weight control [J]. Macromolecules, 2000, 33:2311-2314.
    [3] Yang Z, Sokolik I, Karasz F E. Soluble blue-light-emitting polymer [J]. Macromolecules, 1993, 26:1188-1190.
    [4] Zhou Q, Swager T M. Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity [J] J.Am.Chem.Soc, 1995, 117:12593-12602.
    [5] McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors [J]. Chem. Rev, 2000, 100:2537-2574.
    [6] Son S, Dodabalapur A, Lovinger A J, Galvin M E. Luminescence enhancement by the introduction of disorder into poly(p-phenylene vinylene)[J]. Science, 1995, 269:376-378.
    [7] Yang R, Wu H, Cao Y, Bazan G C. Control of cationic conjugated polymer performance in light emitting diodes by choice of counterion [J]. J. Am. Chem. Soc, 2006, 128:14422-14423.
    [8] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers [J]. Nature, 1999, 397:121-128.
    [9] Alam M M, Jenekhe S A. Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes[J]. Chem Mater, 2002, 14:4775-4780.
    [10] Frampton M J, Claridge T D W, Latini G, Brovelli S, Cacialli F, Anderson H L. Amylose-wrapped luminescent conjugated polymers[J]. Chem. Commun, 2008, 24:2797-2799.
    [11] Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells [J]. Chem Mater, 2004, 16:4533-4542.
    [12] Xin H, Kim F S, Jenekhe S A. Highly efficient solar cells based on poly (3-butylthiophene) nanowires[J]. J. Am. Chem. Soc, 2008, 130:5424-5425.
    [13] Chen C P, Chan S H, Chao T C, Ting C, Ko B T. Low-bandgappoly (thiophene-phenylene-thiophene) derivatives with broadens absorption spectra for use in high-performance bulk-heterojunction polymer solar cells [J]. J. Am. Chem. Soc, 2008, 130:12828-12833.
    [14] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells[J].Advanced functional materials, 2001, 11:15-26.
    [15] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295:2425-2427.
    [16] Satrijo A, Swager T M. Anthryl-doped conjugated polyelectrolytes as aggregation-basedsensors for nonquenching multicationic analytes [J]. J. Am. Chem. Soc, 2007, 129:16020-16028.
    [17] Pun C C, Lee K, Kim H J, Kim J. Signal amplifying conjugated polymer-based solid-state DNA sensors[J]. Macromolecules, 2006, 39:7461-7463.
    [18] Thomas S W, Joly G D, Swager T M, Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chem Rev, 2007, 107:1339-1386.
    [19] Wang D, Wang J, Moses D, Bazan G C, Heeger A J. Photoluminescence quenching of conjugated macromolecules by bipyridinium derivatives in aqueous media: charge dependence[J]. Langmuir, 2001, 17:1262-1266.
    [20]Yang J S, Swager T M. Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials[J]. J. Am. Chem. Soc, 1998, 120:5321-5322.
    [21] Huang H, Wang K, Tan W, An D, Yang X, Huang S, Zhai Q, Zhou L, Jin Y. Design of a modular-based fluorescent conjugated polymer for selective sensing[J]. Angew. Chem. Int. Ed, 2004, 43:5635-5638.
    [22] Liu, X F, Tang Y L, Wang L H, Zhang J, Song S P, Fan C, Wang S. Optical detection of mercury(II)in aqueous solutions by using conjugated polymers and label-free oligonucleotides[J]. Adv. Mater, 2007, 19:1471-1474.
    [23] He F, Tang Y L, Wang S, Li Y L, Zhu D B, Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: A platform for homogeneous potassium detection[J]. J. Am. Chem. Soc, 2005, 127:12343-12346.
    [24] Kushon S A, Ley K D, Bradford K, Jones R M, McBranch D, Whitten D. Detection of DNA hybridization via fluorescent polymer superquenching[J]. Langmuir, 2002, 18:7245-7249.
    [25] Dwight S J, Gaylord B S, Hong J W, et al. Perturbation of fluorescence by nonspecific interactions between anionic poly(phenylenevinylene)s and proteins: implications for biosensors[J]. J. Am. Chem. Soc, 2004, 126:16850-16859.
    [26] Zelikin A N, Trukhanova E S, Putnam D, Izumrudov V A, Litmanovich A A. Competitive reactions in solutions of poly-L-histidine, calf hymus DNA, and synthetic polyanions: determining the binding constants of polyelectrolytes [J]. J. Am. Chem. Soc, 2003, 125:13693-13699.
    [27] Wosnick J H, Mello C M, Swager T M. Synthesis and application of poly (phenylene Ethynylene) s for Bioconjugation: a conjugated polymer-based fluorogenic probe for proteases[J]. J. Am. Chem. Soc., 2005, 127:3400-3405.
    [28] Chen X M, Cai C Q, Luo H A, Zhang G H. Study on the resonance light-scattering spectrum of anionic dye xylenol orange-cetyltrimethyl ammonium-nucleic acids system and determination of nucleic acids at nanogram levels[J]. Spectrochim Acta A, 2005, 61:2215-2220.
    [29] Cai C Q, Chen X M. Determination of nanograms of proteins based on the amplified resonance light scattering signals of Tichromine [J]. Spectrochim Acta A, 2010, 75(3):1057-1060.
    [30] Cai, C.Q., Chen, X.M., Analysis of interaction between tamoxifen and ctDNA in vitro bymulti-spectroscopic methods [J]. Spectrochim. Acta. A, 2010, 76(2):202-206.
    [31] Shi S Q, Wudl F. Synthesis and characterization of a water-solublepoly(pphenyleneviny1ene) derivative [J]. Macromolecules, 1990, 23:2119-2124.
    [32] Hontis L, Vrindts V, Vanderzande D, Lutsen L. Verification of radical and anionic polymerization mechanisms in the sulfinyl and the gilch route[J]. Macromolecules, 2003, 36:303-304.
    [33] Dore K, Dubus S , Ho H A , et al. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level[J]. J. Am. Chem. Soc, 2004, 126:4240-4244.
    [34] Pang D W, Abru?a H D. Micromethod for investigation of the interactions between DNA and redox-active molecules [J]. Anal. Chem, 1998, 70:3162-3169.
    [35]林丽清,陈敬华,黄丽英,林新华.异鼠李素与脱氧核糖核酸相互作用的电化学与紫外光谱法研究[J].分析测试学报, 2008, 27(6):635-637.
    [36]李红,乐学义,吴建中,刘捷,计亮年.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA的相互作用的研究[J].化学学报, 2003,61(2): 245-250..
    [37] Zhang G M, Shuang S M, Dong C, Liu D S and Martin M F Choi. Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy[J]. J. Photoch. Photobio. B. 2004, 74: 127-134.
    [38] Chen Z, Liu J, Luo D, Biochemistry Experiments, Chinese University of Sciences and Technology Press, Hefei, China, 1994.
    [39]何华,王羚郦,戴丽,等.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展[J].中国药学杂志, 2005,40(7): 481-485.
    [1]李天剑,沈含熙,罗云敬.乙基紫标记分光光度法测定脱氧核糖核酸[J].分析化学, 1998, 26:1372-1374.
    [2]宋功武,方光荣.甲基紫-核酸分子相互作用的紫外-可见光谱及其分析应用[J].分析化学, 2000, 28:128.
    [3]宋功武,成耀鹏,何治柯,曾云鹗.小檗碱与核酸作用荧光光谱及其分析应用[J].分析化学, 1999, 27:44-46.
    [4] Gao Y, He X W. Studies of interaction between safranine T and double helix DNA by spectral methods[J]. Spectrochim. Acta A. 1998, 54: 883-892.
    [5] Guo Z X, Li L, Shen H X, Cong X. Bromopyrogallol red enhanced resonance light-scattering spectroscopic determination of DNA with 5, 10, 15, 20-tetrakis [4-(trimethylammoniumyl) phenyl] porphine[J]. Anal. Chim. Acta. 1999, 379:45-51.
    [6]刘绍璞,胡小莉,罗红群.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用[J].中国科学B辑, 2002, 32:18-20.
    [7] Liu R T, Yang J H, Wu X. Interaction of cetyltrimethylammonium bromide with nucleic acids and determination of nucleic acids at nanogram levels based on the measurement of light scattering[J]. Anal. Chim. Acta. 2001, 441:303-308.
    [8]杨传孝,李原芳,奉萍.铝离子与脱氧核糖核酸作用的共振光散射研究[J].分析化学, 2002, 30:473-477.
    [9] Li Y X, Chen J L, Zhou S J, et a1. Application of L-cysteine-capped ZnS nanoparticles in the determination of nucleic acids using the resonance light scattering method[J]. Microchim. Acta. 2004, 146:13-18.
    [10] McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors [J]. Chem. Rev., 2000, 100:2537-2574.
    [11] He F, Tang Y L, Wang S, et a1. Fluorescent amplifying recognition for DNA G-Quadruplex folding with a cationic conj ugated polymer: a platform for homogeneous potassium detection [J]. J. Am. Chem. Soc, 2005, 127: 12343-12346.
    [12] Duan X R, Li Z P, He F, et a1. A sensitive and homogeneous SNP detection using cationic conjugated polymers [J]. J. Am. Chem. Soc. 2007, 129: 4154-4155.
    [13] Wang S, Gaylord B S, Bazan G C. Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes[J]. J. Am. Chem. Soc, 2004, 126:5446-5451.
    [14] Pasternack R F, Bustamante C, Collings P J, Giannetto A, Gibpb E J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique[J]. J. Am. Chem. Soc, 1993, 115:5393-5399.
    [15] Pasternack R F, Collongs P J. Resonance light scattering: a new technique for studying chromophore aggregation [J]. Science, 1995, 269: 935-93.
    [16] Pasternack R F, Schaefer K S, Hambright P. Resonance light-scattering studies of porphyrin diacid aggregated [J]. Inorg. Chem, 1994, 33:2062-2065.
    [17] Hansma H G, Revenko I, Kim K, Laney D E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids[J] Nucl. Acids Res, 1996, 24(4): 713-720.
    [18] Tiner W J, Potaman V N, Sinden R R, Lyubchenko Y L. The structure of intramolecular triplex DNA: Atomic force microscopy study[J]. J.Mol. Biol. 2001, 314(3): 353-357.
    [19] Wu A G, Li Z, Yu L H , Wang H D , Wang E K. Plasmid DNA network on mica substrate investigated by atomic force microscopy [J]. Anal. Sci., 2001, 17: 583-584.
    [20] Hansma H G, Kim K J. Properties of biomolecules measured from atomic force microscope images: a review[J]. J. Struct. Biol. 1997, 119:99-108.
    [21]李红,乐学义,吴建中,刘捷,计亮年.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA的相互作用的研究[J].化学学报, 2003,61(2): 245-250..
    [22] Zhang G M, Shuang S M, Dong C, Liu D S and Martin M F Choi. Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy [J]. J. Photoch. Photobio. B. 2004, 74: 127-134.
    [23] Chen Z, Liu J, Luo D, Biochemistry Experiments, Chinese University of Sciences and Technology Press, Hefei, China, 1994.
    [24]何华,王羚郦,戴丽,等.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展[J].中国药学杂志, 2005,40(7): 481-485.
    [1] Lowry O H, Rosebough N J, Farr A L, et a1. Protein Measurement with the floin phenol regent[J]. J.Biol.Chem, 1951, 193:265-275.
    [2] Bradford M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding[J]. Anal. Biochem., 1976, 72:48-254.
    [3] Marcelo A O S, Marco A Z A. Mechanization of the bradford reaction for the spectrophotometric determination of total proteins[J]. Anal. Biochem., 2006, 351:155-157.
    [4] Yutaka S, Yukiko I O, Shoko W Y, Atsuko K, Miyazaki K I, Masaki M, Yoshimasa T. A sensitive spectrofluorimetric determination of human serum albumin with chrome azurols[J]. Anal.Chim.Acta, 1985, 178:337-339.
    [5] Silvia C T, Jorge F S, Antonio S C, Alberto F G. Simple luminescence detectors using a light-emitting diode or a Xe lamp, optical fiber and charge-coupled device, or photomultiplier for determining proteins in capillary electrophoresis: a critical comparison[J]. Anal.Biochem, 2007, 365:82-90.
    [6] Soichiro S, Masahiro S, Jun Z M, Toshimasa T, Takeshi F, Shinsuke I. Selective and sensitive determination of lipoyllysine (protein-bound-lipoic acid) in biological specimens by high-performance liquid chromatography with fluorescence detection[J]. Anal.Chim.Acta., 2008, 618:210-217.
    [7] Chen H Q, Xu F G, Hong S, Wang L. Quantitative determination of proteins at nanogram levels by the resonance light-scattering technique with composite nanoparticles of CdS/PAA[J]. Spectrochim.Acta A., 2006, 65:428-432.
    [8] Chen Z G, Liu J B, Han Y L. Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sodium lauroyl glutamate[J]. Talanta, 2007, 71:1246-1251.
    [9] Chen X L, Li D H, Zhu Q Z, Yang H H, et al. Determination of proteins at nanogram levels by a resonance light-scattering technique with tetra-substituted sulphonated aluminum phthalocyanine[J]. Talanta, 2001, 53:1205-1210.
    [10] Zhong H, Wang K, Chen H Y. Protein analysis with tetra-substituted sulfonated cobalt phthalocyanine by the technique of Rayleigh light scattering[J]. Anal.Biochem, 2004, 330:37-42.
    [11] Huang C Z, Li K A, Tong S Y. Determination of nucleic acids by a resonance light-scattering technique with r,,γ,δ-Tetrakis[4-(trimethylammoniumyl) phenyl]porphine[J]. Anal.Chem, 1996, 68:2259-2263.
    [12] Bao P, Frutos A G, Greef C, et al. High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering [J]. Anal. Chem, 2002, 74(8):1792-1797.
    [13] Yao G, Li K A, Tong S Y. Study on the interaction of protein with Sulfonazo III by Rayleigh light scattering technique and its application[J]. Anal.Chim.Acta, 1999, 398:319-327.
    [14] Guo Z X, Shen H X. Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropoc acid phenylfluorone[J]. Anal. Chim.Acta, 2000, 408:l77-182.
    [15] Ma C Q, Li K A, Tong S Y. Microdetermination of proteins by resonance light scattering spectroscopy with bromophenol blue[J]. Anal. Biochem, 1996, 239:86-91.
    [16]吴会灵,李文友,何锡文.依波西隆蓝与蚩白质作用的共振散射光谱及其分析应用[J].分析化学, 2003, 31: 889-891.
    [17] Wan, L Y, Wang L, Dong L, et a1. Determination ofγ-globulin at nanogram levels by its enhancement effect on the resonance light scattering of fimctionalized HgS nanoparticles[J]. Tanlanta, 2004, 62:237-240.
    [18] Liu Z D, Huang C Z, Li Y F, et a1. Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example[J]. Anal.Chim.Acta, 2006, 577:244-249.
    [19] Chen L, Zhao W, Jiao Y, et a1. Characterization of Ag/Pt core-shell nanoparticles by UV-vis absorption, resonance light scattering techniques[J]. Anal. Chim. Acta, 2006, 2:10-14.
    [20] Gao D J, He N, Tian Y, Chen Y H, et a1. Determination of bovine serum albumin using resonance light scattering technique with sodium dodecylbenzene sulphonate-cetyltrimethyl ammonium bromide probe[J]. Anal. Chim. Acta, 2007, 68: 573-577.
    [21] Chen Z G, Liu G L, Chen M H, Peng R Y, Wu M Y. Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant[J]. Anal. Biochem, 2009, 384: 337-342.
    [22]陈艳华.高分子化合物的电化学性质及其在蛋白测定中的应用[D].吉林大学硕士论文, 2009,75-111.
    [23]杜鹃.荷正电聚合物为探针共振光散射光谱法检测生物大分子[D].西南大学硕士学位论文, 2009.
    [24]陈彦国,何治柯.水溶性荧光聚合物用于测定聚赖氨酸[J].高等学校化学学报, 2005, 26:1428-1431.
    [25]李原芳,黄承志,胡小莉.共振光散射技术的原理及其在生化研究和分析中的应用[J].分析化学, 1998, 26:1508-1515.
    [26] Hansma H G, Revenko I, Kim K, Laney D E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids[J]. Nucl. Acids Res. 1996, 24(4): 713-720.
    [27] Tiner W J, Potaman V N, Sinden R R, Lyubchenko Y L. The structure of intramolecular triplex DNA: atomic force microscopy study [J]. J.Mol. Biol. 2001, 314(3): 353-357.
    [28] Wu A G, Li Z, Yu L H, Wang H D, Wang E K. Plasmid DNA network on mica substrate investigated by atomic force microscopy [J]. Anal. Sci., 2001, 17:583-584.
    [29] Hansma H G, Kim K, Laney D E, Garcy′a R A, Argaman M, Allen M J, Parsons S.M. Properties of biomolecules measured from atomic force microscope images: a review[J] J. Struct. Biol. 1997, 119:99-108.
    [1] Peters D L, Dahmus M E. A method of DNA quantitation for localization of DNA in metrizamide gradients [J]. Anal. Biochem, 1979, 93:306-311.
    [2] Killeen A A. A visible spectrophotometric assay for submicrogram quantities of DNA, including PCR-amplified DNA [J]. Microchem J, 1955, 52:333-340.
    [3]李天剑,沈含熙,罗云敬.乙基紫标记分光光度法测定脱氧核糖核酸[J].分析化学, 1998, 26(11):1372-1374.
    [4]宋功武,方光荣.甲基紫-核酸分子相互作用的紫外-可见光谱及其分析应用[J].分析化学, 2000, 28(1):128.
    [5] Bowen B P, Woodbury N W. TOTO binding affinity analysis using single-molecule fluorescence spectroscopy [J]. Photochem. Photobiol. 2003, 78:579-583.
    [6] Miller G A. A fluctuation theory of the resonance enhancement of rayleigh scattering in absorbing media [J]. J. Chem. Phys, 1978, 82:616-618.
    [7] Pasternack R F, Bustamante C, Collings P J, Giannetto A, Gibpb E J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique[J]. J. Am. Chem. Soc, 1993, 115:5393-5399.
    [8] Pasternack R F, Collongs P J. Resonance light scattering: a new technique for studying chromophore aggregation [J]. Science, 1995, 269: 935-939.
    [9] Huang C Z, Li Y F. Resonance light scattering technique used for biochemical and Pharmaceutieal analysis [J]. Anal. Chim. Acta, 2003, 500(1-2):105-117.
    [10] Pasternack R F, Schaefer K S, Hambright P. Resonance light-scattering studies of porphyrin diacid aggregated [J]. Inorg. Chem, 1994, 33:2062-2065.
    [11] Hansma H G, Revenko I, Kim K, Laney D E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids[J]. Nucl. Acids Res. 1996, 24(4): 713-720. [12 Tiner W J, Potaman V N, Sinden R R, Lyubchenko Y L. The structure of intramolecular triplex DNA: atomic force microscopy study [J]. J.Mol. Biol. 2001, 314(3): 353-357.
    [13] Wu A G, Li Z, Yu L H, Wang H D, Wang E K. Plasmid DNA network on mica substrate investigated by atomic force microscopy [J]. Anal. Sci., 2001, 17:583-584.
    [14] Hansma H G, Kim K, Laney D E, Garcy′a R A, Argaman M, Allen M J, Parsons S.M. Properties of biomolecules measured from atomic force microscope images: a review[J] J. Struct. Biol. 1997, 119:99-108.
    [15] Huang C Z, Li Y F, Liu X D. Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique [J]. Anal. Chim. Acta. 1998, 375(l-2): 89-97.
    [16] Berlepsch H V, Bottcher C, Ouart A, et al. Upramolecular structures of J-aggregates of carbocyanine dyes in solution [J]. J. Phys. Chem. B., 2000, 104(22):5255-5262.
    [17]李红,乐学义,吴建中,刘捷,计亮年.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA的相互作用的研究[J].化学学报, 2003,61(2): 245-250..
    [18] Zhang G M, Shuang S M, Dong C, Liu D S and Martin M F Choi. Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy[J]. J. Photoch. Photobio. B. 2004, 74 :127-134.
    [19] Chen Z, Liu J, Luo D, Biochemistry Experiments, Chinese University of Sciences and Technology Press, Hefei, China, 1994.
    [20]何华,王羚郦,戴丽,等.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展[J].中国药学杂志, 2005,40(7): 481-485.
    [1]袁世炬,邓振强.含氟表面活性剂结构、特牲及应用[J].湖北造纸,2001, 3: 232-235。
    [2] Clint J H. General phase behavior of surfactant, Surfactant Aggregation, Chapaman and Hall, New York, 1992.
    [3] Shimizu S, Pires P A R, El Seoud O A. Thermodynamics of micellization of cationic surfactants in aqueous solutions: a conduct [J]. Langmuir, 2004,20: 9551-9559.
    [4] Boulanger, B., Peck, A. M., Schnoor, J. L., Hornbuckle, K. C. Environ. Mass budget of perfluorooctane surfactants in Lake Ontario [J]. Sci. Techno., 2005, 39:74-79.
    [5] Garg G, Hassan P A, Aswal V K, Kulshreshtha S K. Tuning the structure of SDS. micelles by substituted snilinium ions[J]. J.Phys.Chem.B. 2005, 109:1340-1346
    [6] Pileni M P. Reverse micelles as microreactors[J]. J. Phys. Chem. B, 1993, 97:696l-6973
    [7] Lalchev Z, Valtcheva R, Mitev V, Stephanova E. Tensiometric study of surface activity and halothane impact on biosurfactant production on lung cells [J]. Colloids Surfaces A, 2004,250: 527-531.
    [8] Freeman K S, Beck T N C, TreVino S F, Kline S, McGown L B, Kiserow D J. Size and polydispersity determinations of AOT/bile salt reversed micelles obtained by small-angle neutron scattering[J]. Longmuir. 2001, 17:3912-3916.
    [9] Huang C Z, Lu W, Li Y F. Total internal reflected resonance light scattering detection DNA at water/tetrachloromethane interface with acrindine orange and cetyltrimethyl ammonium[J]. Anal. Chim. Acta, 2003, 494:11-19.
    [10]黄承志,李克安,童沈阳.水溶性游离碱阳离子卟啉与核酸作用的光谱研究.高等化学报, 1997, 18(4):525-529.
    [11] Zhao X F, Shang Y Z, Liu H L, Hu Y. Complexation of DNA with cationic gemini surfactant in aqueous solution[J]. J. Colloid. Interf. Sci, 2007, 314: 478-483
    [12] Cao M W, Deng M L, Wang X L, Wang Y L. Decompaction of cationic gemini surfactant-induced DNA condensates byβ-cyclodextrin or anionic surfactant[J]. J. Phys. Chem. B, 2008, 112(43):13648-13654.
    [13] Zhao X F, Shang Y Z, Hu J, Liu H L, Hu Y. Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12[J]. Biophys. Chem. 2008, 138:144-149.
    [14] Trewavas, A. A new method for counting labeled nucleic acids by liquid scintillation [J]. Anal. Biochem, 1967, 21:324-329.
    [15] Izumrudov V A, Zhiryakova M V, Goulko A A. Ethidium bromide as a promising probe for studying DNA interaction with cationic amphiphiles and stability of the resulting complexes[J]. Langmuir, 2002, 18(26):10348-10356.
    [16] Dias R S, Innerlohinger J, Glatter O, Miguel M G, Lindman B. Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study[J]. J. Phys. Chem.B, 2005, 109:10458
    [17] Cardenas M, Schillen K, Nylander T. DNA compaction by cationic surfactant in solution and at polystyrene particle solution interfaces: a dynamic light scattering study[J]. Phys. Chem., 2004, 6:1603
    [18] Dias R, Mel'nikov S, Lindman B, Miguel M G. DNA phase behavior in the presence of oppositely charged surfactants[J]. Langmuir, 2000, 16:9577-9583.
    [19] Smith P, Lynden-Bell R M, Smith W. Surfactant structure around DNA in aqueous solution[J]. Phys. Chem., 2000, 2:1305-1310
    [20]刘绍璞,胡小莉,罗红群,范莉.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用.中国科学, (B辑), 2002, 32(1):1811
    [21] Liu R T, Yang J H, Wu X, Wu T. Resonance double frequency light scattering of the morin-nucleic acid-cetyltrimethyl ammonium bromide system and its analytical application[J]. Anal Chim Acta, 2001, 448:85-91.
    [22] Liu R T, Yang J H, Wu X. Interaction of cetylpyridine bromide with nucleic acids and determination of nucleic acids at nanogram levels based on the enhancement of resonance Rayleigh light scattering [J]. Spectrochim Acta A. 2002, 58:1935-1942.
    [23] Liu R T, Yang J H, Sun C X, et al. Study of the interaction of nucleic acids with acridine orange-CTMAB and determination of nucleic acids at nanogram levels based on the enhancement of resonance light scattering [J]. Chem. Phys. Lett., 2003, 376:108-115.
    [24] Dias R S, Pais A A C C, Miguel M G, Lindman B. Modeling of DNA compaction by polycations[J]. J. Phys Chem. 2003, 119:8150-8157.
    [25] Huang C Z, Li Y F. Resonance light scattering technique used for biochemical and pharmaceutical analysis [J]. Anal Chim Acta, 2003, 500:105-117.
    [26] Huang C Z, Li K A, Tong S Y. Determination of nucleic acids by a resonance light-scattering technique withα,β,γ,δ-tetrakis[4- (trimethylammoniumyl) phenyl] porphine[J]. Anal Chem., 1996, 68:2259-2263.
    [27] Li L, Xu Z S, Pan Q, Song G W. Determination of nucleic acid based on increased resonance light-scattering of fluorinated surfactants[J]. J. Fluo. Chem. 2009, 130:567-572.
    [28] Arena G, Scolaro L M, Pasternack R F, Romeo R. Synthesis, characterization, and interaction with DNA of the novel metallointercalator cationic complex (2,2’6’,2"-Terpyridine) methylplatinum(II)[J]. Inor. Chem, 1995, 34: 2994-3002.
    [29] Hansma H G, Revenko I, Kim K, Laney D E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids[J]. Nucl. Acids Res. 1996, 24(4):713-720.
    [30] Tiner W J Sr, Potaman V N, Sinden R R,et al. The structure of intramolecular triplex DNA: atomic force microscopy study[J].J Mol Biol, 2001, 314(3):353- 357.
    [31] Wu A G, Li Z, Yu L H, Wang H D, Wang E K. Plasmid DNA network on a mica substrate investigated by atomic force microscopy[J]. Anal. Sci. 2001, 17(5): 583-584.
    [32] Hansma H G, Kim K, Laney D E, et al. Properties of biomolecules measured from atomic force microscope images: Areview [J]. J. Struct. Biol. 1997, 119:99-108
    [33] Liu R T, Yang J H, Sun C X, Wu X, Li L, Su B Y. Study on the interaction between nucleic acids and cationic surfactants[J]. Colloids Surf. B, 2004, 34:59-63.
    [34]李红,乐学义,吴建中,刘捷,计亮年.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA的相互作用的研究[J].化学学报, 2003,61(2): 245-250..
    [35] Zhang G M, Shuang S M, Dong C, Liu D S and Martin M F Choi. Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy[J]. J. Photoch. Photobio. B. 2004, 74 :127-134.
    [36]何华,王羚郦,戴丽,等.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展[J].中国药学杂志, 2005,40(7): 481-485.
    [1] Gibson D T, Microbial Degradation of Organic Compounds. New York: Marcel Dekker. 1984.
    [2]孙红文,李书霞. PAHs的光致毒效应.环境科学进展[J]. 1998, 6(6):1-11
    [3] Grifoll M, Casellas M, Bayona J M, Solanas A M. Isolation and characterisation of a fluorine-degrading bacterium: Identification of ring oxidation and ring fission products[J]. Appl. Environ. Microbio1. 1992, 58:2910-2917.
    [4] Renner R. EPA to strengthen persistent, bioaccumulative, and toxic pollutant controls-mercuryfirst to be targeted[J]. Environ. Sci. Techno1, 1999, 33:62.
    [5] Keith L H, Telliard W A, Priority pollutants I-a perspective view[J]. Environ. Sci. Techno1. 1979, 13:416-423.
    [6] Miller G A, A fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing media[J]. J. Chem. Phys. 1978, 82:616-618.
    [7] Pasternack R F, Bustamante C, Collings P J, Giannetto A, Gibpb E J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique[J]. J. Am. Chem. Soc. 1993, 115:5393-5399.
    [8] Pasternack R F, Collongs P J. Resonance light scattering: a new technique for studying chromophore aggregation[J]. Science, 1995, 269:935-93.
    [9] Huang C Z, Li Y F. Resonance light scattering technique used for biochemical and Pharmaceutieal analysis [J]. Anal. Chim. Acta. 2003, 500(1-2):105-117.
    [10] Pasternack R F, Schaefer K S, Hambright P. Resonance light-scattering studies of porphyrin diacid aggregated[J]. Inorg. Chem. 1994, 33:2062-2065.
    [11] Huang C Z, Li K A, Tong S Y. Determination of nucleic acids by a resonance light-scattering technique withα,β,γ,δ-tetrakis[4- (trimethylammoniumyl) phenyl] porphine[J]. Anal Chem. 1996, 68:2259-2263.
    [12] Berlepsch H V, Bo¨ttcher C, Ouart A, Burger C, Da¨hne S, Kirstein S. Supramolecular structures of J-aggregates of carbo- cyanine dyes in solution[J]. J. Phys. Chem. B, 2000, 104(22):5255-5262.
    [13] Hansma H G, Kim K, Laney D E, Garcy′a R A, Argaman M, Allen M J and Parsons S M. Properties of biomolecules measured from atomic force microscope images: Areview[J]. J. Struct. Biol. 1997, 119:99-108.
    [14] Hansma H G, Revenko I, Kim K, Laney D E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids[J]. Nucl. Acids Res. 1996, 24(4):713-720
    [15] Wu A G, Li Z, Yu LH, Wang H D, Wang E K. Plasmid DNA network on a mica substrate investigated by atomic force microscopy[J]. Anal. Sci. 2001, 17(5):583-584.
    [16] Tiner Sr W J, Potaman V N, Sinden R R, Lyubchenko Y L. The structure of intramolecular triplex DNA: atomic force microscopy study[J]. J. Mol. Biol. 2001, 314:353-357.
    [17]李红,乐学义,吴建中,刘捷,计亮年.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA的相互作用的研究[J].化学学报, 2003,61(2): 245-250..
    [18] Zhang G M, Shuang S M, Dong C, Liu D S and Martin M F Choi. Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy[J]. J. Photoch. Photobio. B. 2004, 74 :127-134.
    [19]何华,王羚郦,戴丽,等.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展[J].中国药学杂志, 2005,40(7): 481-485.
    [1] Ma H M, Liang S C. Spectroscopic probes of triazines and labeling analysis[J]. Chemistry Bulletin 1999, 10:29-33.
    [2] Yu J, Meng J W, Li Y. Fluorescence study by simulating the metabolizability of carotenoid and porphyrin during cancer development[J]. Spectrosc. Spectral. Anal. 2004, 24(8):981-983.
    [3] Wang L Z, She Y B, Zhong R G. Organic process research and development[J]. 2006, 10(4):757.
    [4]彭小彬,蔡洁,袁高清.手性卟啉化合物聚集体与DNA的相互作用:电子吸收光谱和圆二色光谱研究[J].化学学报, 2001, 59(5):746-750.
    [5]刘杰,许东晖,黄锦汪,计亮年.水溶性卟啉及系列金属化合物的合成、抗癌活性及作用机制的研究[J].高等学校化学学报, 2001, 22(9):1446-1449.
    [6] Yang R H, Li K A, Wang K M, Liu F. Cyclodextrin-pophyrin supramolecular sensitizer for mercury(Ⅱ) ion[J]. Anal.Chem.Acta, 2000, 469:285-293.
    [7]颜梅,陈欣,孙舒婷,马洪敏,杜斌,魏琴.荧光光谱法研究二溴羟基卟啉与蛋白质的结合作用机理[J].光谱学与光谱分析, 2008, 28(6):1322-1326.
    [8] Mojzes P, Kruglik S G, Baumruk, V. Interactions of electronically excited Copper (Ⅱ) porphyrin with DNA: resonance raman evidece for the exciplec formation with adenine and cytosine residues[J]. phys.Chem.B 2003, 107(31):7532-7535.
    [9] Zhou H C, Baldini L, Hong J. Pattern-recognition of proteins based on an array of functionalized porphyrins[J]. J. Am. Chem. 2006, 128:2421-2425.
    [10]冀海伟,刘道杰.卟啉试剂在DNA检测中的应用[J].化学试剂, 2005, (2):83-87.
    [11]朱隆懿,孙羽,王倩,吴师.金属卟啉对杂环及DNA分子识别的研究进展.有机化学, 2009, 29(11):1700-1707.
    [12]刘渊声,文峻,屈学民,杨继庆,龙开平.血卟啉及其衍生物在肿瘤诊治中的应用研究进展[J].医学理论与实践, 2007, 20(8):895-897
    [13]魏玉霞,董川.磷光分析法在生命科学中的应用新进展[J].生命的化学, 2003(4): 320-322.
    [14]王磊.超声激活卟啉类化合物对小牛胸腺脱氧核糖核酸损伤的研究.硕士学位论文, 2006.
    [15]王君,熊大珍,张朝红,张向东,等.高频超声照射下血卟啉镓配合物对脱氧核糖核酸的损伤[J].无机化学学报, 2007, 3:479-483.
    [16] Karlsson H J, Eriksson M, Perzon E,et al. Groove-binding unsymmetrical cyanine dyes for staining of DNA: syntheses and characterization of the DNA-binding[J]. Nucl. Acids Res, 2003, 31:6227-6234.
    [17] Collins F S, Patrinos A, Jordan E, Chakravi A, Gestelan R, Walters L R. New goals for the U. S. human genome[J]. Science, 1998, 282:682-689.
    [18] Takenaka S, Ihara T, Takagi M. Bis-9-acridinyl derivative containing a viologen linkerchain: electrochemically active intercalator for reversible labelling of DNA[J]. J. Chem. Soc., Chem.Commun. 1990, 21:1485-1487.
    [19] Yoshio Q, Kuniharu I, Yukihiro M. A DNA-lipid cast film on a quartz-crystal microbalance and detection of intercalation behaviors of dye molecules into DNAs in an aqueous solution[J]. Langmuir. 1993, 9(1):19-21.
    [20] Li, W Y, Xu J G, Guo X Q, Zhu Q Z, Zhao Y B. Study of the interaction between rivanol and DNA and its application to DNA assay[J]. Spectrochim. Acta. A. 1997, 53:781-787.
    [21] Hansma, H G, Kim K, Laney D E,et al. Properties of biomolecules measured from atomic force microscope images: A review[J]. J. Struct. Biol. 1997, 119:99-108.
    [22] Hansma H G, Revenko I, Kim K, Laney D E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids[J]. Nucl. Acids Res. 1996, 24(4):713-720.
    [23] Wu A G, Li Z, Yu LH, Wang H D, Wang E K. Plasmid DNA network on a mica substrate investigated by atomic force microscopy[J]. Anal. Sci. 2001, 17(5):583-584.
    [24] Tiner Sr W J, Potaman V N, Sinden R R, Lyubchenko Y L. The structure of intramolecular triplex DNA: atomic force microscopy study [J]. J. Mol. Biol.
    [25]李红,乐学义,吴建中,刘捷,计亮年.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA的相互作用的研究[J].化学学报, 2003,61(2): 245-250..
    [26] Zhang G M, Shuang S M, Dong C, Liu D S and Martin M F Choi. Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy[J]. J. Photoch. Photobio. B. 2004, 74 :127-134.
    [27]何华,王羚郦,戴丽,等.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展[J].中国药学杂志, 2005,40(7): 481-485.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.