应用基因沉默技术培育高油酸大豆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油酸是重要的植物脂肪酸,它性质稳定、不易氧化并且有益于健康。研究表明,油酸能降低有害胆固醇(低密度脂蛋白,LDL),保持有益胆固醇(高密度脂蛋白,HDL)的水平,从而减缓动脉粥样硬化,有效预防冠心病等心血管疾病的发生。近来的研究发现油酸在女性乳腺癌方面起着积极的作用。目前,应用传统选育、诱导突变和新兴的转录后基因沉默等技术,在培育高油酸油料作物方面已经取得了许多突破性的进展,特别是近年来应用转录后基因沉默技术调节脂肪酸代谢过程中酶活性获得的成功。但是转录后基因沉默技术的反义和共抑制手段难以保证抑制的效率和预期结果,往往需要大量的转化材料来挑选所需要的理想表达性状。反向重复 DNA 序列构建诱导的转录后基因沉默技术解决了这个问题,该构建可在体内转录为 mRNA,这种 mRNA 可以自我互补形成发卡 RNA(hpRNA),而 hpRNA 可导致特异基因编码的 mRNA 降解。本研究利用 hpRNA 介导的基因沉默技术来抑制大豆种子中一个重要的脂肪酸脱氢酶——编码油酰磷脂酰胆碱ω-6 脱氢酶基因 gmFAD2-1 的表达,从而提高油酸的含量,改善大豆油脂肪酸的组成。采用大豆凝集素基因的启动子来启动一段可以编码形成发卡 RNA 的反向重复序列 DNA,再通过根癌农杆菌转化大豆,组织培养和继代筛选,获得转基因大豆材料。这样在大豆凝集素基因的启动子的作用下,gmFAD2-1 的反向重复序列结构在大豆种子中的表达可以特异性的沉默种子中的油酸脱氢酶 gmFAD2-1 基因。PCR 检测转基因植株,结果表明目的片断已整合到植物基因组中。
As a major component of plant fatty acid, oleic acid with the oxidative stability, flavor characteristics and physical properties contributes significantly to decrease the risk of cardiovascular disease due to the effect on lessening low-density lipoprotein cholesterol in the bloodstream. Recent researches showed that oleic acid could also decline the risk of the breast cancer development in women. There is a growing trend of producing high oleic crops using molecular techniques such as conventional selection, induced mutation and, more recently, post-transcriptional gene silencing (PTGS). In particular, PTGS has been used to down- regulate the activity of the desaturase enzymes that control the synthesis of the major seed fatty acids. However, the antisense and cosuppression strategies used in fatty acid modification have variable and unpredictable effectiveness and generally require the selection from large populations of transgenic plants to obtain an acceptable number of lines exhibiting sufficient degrees of target gene suppression. Recently, a much more effective methods of silencing plant genes have been developed based on the discovery that PTGS can be invoked at very high frequency using the inverted-repeat DNA constructs. Specifically designed genetic inverted repeats constructs resulted in gene silencing. This inverted repeats that encode RNA have regions of self-complementarity and can reliably generate hairpin RNA (hpRNA) transcripts that invoke sequence-specific RNA degradation. We have genetically modified the fatty acid composition of soybean (Glycine max) seed oil using the technique of hairpin RNA-mediated gene silencing. By this technique, the key fatty acid desaturease gene( gmFAD2-1) encoding oledyl-phosphatidylcholineω-6 desaturease was down-regulated resulting in the consequently modification of the fatty acid composition of peanut oil with high oleic oil content. Hairpin RNA-encoding gene constructs (HP) was driven by the seed-specific soybean lectin promoter and tranfered into soybean by Agrobacterium tumefacien-mediated method targetting against gmFAD2-1. Identification of transgenic plants by PCR revealed that the constructs had integrated in the plant genome.
引文
[1] 田煜.全球油脂油料供需形势分析[J].粮食与油脂 2003,11:28-30.
    [2] 蒋钟怀,王树安.高油玉米的研究历史和前景[J].北京农业科学,1998,12(5):7-10.
    [3] Warner K, Neff W E, Byrdwell W C, et al. Effect of oleic and linoleic acids on the production of deep-fried odor in heated triolein and triolinolein [J]. J Agri Food Chem, 2001,49:899-905.
    [4] Williams M J, Sutherland W H, Mccormick M P, et al. Impaired endothelial functions following a meal rich in used cooking fat [J]. J Am Coll Cardiol, 1999,33:1050-1055.
    [5] Billek G.Health aspects of thermoxidized oils and fats [J]. Euro J Lipid sci Tech, 2000, 102:587-593.
    [6] Ray J D, Carr B T. Empirical modeling of soybean oil hydrogenation. J Am Oil Chem Soc[J],1985,62:1218-1222.
    [7] Ray J D. Behavior of hydrogenation catalysts. I. Hydrogenation of soybean oil with palladium [J]. J Am Oil Chem Soc,1985,62:1213-1217.
    [8] Mensink R P, Katan M B. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects [J]. N Engl J Med 1990, 323:439-445.
    [9] Noakes M, Clifton P M. Oil blends containing partially hydrogenated or interesterified fats: differential effects on plasma lipids [J]. Am J Clin Nutri, 1998, 98:242-247.
    [10] Zock P L, Katan M B. Hydrogenation alternatives: effects of trans fatty acids and stearic acid versus linoleic acid on serum lipids and lipoproteins in humans [J]. J Lipids Res 1992, 33:399-410.
    [11] Ascherio A, Willett W C. Health effects of trans fatty acids. Am J Clin Nutri, 1997, 66(4s): 1006s-1010s.
    [12] Sleight P. Cholesterol and coronary heart disease mortality [J] . Astr New Zealand J Med, 1992, 22: 576-579.
    [13] Smith G D, Song F, Sheldon T A. Cholesterol lowering and mortality [J] . Brit Med J, 1993, 306:1367-1367.
    [14] 周奕华,陈正华.植物种子中脂肪酸代谢途径的遗传调控与基因工程[J].植物学通报, 1998,15: 16-23.
    [15] Kubow S.The influence of positional distribution of fatty acids in the native, interesterified and structure specific lipids on lipoprotein metabolism and atherogenesis[J].Nutritional Biochemistry,1996,7: 530-541.
    [16] Eccleston V S, Ohlrogge J B. Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation [J]. Plant Cell, 1998,10:613-621.
    
    [17] 石阶平,宋琳亮,王丹蕊,等. 利用基因工程技术改造植物脂质的研究进展[J].农业生物技术学报,2001,9(4):403-408.
    [18] Stoutjesdijk P, Singh S P, Liu Q, et al.HpRNA-mediated targeting of the Arabidopsis thaliana FAD2 gene gives highly efficient and stable silencing[J].Plant Physiology, 2002,129: 1723-1731.
    [19] Liu Q, Singh S P, Green A G.High-stearic and high-oleic cottonseed oils: Nutritionally improved cooking oils developed using gene silencing[J].Journal of the American College of Nutrition, 2002b,21: 205-211.
    [20] Knutzon D S, Hayes T R, Wyrick A, et al.Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels[J].Plant Physiol, 1999,109: 999-1006.
    [21] Sayanova O V, Napier J A.Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants[J].Phytochemistry, 2004,65: 147-158.
    [22] Stoutjesdijk P, Hurlstone C, Singh S P,et al.High-oleic Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous 12-desaturases [J]. Biochem Soc Trans, 2000,28: 938-940.
    [23] Hitz W D, Carlson T J, Booth J J, et al.Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium[J].Plant Physiol,1994,Jun; 105(2): 635-641.
    [24] Liu Q. High-Oleic and High-Stearic Cottonseed Oils: Nutritionally Improved Cooking Oils Developed Using Gene Silencing [J]. Journal of the American College of Nutrition, 2002,21:205-211.
    [25] Kinney A J. Development of genetically engineered soybean oils for food applications [J]. Journal of Food Lipids, 1996,3: 273-292.
    [26] Mazur B, Krebbers E, Tingey S.Gene discovery and product development for grain quality traits [J]. Science,1999,285:372-375.
    [27] Hitz W D, et al. Plant Lipid Metabolism [J], Netherlands: Kluwer Academic. 1995.
    [28] Napoli C, Lemieux C, Jorgensen R A, Introduction of a chimericchalcone synthase gene into Petunias results in reversible cosuppression of homologous genes in trans [J]. Plant Cell, 1990, 279-289.
    [29] Guo S, Kemphues K J. A gene required for establishing polarity in C.elegans embryos, encodes a putative ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81:611-620.
    [30] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Natrue, 1998,391:806-811.
    [31] Waterhouse P M, Wang M B, Lough T. Gene silencing as an adaptive defence against viruses [J]. Nature, 2001, 411:834-842.
    [32] Wang M B,Metzlaff M. RNA silencing and antiviral defense in plants [J]. Current Opinion in Plant Biology, 2005, 8:216-222.
    
    [33] Zamore P D, Tuschl T, Sharp P A, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell, 2000, 101:25-33.
    [34] Hammond S M, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates posttranscription algene silencing in Drosophila cells[J]. Nature, 2000, 404(6775): 293-296.
    [35] Bernstein E, Caudy A A, Hammond S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001, 409(6818): 363-366.
    [36] Yang D, Lu H, Erickson J W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos[J]. Curr Bio, 2000, 10(19): 1191-1200.
    [37] Sijen T, Simmer F, Fire A, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell .2001; 107(4): 465-76.
    [38] Lipardi C, Wei Q, Paterson B M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs [J]. Cell, 2001; 107(3): 297-307.
    [39] Dalmay T, Hamilton A, Rudd S, et al, An RNA-dependent RNA polymerase gene in Arabidopsis is required for post-transcriptional gene silencing mediated by a transgene but not by a virus [J]. Cell, 2000, 101:543-553.
    [40] Brigneti G, Voinnet O, Li W X, et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana [J]. The EMBO Journal, 1998, 17, 6739-6746.
    [41] Gyorgy S, Attila M, Daniel S, et al. Short Defective Interfering RNAs of Tombusviruses Are Not Targeted but Trigger Post-Transcriptional Gene Silencing against Their Helper Virus [J]. Plant Cell, 2002, 14:359-372.
    [42] Luca C.Genetic and epigenetic interactions in allopolyploid plants [J]. Plant Molecular Biology, 2000, 43:387-399.
    [43] Ronald H, Plasterk A, Ketting R F. The science of the genes [M]. 2000, 10: 562-567c.
    [44] Liu Q, Singh S P, Green A G. High-steric and –oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing [J]. Plant Physiology, 2002, 129: 1-12.
    [45] Dale E C,Ow D W. Gene transfer with subsequent removal of the selection gene from the host genome [J]. Proc Natl Acad USA, 1994, 88: 10558–10562.
    [46] Gleave A P, Mitra D S, Mudge S, et al. Selectablemarker-free transgenic plants without sexual crossing: transientexpression of cre recombinase and use of a conditional lethal- dominant gene [J]. Plant Mol Biol, 1999, 40: 223–235.
    [47] Sugita K,Matsunaga E, Ebinuma H. Effective selection system for generating marker free transgenic plants independent of sexual crossing [J]. Plant Cell Rep, 1999, 18: 941–947.
    [48] Puchta H. Removing selectable marker genes: taking the shortcut [J]. Trends Plant Sci, 2000, 5: 273–274.
    [49] Goldsbrough A P, Lastrella C N, Yoder J I. Transposition mediated re-positioning and subsequent elimination of marker gene from transgenic tomato [J]. Biotechnology, 1993, 11: 1286–1292.
    [50] Cotsaftis O, Sallaud C, Breitler J C, et al. Transposon mediated generation of marker freerice plants containing a Bt endotoxin gene conferring insect resistance [J]. Mol Breeding, 2002, 10: 165–180.
    
    [51] Depicker A, Herman L, Jacobs A, et al. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction [J]. Mol. Gen. Genet, 1985, 201: 477-484.
    [52] Komari T, Hiei Y, Saito Y, et al. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers [J]. Plant J, 1996, 10(1): 165-174.
    [53] De N M, De B S, Jacobs A, van M M, et al. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs [J]. Plant J, 1997, 11(1): 15-29.
    [54] De Framond A J, Back E W, Chilton W S, Kayes L, and Chilton M D. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation [J]. Mol Gen Genet, 1986, 202: 125-131.
    [55] Daley M, Knauf V C, Summerfelt K R, et al. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants [J]. Plant Cell Reports, 1998, 17(6-7): 489-496.
    [56] Miller M, Tagliani L, Wang N, et al. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system [J]. Transgenic Res, 2002, 11(4): 381-396.
    [57] Breitler J C, Meynard D, van B J, et al. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.) [J]. Transgenic Research, 2004, 13(3): 271-287.
    [58] Matthews P R, Wang M B, Waterhouse P M, et al. Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector [J]. Mol. Breeding, 2001, 7(3): 195-202.
    [59] Xing A Q, Zhang Z Y, Sato S, et al. The use of two T-DNA systems to derive marker-free transgenic soybeans [J]. In Vitro Cell. Dev. Biol. Plant, 2000, 36: 456-463.
    [60] Lu H J, Zhou X R, Gong Z X, et al. Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors [J]. Aust. J. Plant Physiol, 2001,28: 241-248.
    [61] Deblock M, et al. Expression of foreign genes in regenerated plants and their progency [J]. EMBO J, 1984, 3:1681-1689c.
    [62] Hinchee MAW, Conner-Ward D V, Newell C A, et al. Production of transgenic soybean plants using Agrobacterium –mediated DNA transfer [J]. BIO/TECHNOL, 1988, 6:915-922.
    [63] McCabe D E, Swain W F, Martinell B J,et al. Stable transformation of soybean (Glycine max) by particle acceleration [J]. BIO/TECHNOL, 1988, 6:923-926.
    [64] 王连铮,尹光初,罗教芬,等. 大豆致癌及基因转移研究[J]. 中国科学(B 辑),1984,2:137-141.
    
    [65] 徐香玲,李兴华,刘伟华,等. Ri 质粒介导的大豆花叶病毒外壳蛋白基因转化研究[J]. 大豆科学,1996,15(4):284-287.
    [66] 徐香玲,高晶,刘伟华,等. Ti 质粒介导的 B.t.K-δ 内毒素蛋白基因转化大豆的初步研究,[J]大豆科学,1997,16(1):9-11.
    [67] 徐香玲,邹联沛,刘伟华,等. 向大豆导入几丁质酶基因初步的研究[J]. 大豆科学,1999,18(2):101-107.
    [68] Parrt W A, Hoffman L M, Hidebrand D F, et al. Recovery of primary trandforamtion of soybean[R]. Plant Cell Rep, 1989, 7:615-617.
    [69] 王慧中,徐志彦. Ti 质粒在大豆中表达初报 [J].浙江农业大学学报,1995,21:217-218.
    [70] 傅桂荣,徐志苔,郑宝记,等. 含 ipt 基因根癌农杆菌转化大豆萌动种胚的同工酶分析[J].哈尔滨师范大学自然科学学报,1996,12:80-90.
    [71] Bailcy M A, Boerma H R, Parrott W A. Inheritance of tumor formation inresponse to Agrobacterium tumefactions in soybean [J]. Corp Sci, 1994, 34:514-519.
    [72] Mauro A O, Pfeiffer T W, Collins G B. Inheritance of soybean susceptibility to Agrobacterium tumefactions and its relations to transformation [J]. Corp Sci, 1995, 35:1152-1156.
    [73] Paula M, Olhoft L, Flagel E, et al. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method [J]. Planta, 2003, 216: 723–735.
    [74] Liu H K, Yang Ch, Wei Zh M. Efficient Agrobacterium tumefaciens-mediated transformation of soybean using an embryonic tip regeneration system [J]. Planta, 2004.
    [75] Browse J, Somerville C R. Glycerolipid synthesis: biochemistry and regulation [J]. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 467–506.
    [76] José M. Martínez R, Petra S, et al. Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.) [J]. Molecular Breeding, 2001, 8(2):159-168.
    [77] Liu Q, Singh S P, Brubaker C, et al. Molecular cloning and expression of a cDNA encoding a microsomal w-6 Fatty acid desaturase in cotton (Gossypium hirsutum). Aust J Plant Physiol, 1996b, 26:101-106.
    [78] Heppard E M, Kinney A J, Stecca K L, et al. Developmental and growth temperature regulation of two different microsomal w-6 desaturase genes in soybeans [J]. Plant Physiol, 1996, 110:311-319.
    [79] Hamilton A J, Brown S, Yuanhai H, et al. A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato [J]. Plant J, 1998, 15: 737–746.
    [80] Kinney A J. Improving soybean seed quality [J]. Nature Biotechnol 1996, 14: 946.
    [81] Knutzon D S, Thompson G A, Radke S E, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene [J]. Proc Natl Acad Sci USA, 1992, 89:2624–2628.
    [82] Smith N A, Singh S P, Wang M B, et al. Totally silencing by intron-spliced hairpin RNAs [J]. Nature, 2000, 407:319–320.
    
    [83] Stoujesdijk P A, Singh S P, Liu Q, et al. hpRNA-mediated targeting of the Arabidopsis FAD2 ene gives highly efficient and stable silencing [J]. Plant Physiology,2002, 129:1-9.
    [84] Wesley S V, Helliwell C A, Smith N A, et al. Construct design for efficient, effective and high-throughput gene silencing in plants [J]. Plant J 2001, 27:581–590.
    [85] Stoutjesdijk P A, Singh* S P, Liu Q, et al. HpRNA-Mediated Targeting of the Arabidopsis FAD2 Gene Gives Highly Efficient and Stable Silencing [J]. Plant Physiology, August 2002, 129: 1–9.
    [86] Waterhouse P M, Wang M B, Lough T, Gene silencing as an adaptive defence against viruses [J]. Nature, 2001, 411:834-842.
    [87] Callis J, Formm M, Walbot V. Introns increase gene expression in cultured maize cells [J]. Gene Dev, 1987, 1:1183-1200.
    [88] Tanaka A, Mita S, Ohta S, et al. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacoo is correlated with an increased level of mRNA and an efficient splicing of the intron [J]. Nucleic Acid Res, 1990, 18: 6767-6770.
    [89] Yuan B, Latek R, Hossbach M, et al. siRNA Selection Server: an automated siRNA oligonucleotide prediction server [J]. Nucleic Acids Res., 2004, 32: 130-134.
    [90] Townsend B J, Danny J L. Spatial and temporal regulation of a soybean (Glycine max) lectin promoter in transgenic cotton (Gossypium hirsutum) [J]. Functional Plant Biology, 2002, 29(7):835-843.
    [91] Hoschek G, Vodkin L O. An insertion sequence blocks the expression of a soybean lectin gene [J]. 1983, Cell, 33:465-475.
    [92] Okamuro J K, Jofuku K D, GOLdberg R B. Soybean seed bectin gene and flanking nonseed protein genes are developmentally regulated in transformed tobacco plants [J]. Proceeding of the National Academy of Sciences USA, 1986, 83:8240-8244.
    [93] Vodkin L O, Rhodes P R, Goldberg R B. A lectin gene insertion has the structural features of a transposable element [J]. Cell, 1983, 34: 1023–1031.
    [94] Cho M J, Widholm J M, Vodkin L O. Cassettes for seed-specific expression tested in transformed embryogenic cultures of soybean [J]. Plant Mol. Biol. Rep, 1995, 13:255–269.
    [95] 莽克强.农业生物工程[M]. 化学工业出版社,1998,11 ISBN 7-5025-2293-X.
    [96] Wang M B, Upadhyaya N M, Richard I S, et al. Intron-mediated improvement of a selectable marker gene for Agrobacterium –mediated plant transformation. The Journal of Genetics & Breeding, 1997, 51: 25-334.
    [97] 王萍, 吴颖,何娜,等. 抗生素对农杆菌的抑制效果和大豆外植体诱导的影响[J]. 东北师大学报, 自然科学版 2000,遗传学特辑:39~42.
    [98] 王萍,吴颖,季静,等. 抗生素对大豆愈伤组织的诱导和生长影响[J]. 遗传, 2001, 23(4):321~324.
    [99] 王罡,王萍,蔺宇等. 大豆基因型对根癌农杆菌菌株敏感性的研究[J]. 遗传, 2002, 24(3):297~300.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.