来源于宏基因组耐有机溶剂新酯酶的克隆及酶学性质表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着宏基因组技术的出现和广泛使用,显著拓展了人们对环境微生物多样性的认识。宏基因组技术是指不经过微生物培养,直接提取环境微生物的总基因组的技术。使用该技术,对原本在环境中超过99%的不可培养微生物基因的操作和研究成为了现实,这促使人们发现了大量具有价值的新的蛋白和活性小分子物质。
     本课题研究采用宏基因组技术,针对来源于贵州铜仁梵净山的土壤微生物样本,构建了一个库容克隆数量达到5×104的宏基因组文库。基于三丁酸甘油酯水解生成透明圈的功能筛选方法,从文库中分离出新酯酶全长基因1条(命名为EstC23)。进化关系分析表明,该酶隶属于脂肪酶第Ⅳ家族(Hormo ne-sens itive lipase family, HSL)。对该基因的异源过表达研究表明,该基因在T7强启动子作用下,产生的可溶性蛋白占细胞总蛋白量的30%左右。纯酶蛋白的酶学性质表征显示,EstC23在25℃pH8.0条件下,对pNP-butyrat的酶活达254U mg1,该酶的最适反应温度为40℃,特别是在5-10℃低温下仍能维持最大活性的50%。EstC23在浓度达50%(v/v)的非极性有机溶剂(高logP)中显现出极强的稳定性,尤其在50%(v/v)的苯类和烷烃类有机溶剂中,其活力能提升至92%至274%之间,孵育一周后酶活性不会降低。同时,酯酶EstC23能水解叔醇酯底物,这是通常的酯酶或脂肪酶不具备的底物活性。这些结果表明,EstC23在酯合成、手性化合物的拆分、不稳定中间体化合物合成、肽合成等方面具有潜在应用价值。
     后续我们以EstC23核酸序列为基础设计特异性引物,基于宏基因组特异性PCR技术(Metagenomic Gene Specific PCR, MGS-PCR)和截断宏基因组特异性PCR技术(Truncated Metagenomic Gene Specific PCR, TMGS-PCR),对来自全国不同地域环境的65组宏基因组DNA进行序列筛选,分别获得了同源家族全长功能基因7条和核心片段15条,序列分析比对,这些基因及基因片段表现出了高度的序列多样性,其核酸相同百分比在50-97%之间,这些序列构成了一个新的酯酶基因亚家族。这为后续以酯酶亚家族为对象的功能研究,以及DNA-family-shuffling为方法的体外功能进化,提供了有价值的实验材料。
In the past decade, advances in the field of metagenomics have dramatically revised our view of biodiversity. Considering the estimation that more than99%of microorganisms in most environments are not amenable to culturing, very little knowledge is known about their genomes. The isolation, archiving, and analysis of environmental DNA (or so-called metagenomes) have enabled us to mine microbial diversity, allowing us to access their genomes. In which researchers have found a large number of valuable new active substances.
     In this study, An environmental DNA library approximately50,000metagenomic clones was constructed using soil sample from Fanjingshan of Tongren, Guizhou. Function-based metagenomics screening, a new esterase designated EstC23was isolated, which evolutionary relationship analysis showed that this enzyme belongs to the lipase IV family (Hormone-sensitive lipase family, HSL). The protein was amenable to overexpression in Escherichia coli under control of the T7promoter, resulting in expression of the active, soluble protein that constituted30%of the total cell protein content. Characterization of enzymatic properties show that the specific activity of EstC23on p-nitrophenyl butyrate was254U mg-1at25℃and pH8.0, EstC23showed optimal activity at40℃and retained about50%maximal activity at5-10℃. EstC23showed remarkable stability in up to50%(v/v) benzene and alkanes (high logP solvents). When incubated for7days in the presence of50%benzene or alkanes, the enzyme maintained its92%-274%elevated activity. The purified enzyme also cleaved sterically hindered esters of tertiary alcohols. These results indicate that EstC23has potential for using in ester synthesis, chiral compounds separation, unstable intermediate compound synthesis and peptide synthesis.
     In subsequent research work, based on EstC23specific primers, we employed Metagenomic Gene Specific PCR (MGS-PCR) and Truncated Metagenomic Gene Specific PCR (TMGS-PCR) to screen homologous family genes of EstC23with65metagenomics DNA samples derived from domestic different geographies. We identified seven lipolytic activity full-length genes and fifteen homologous family core fragments, sequences analysis showed a broad sequence diversity and a wild rang of sequence identity (50-97%), which constitute a new esterase subfamily.This study provides a valuable experimental material for the following work such as function of research on esterase subfamily or evolution in vitro DNA family Shuffling.
引文
[1]. Torsvik, V. and L. Ovreas, Microbial diversity and function in soil:from genes to ecosystems [J]. Current opinion in microbiology,2002.5(3):p.240-245.
    [2]. Challis, G.L., Mining microbial genomes for new natural products and biosynthetic pathways [J]. Microbiology,2008.154(6):p.1555-1569.
    [3]. Butler, M.S. and A.D. Buss, Natural products-the future scaffolds for novel antibiotics[J]? Biochemical pharmacology,2006.71(7):p.919-929.
    [4]. Strobel, G and B. Daisy, Bioprospecting for microbial endophytes and their natural products [J]. Microbiology and Molecular Biology Reviews,2003.67(4):p.491-502.
    [5]. Simmons, T.L., E. Andrianasolo, K. McPhail, et al., Marine natural products as anticancer drugs [J]. Molecular cancer therapeutics,2005.4(2):p.333-342.
    [6]. Zeyaullah, M., M.R Kamli, B. Islam, et al., Metagenomics-An advanced approach for non-cultivable micro-organisms [J]. Biotechnology and Molecular Biology Reviews,2009. 4(3):p.049-054.
    [7]. Handelsman, J., Metagenomics:application of genomics to uncultured microorganisms [J]. Microbiology and Molecular Biology Reviews,2004.68(4):p.669-685.
    [8]. Streit, W.R and RA. Schmitz, Metagenomics-the key to the uncultured microbes [J]. Current opinion in microbiology,2004.7(5):p.492-498.
    [9]. Handelsman, J., M.R. Rondon, S.F. Brady, et al., Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products [J]. Chemistry & biology,1998. 5(10):p. R245-R249.
    [10]. Healy, F., R. Ray, H. Aldrich, et al., Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose[J]. Applied microbiology and biotechnology,1995.43(4):p.667-674.
    [11]. Schmeisser, C., H. Steele, and W.R Streit, Metagenomics, biotechnology with non-culturable microbes [J]. Applied microbiology and biotechnology,2007.75(5):p.955-962.
    [12]. Tringe, S.G, C.Von Mering, A. Kobayashi, et al., Comparative metagenomics of microbial communities [J]. Science,2005.308(5721):p.554-557.
    [13]. Vieites, J.M., M.E. Guazzaroni, A. Beloqui, et al., Metagenomics approaches in systems microbiology[J]. FEMS microbiology reviews,2009.33(1):p.236-255.
    [14]. Ward, N., New directions and interactions in metagenomics research[J]. FEMS microbiology ecology,2006.55(3):p.331-338.
    [15]. Frias-Lopez, J., Y. Shi, GW. Tyson, et al., Microbial community gene expression in ocean surface waters[J]. Proceedings of the National Academy of Sciences,2008.105(10):p. 3805-3810.
    [16]. Martin-Cuadrado, A.B., P. Lopez-Garcia, J.C. Alba, et al., Metagenomics of the deep Mediterranean, a warm bathypelagic habitat[J]. PLoS One,2007.2(9):p. e914.
    [17]. Banik, J.J. and S.F. Brady, Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary[J]. Proceedings of the National Academy of Sciences,2008.105(45):p.17273-17277.
    [18]. Venter, J.C., K. Remington, J.F. Heidelberg, et al., Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science,2004.304(5667):p.66-74.
    [19]. Gillespie, D.E., S.F. Brady, A.D. Bettermann, et al., Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA[J]. Applied and environmental microbiology,2002.68(9):p.4301-4306.
    [20]. Riesenfeld, C.S., P.D. Schloss, and J. Handelsman, Metagenomics:genomic analysis of microbial communities [J]. Annu. Rev. Genet.,2004.38:p.525-552.
    [21]. Lorenz, P., K. Liebeton, F. Niehaus, et al., Screening for novel enzymes for biocatarytic processes:accessing the metagenome as a resource of novel functional sequence space [J]. Current opinion in biotechnology,2002.13(6):p.572-577.
    [22]. Daniel, R., The metagenomics of soil[J]. Nature Reviews Microbiology,2005.3(6):p. 470-478.
    [23]. Kwoun Kim, H., YJ. Jung, W.C. Choi, et al., Sequence-based approach to finding functional lipases from microbial genome databases[J]. FEMS microbiology letters,2004.235(2):p. 349-355.
    [24]. Bell, P.J.L., A. Sunna, M.D. Gibbs, et al., Prospecting for novel lipase genes using PCR[J]. Microbiology,2002.148(8):p.2283-2291.
    [25]. Stokes, H., A.J. Holmes, B.S. Nield, et al., Gene cassette PCR:sequence-independent recovery of entire genes from environmental DNA[J]. Applied and environmental microbiology,2001.67(11):p.5240-5246.
    [26]. Cai, J., Y Xie, B. Song, et al., Fervidobacterium changbaicum Lip1:identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V[J]. Applied microbiology and biotechnology,2011:p.1-11.
    [27]. Ferrer, M., A. Beloqui, K.N. Timmis, et al., Metagenomics for mining new genetic resources of microbial communities [J]. Journal of molecular microbiology and biotechnology,2009. 16(1-2):p.109-123.
    [28]. Kouker, G. and K. Jaeger, Specific and sensitive plate assay for bacterial lipases [J]. Applied and environmental microbiology,1987.53(1):p.211-213.
    [29]. Lee, S.W., K. Won, H.K. Lim, et al., Screening for novel lipolytic enzymes from uncultured soil microorganisms [J]. Applied microbiology and biotechnology,2004.65(6):p.720-726.
    [30]. Lee, M.H., C.H. Lee, T.K. Oh, et al., Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments:evidence for a new family of bacterial lipases [J]. Applied and environmental microbiology,2006:p.AEM.01157-06v1.
    [31]. Elend, C., C. Schmeisser, C. Leggewie, et al., Isolation and biochemical characterization of two novel metagenome-derived esterases[J]. Applied and environmental microbiology,2006. 72(5):p.3637-3645.
    [32]. Sharma, S., F.G. Khan, and G.N. Qazi, Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas [J]. Applied microbiology and biotechnology,2010.86(6):p.1821-1828.
    [33]. Wang, C., D.J. Meek, P. Panchal, et al., Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants [J]. Applied and environmental microbiology,2006.72(1):p.384-391.
    [34]. Simon, C., J. Herath, S. Rockstroh, et al., Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived fromglacial ice[J]. Applied and environmental microbiology,2009:p.AEM.02644-08v1.
    [35]. Uchiyama, T., T. Abe, T. Ikemura, et al., Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes [J]. Nature biotechnology, 2004.23(1):p.88-93.
    [36]. Williamson, L.L., B.R. Borlee, P.D. Schloss, et al., Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor[J]. Applied and environmental microbiology,2005.71(10):p.6335-6344.
    [37]. Martin-Cuadrado, A.B., P. Lopez-Garcia, J.C. Alba, et al., Metagenomics of the deep Mediterranean, a warm bathypelagic habitat [J]. PLoS One,2007.2(9):p. e914.
    [38]. Breitbart, M., P. Salamon, B. Andresen, et al., Genomic analysis of uncultured marine viral communities [J]. Proceedings of the National Academy of Sciences,2002.99(22):p. 14250-14255.
    [39]. Tyson, GW., J. Chapman, P. Hugenholtz, et al., Community structure and metabolism through reconstruction of microbial genomes from the environment [J]. Nature,2004.428(6978):p. 37-43.
    [40]. Treusch, A.H., A. Kletzin, G Raddatz, et al., Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea[J]. Environmental microbiology, 2004.6(9):p.970-980.
    [41]. Gui-Yang-Sheng Wang, E. Graziani, B. Waters, et al., Novel natural products from soil DNA libraries in a streptomycetehost[J]. Organic letters,2000.2(16):p.2401-2404.
    [42]. Mori, T., S. Mizuta, H. Suenaga, et al., Metagenomic screening for bleomycin resistance genes [J]. Applied and environmental microbiology,2008.74(21):p.6803-6805.
    [43]. Kazimierczak, K.A., K.P. Scott, D. Kelly, et al., Tetracycline resistome of the organic pig gut[J]. Applied and environmental microbiology,2009.75(6):p.1717-1722.
    [44]. Chung, EJ., H.K. Lim, J.C. Kim, et al., Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli[J]. Applied and environmental microbiology, 2008.74(3):p.723-730.
    [45]. Allen, H.K., L.A. Moe, J. Rodbumrer, et al., Functional metagenomics reveals diverse P-lactamases in a remote Alaskan soil[J]. The ISME journal,2008.3(2):p.243-251.
    [46]. Kellner, H. and D.R. Zak, Detection of expressed fungal Type I poly ketide synthase genes in a forest soil[J]. Soil Biology and Biochemistry,2009.41(6):p.1344-1347.
    [47]. Brady, S.F. and J. Clardy, Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA[J]. Journal of the American Chemical Society, 2000.122(51):p.12903-12904.
    [48]. Brady, S.F. and J. Clardy, Palmitoylputrescine, an antibiotic isolated from the heterologous expression of DNA extracted from bromeliad tank water [J]. Journal of Natural Products,2004. 67(8):p.1283-1286.
    [49]. Kennedy, J., J.R. Marchesi, and A. Dobson, Marine metagenomics:strategies forthe discovery of novel enzymes with biotechnological applications from marine environments [J]. Microb Cell Fact,2008.7:p.27.
    [50]. Ferrer, M., O. Golyshina, A. Beloqui, et al., Mining enzymes from extreme environments [J]. Current opinion in microbiology,2007.10(3):p.207-214.
    [51]. Antranikian, G, C.E. Vorgias, and C. Bertoldo, Extreme environments as a resource for microorganisms and novel biocatalysts [J]. Marine biotechnology I,2005:p.219-262.
    [52]. Heath, C., X.P. Hu, C. Cary, et al., Isolation and characterisation of a novel, low-temperature-active alkaliphilic esterase from an Antarctic desert soil metagenome [J]. Applied and environmental microbiology,2009:p.AEM.02597-08v1.
    [53]. Jin, P., X. Pei, P. Du, et al., Overexpression and Characterization of a New Organic Solvent-Tolerant Esterase Derived from Soil Metagenomic DNA[J]. Bioresource Technology, (2011), doi:10.1016/j.biortech.2011.10.087.
    [54]. Tirawongsaroj, P., R. Sriprang, P. Harnpicharnchai, et al., Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library [J]. Journal of biotechnology,2008.133(1):p.42-49.
    [55]. Rondon, M.R., P.R. August, A.D. Bettermann, et al., Cloning the soil metagenome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms [J]. Applied and environmental microbiology,2000.66(6):p.2541-2547.
    [56]. Xu, M., X. Xiao, and F. Wang, Isolation and characterization of alkane hydroxy lases from a metagenomic library of Pacific deep-sea sediment [J]. Extremophiles,2008.12(2):p.255-262.
    [57]. Jiang, C, S.X. Li, F.F. Luo, et al., Biochemical characterization of two novel β-glucosidase genes by metagenome expression cloning[J]. Bioresource Technology,2011.102(3):p. 3272-3278.
    [58]. Palackal, N., C.S. Lyon, S. Zaidi, et al., A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut[J]. Applied microbiology and biotechnology,2007.74(1):p.113-124.
    [59]. Arpigny, J.L. and K.E. Jaeger, Bacterial lipolytic enzymes:classification and properties [J]. Biochemical Journal,1999.343(Pt 1):p.177-183.
    [60]. Bomscheuer, U.T., Microbial carboxyl esterases:classification, properties and application in biocatalysis[J]. FEMS microbiology reviews,2002.26(1):p.73-81.
    [61]. Wu, C. and B. Sun, Identification of novel esterase from metagenomic library of Yangtze river[J]. J Microbiol Biotechnol,2009.19(2):p.187-193.
    [62]. Gupta, R., N. Gupta, and P. Rathi, Bacterial lipases:an overview of production, purification and biochemical properties [J]. Applied microbiology and biotechnology,2004.64(6):p. 763-781.
    [63]. Ranganathan, S.V, S.L. Narasimhan, and K. Muthukumar, An overview of enzymatic production of biodiesel[J]. Bioresource Technology,2008.99(10):p.3975-3981.
    [64]. SalgIn, U., S. SalgIn, and S. Takae, The enantioselective hydrolysis of racemic naproxen methyl ester in supercritical CO2 using Candida rugosa lipase[J]. The Journal of Supercritical Fluids,2007.43(2):p.310-316.
    [65]. Kwon, C.H., J.Y Jeong, and J.W. Kang, Molecular modeling and experimental verification of lipase-catalyzed enantioselective esterification of racemic naproxen in supercritical carbon dioxide[J]. Korean Journal of Chemical Engineering,2009.26(1):p.214-219.
    [66]. Hutt, A. and J. Caldwell, The importance of stereochemistry in the clinical pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs[J]. Clinical pharmacokinetics,1984.9(4):p.371-373.
    [67]. Long, Z.D., J.H. Xu, L.L. Zhao, et al., Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen[J]. Journal of Molecular Catalysis B:Enzymatic,2007.47(3-4):p.105-110.
    [68]. Wu, J.C., P. Ho, T.Y. Poh, et al., Enhanced enantioselectivity of immobilized Candida antarctica lipase for hydrolysis of ketoprofen ethyl ester at pH 1[J]. Korean Journal of Chemical Engineering,2007.24(4):p.648-650.
    [69]. Mustranta, A., Use of lipases in the resolution of racemic ibuprofen[J]. Applied microbiology and biotechnology,1992.38(1):p.61-66.
    [70]. Adams, S., P. Bresloff, and C. Mason, Pharmacological differences between the optical isomers of ibuprofen:evidence for metabolic inversion of the (-)-isomer[J]. Journal of Pharmacy and Pharmacology,1976.28(3):p.256-257.
    [71]. Wang, Y, Y. Hu, J. Xu, et al., Immobilization of lipase with a special microstracture in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen[J]. Journal of Membrane Science,2007.293(1-2):p.133-141.
    [72]. Gottemukkala, V.V., K.K. Saripella, A.K. Kadari, et al., Effect of methyl branching of C8H18 alkanes and water activity on lipase-catalyzed enantioselective esterification of ibuprofen [J]. Electronic Journal of Biotechnology,2008.11(1):p.13-25.
    [73]. Liu, Y, F. Wang, and T. Tan, Cyclic resolution of racemic ibuprofen via coupled efficient lipase and acid-base catalysis [J]. Chirality,2009.21(3):p.349-353.
    [74]. Shin, G.S., K.W. Lee, T.K. Kim, et al., Lipase-catalyzed production of optically active (S)-flurbiprofen in aqueous phase reaction system containing chiral succinyl [beta]-cyclodextrin[J]. Journal of Molecular Catalysis B:Enzymatic,2005.33(3-6):p.93-98.
    [75]. Shin, G.S., K.W. Lee, and Y.H. Lee, Fed-batch production of (5)-flurbiprofen in lipase-catalyzed dispersed aqueous phase reaction system induced by succinyl [beta]-cyclodextrin and its extractive purification [J]. Journal of Molecular Catalysis B: Enzymatic,2005.37(1-6):p.109-111.
    [76]. Bae, H., K.W. Lee, and Y.H. Lee, Enantioselective properties of extracellular lipase from Serratia marcescens ES-2 for kinetic resolution of (S)-flurbiprofen[J]. Journal of Molecular Catalysis B:Enzymatic,2006.40(1-2):p.24-29.
    [77]. Ozaki, S., T. Akiyama, T. Morita, et al.,5-Fluorouracil derivatives. XX. Synthesis and antitumor activity of 5'-O-unsaturated acyl-5-fluorouridines[J]. Chemical & pharmaceutical bulletin,1990.38(11):p.3164-3166.
    [78]. Crosasso, P., P. Brusa, F. Dosio, et al., Antitumoral activity of liposomes and immunoliposomes containing 5-fluorouridine prodrugs[J]. Journal of pharmaceutical sciences, 1997.86(7):p.832-839.
    [79]. Wang, Z.Y, N. Li, and M.H. Zong, A simple procedure for the synthesis of potential 6-azauridine prodrugs by Thermo myces lanuginosus lipase [J]. Journal of Molecular Catalysis B:Enzymatic,2009.59(1-3):p.212-219.
    [80]. Chen, X.Y, M.H. Zong, W.Y Lou, et al., Highly Efficient Regioselective Synthesis of 5'-O-lauroyl-5-azacytidine Catalyzed by Candida antarctica Lipase B[J]. Applied Biochemistry and Biotechnology,2008.151(1):p.21-28.
    [81]. Shaharin, F.A.M., Lipozyme TL IM catalyzed interesterification for the production of cocoa butter equivalent in a batch reactor[J]. Journal of biotechnology,2008.136:p. S357-S357.
    [82]. Undurraga, D., A. Markovits, and S. Erazo, Cocoa butter equivalent through enzymic interesterification of palm oil midfraction[J]. Process Biochemistry,2001.36(10):p.933-939.
    [83]. Wang, H.X., H. Wu, C.T. Ho, et al., Cocoa butter equivalent from enzymatic interesterification of tea seed oil and fatty acid methyl esters [J]. Food chemistry,2006.97(4):p.661-665.
    [84]. Liu, K.J., H.M. Chang, and K.M. Liu, Enzymatic synthesis of cocoa butter analog through interesterification of lard and tristearin in supercritical carbon dioxide by lipase [J]. Food chemistry,2007.100(4):p.1303-1311.
    [85]. Bhattacharyya, S. and D. Bhattacharyya, Biorefining of high acid rice bran oil[J]. Journal of the American Oil Chemists'Society,1989.66(12):p.1809-1811.
    [86]. Sengupta, R. and D. Bhattacharyya, A comparative study between biorefining combined with other processes and physical refining of high-acid mohua oil[J]. Journal of the American Oil Chemists'Society,1992.69(11):p.1146-1149.
    [87]. Dordick, J.S., A.J. Hacking, and R.A. Khan, Selective acrylation ofsugars[P]. USA, United States Patent,5128248,1992.
    [88]. Woolley, P., S.B. Petersen, and N. industrifond, Lipases:their structure, biochemistry and application[M]. Cambridge, England:Cambridge University Press,1994.
    [89]. Xu, Y., D. Wang, X.Q. Mu, et al, Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase[J]. Journal of Molecular Catalysis B:Enzymatic,2002.18(1):p.29-37.
    [90]. Larios, A., H.S. Garcia, R.M. Oliart, et al., Synthesis of flavor and fragrance esters using Candida antarctica lipase[J]. Applied microbiology and biotechnology,2004.65(4):p. 373-376.
    [91]. Gulrajani, M., R. Agarwal, A. Grover, et al., Degumming of silk with lipase and protease [J]. Indian Journal of Fibre and Textile Research,2000.25(1):p.69-74.
    [92]. Monlleo, D., M. Julia, A. Pinazo, et al., Use of lipases for wool modification[J]. Melliand Text, 1994.5:p.402-405.
    [93]. El-Sayed, H., R. Hamed, A. Kantouch, et al., Peerreviewed-Enzyme-based feltproofing of wool-A three-step process using lipase, glutathione reductase, and papain for wool fiber modification is described[J]. AATCC Review-American Association of Textile Chemists and Colorists,2002.2(1):p.25-28.
    [94]. Kathiervelu, S., Enzymatic preparatory processes [J]. Textile Trends India,2002.45(9):p. 93-96.
    [95]. Hsieh, Y.L. and L.A. Cram, Enzymatic hydrolysis to improve wetting and absorbency of poly ester fabrics [J]. Textile research journal,1998.68(5):p.311-319.
    [96]. Iso, M., B. Chen, M. Eguchi, et al., Production of biodiesel fuel from trigrycerides and alcohol using immobilized lipase[J]. Journal of Molecular Catalysis B:Enzymatic,2001.16(1):p. 53-58.
    [97]. Linko, Y.Y, M. Lamsa, X. Wu, et al., Biodegradable products by lipase biocatalysis[J]. Journal of biotechnology,1998.66(1):p.41-50.
    [98]. Nelson, L.A., T.A. Foglia, and W.N. Marmer, Lipase-catalyzed production of biodiesel. Journal of the American Oil Chemists' Society,1996.73(9):p.1191-1195.
    [99]. Zimmerman, S.B. and B.H. Pheiffer, Macromolecular crowding allows blunt-end ligation by DNA ligases from rat liver or Escherichia coli[J]. Proceedings of the National Academy of Sciences,1983.80(19):p.5852-5856.
    [100]. Pheiffer, B.H. and S.B. Zimmerman, Polymer-stimulated ligation:enhanced blunt-Or cohesive-end ligation of DNA or deoxyribooligonudcleotides by T4 DNA Ugase in polymer solutions [J]. Nucleic acids research,1983.11(22):p.7853-7871.
    [101]. Rusche, J.R. and P. Howard-Flanders, Hexamine cobalt chloride promotes intermolecular ligation of blunt end DNA fragments by T4 DNA ligase[J]. Nucleic acids research,1985. 13(6):p.1997-2008.
    [102]. Dinsdale, E.A., R.A. Edwards, D. Hall, et al., Functional metagenomic profiling of nine biomes[J]. Nature,2008.452(7187):p.629-632.
    [103]. Wei, Y, J.A. Contreras, P. Sheffield, et al., Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormone-sensitive lipase[J]. Nature Structural & Molecular Biology,1999.6(4):p.340-345.
    [104]. Donovan, R.S., C. Robinson, and B. Glick, Review:Optimizing inducer and culture conditions for expression of foreign proteins under the control of thelac promoter[J]. Journal of Industrial Microbiology & Biotechnology,1996.16(3):p.145-154.
    [105]. Schein, C., E. Boix, M. Haugg, et al., Secretion of mammalian ribonucleases from Escherichia coli using the signal sequence of murine spleen ribonuclease[J]. Biochemical Journal,1992. 283(Pt 1):p.137-144.
    [106]. Horn, U., W. Strittmatter, A. Krebber, et al., High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions [J]. Applied microbiology and biotechnology,1996.46(5):p.524-532.
    [107]. Piatak, M., J.A. Lane, W. Laird, et al., Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive [J]. Journal of Biological Chemistry,1988.263(10): p.4837-4843.
    [108]. Wang, Q., H. Wu, A. Wang, et al., Prospecting metagenomic enzyme subfamily genes for dna family shuffling by a novel pcr-based approach[J]. Journal of Biological Chemistry,2010. 285(53):p.41509-41516.
    [109]. Manco, G., E. Adinolfi, F. Pisani, et al., Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily[J]. Biochemical Journal,1998.332(Pt 1):p.203-212.
    [110]. Choo, D.W., T. Kurihara, T. Suzuki, et al., A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1:gene cloning and enzyme purification and characterization [J]. Applied and environmental microbiology,1998.64(2):p.486-491.
    [111]. Kourist, R., S.H. Krishna, J.S. Patel, et al., Identification of a metagenome-derived esterase with high enantioselectivity in the kinetic resolution of arylaliphatic tertiary alcohols [J]. Organic & biomolecular chemistry.,2007.5(20):p.3310-3313.
    [112]. Torres, S., M.D. Baigori, S. Swathy, et al., Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase[J]. Food Research International,2009.42(4): p.454-460.
    [113]. Laane, G., S. Boeren, K.Vos, et al., Rules for optimization of biocatalysis in organic solvents [J]. Biotechnology and Bioengineering,1987.30(1):p.81-87.
    [114]. Rahman, RN.Z.R.A., S.N. Baharum, M. Basri, et al., High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5[J]. Analytical biochemistry,2005. 341(2):p.267-274.
    [115]. Sugihara, A., M. Ueshima, Y. Shimada, et al., Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia[J]. Journal of biochemistry,1992.112(5):p. 598-603.
    [116]. Matsumoto, M., K. Kida, and K. Kondo, Enhanced activities of lipase pretreated with organic solvents [J]. Journal of Chemical Technology and Biotechnology,2001.76(10):p.1070-1073.
    [117]. Ahmed, E.H., T. Raghavendra, and D. Madamwar, An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28:application for ethyl caprylate synthesis [J]. Bioresource Technology,2010.101(10):p.3628-3634.
    [118]. Dandavate, V., J. Jinjala, H. Keharia, et al., Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis [J].Bioresource Technology,2009.100(13):p.3374-3381.
    [119]. Lescic, I., B. Vukelic, M. Majeric-Elenkov, et al., Substrate specificity and effects of water-mis cible solvents on the activity and stability of extracellular lipase from Streptomyces rimosus[J]. Enzyme and microbial technology,2001.29(8-9):p.548-553.
    [120].Youyan, Liu., Jianhe, Xu., and Honglai, Liu., Effect of reaction parameters on reactivity and enantioselectivity of lipase-catalyzed esterification[J]. Journal of Chemical Engineering of Chinese Universities,1999.13(4):p.372-376.
    [121]. Oosterom, M.W., F. van Rantwijk, and R.A. Sheldon, Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase[J]. Biotechnology and Bioengineering,1996.49(3):p.328-333.
    [122]. Sambrook, J., T. EF Fritsch, and T. Maniatis, Molecular cloning:a laboratory manual[M]. New York:Cold Spring Harbor Laboratory Press.1989.
    [123]. D'Aquila, R.T., L.J. Bechtel, J.A. Videler, et al., Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic acids research[J],1991.19(13):p.3749.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.