miR-494对胰腺癌生物学行为的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     检测miR-494在胰腺癌组织和细胞系中的表达,分析miR-494异常表达与胰腺癌临床病理特性的临床相关性;以胰腺癌细胞系AsPC-1, PANC-1为研究对象,证实miR-494对胰腺癌细胞增殖,周期,凋亡,侵袭转移,化疗敏感性等生物学特性的影响;进行miR-494与c-Myc和SIRT1相关性分析,明确miR-494靶向调控c-Myc和SIRT1;应用小片段干扰RNA (siRNA)技术抑制c-Myc与SIRT1基因表达,通过研究小片段干扰后PANC-1细胞增殖,周期,凋亡,侵袭转移等生物学特性的影响,进一步明确miR-494的作用机制是通过调控c-Myc和SIRT1实现。
     研究方法:
     实时荧光定量聚合酶链式反应(RT-PCR)检测胰腺组(86例胰腺癌组织和41例正常胰腺组织)和胰腺癌细胞系(AsPC-1,Bxpc-3, PANC-1, SW1990, Miapaca-2)中miR-494的表达,分析miR-494的表达与胰腺癌临床病理学特征及其预后的相关性;以胰腺癌细胞系AsPC-1和PANC-1为研究对象,分别转染miR-494类似物(miR-494mimics)和抑制剂(miR-494inhibitor),实时定量PCR检测转染后miR-494的表达,以确定转染效果; MTT(二苯基溴化四氮唑蓝)和平板克隆观察上调miR-494后对胰腺癌细胞增殖的影响;蛋白免疫印迹(western blot)检测上调miR-494后细胞周期与凋亡相关基因P21,CyclinDl,BAX, Bc1-2,P53蛋白的表达;流式细胞术检测细胞周期变化和凋亡的变化;β-半乳糖苷酶染色(β-Galactosidase staining, β-Gal)测定细胞衰老;Transwell检测各组细胞迁移(Migration)和侵袭(Invasion)的影响,并用western blot检测迁移和侵袭相关蛋白基质金属蛋白酶-2(MMP-2)和基质金属蛋白酶-9(-P-9)的表达变化;采用MTT法检测AsPC-1和PANC-1细胞经上调miR-494后对5-氟尿嘧啶(5-FU)和吉西他滨(Gemcitabine, GEM)化疗敏感性的变化;免疫组织化学染色法和实时定量PCR检测c-Myc和SIRT1在胰腺癌组织中的表达,用Graphpad软件对miR-494与c-Myc和SIRT1基因表达进行相关性分析;western blot检测转染miR-494mimics和miR-494inhibitor后c-Myc和SIRT1蛋白水平的变换,并对miR-494同c-Myc和SIRT1蛋白表达进行相关性分析;利用生物信息学预测软件(miRanda, miRDB and TargetScan)寻找miR-494与c-Myc和SIRT1的3’-非编码区结合(3’-UTR)结合位点,构建c-Myc和SIRT1双荧光报告基因质粒,通过双荧光报告初步证实miR-494直接靶向c-Myc和SIRT1;为了进一步明确miR-494的作用机制,以PANC-1为研究对象,小片段干扰RNA(siRNA)技术抑制c-Myc为siRNA-c-Myc,小片段干扰RNA(siRNA)同时抑制c-Myc与SIRT1为siRNA-c-Myc+siRNA-SIRT1(co-transfected,共转染组),对照为siRNA-NC(normal control), western blot检测转染后c-Myc和SIRT1蛋白的变化,以确定转染效果; MTT(二苯基溴化四氮唑蓝)观察各组对PANC-1细胞增殖的影响;蛋白免疫印迹(western blot)检测处理后细胞周期与凋亡相关基因P21, CyclinDl,BAX, Bcl-2,P53蛋白的表达;流式细胞术检测细胞周期变化和凋亡的变化;β-半乳糖苷酶染色(β-Galactosidase staining,β-Gal)测定细胞衰老;Transwell检测各组细胞侵袭(Invasion)的影响;BALB/c裸鼠成瘤实验鉴定上调miR-494和干扰c-Myc后PANC-1细胞的成瘤能力,western blot检测瘤体c-Myc和SIRT1的表达变化。
     实验结果:
     miR-494在胰腺癌组织的表达水平明显低于正常胰腺组织(0.567±0.049vs1.000±0.104,P<0.001);同正常组织相比,miR-494在胰腺癌细胞系AsPC-1,Bxpc-3, PANC-1和SW1990中显著下降,在AsPC-1(0.171±0.023vs1.060±0.131, p=0.0026)和PANC-1细胞(0.270±0.024vs1.060±0.131,p=0.004)中下降最为明显;miR-494高表达患者的生存时间明显长于miR-494低表达患者(P=0.0366)。miR-494表达水平与胰腺癌患者年龄(p=0.0438)、肿瘤大小(p=0.0041)、TNM分期(p=0.0003)、淋巴侵袭(p=0.0010)、远处转移(p=0.0362)密切相关,而与肿瘤组织分化程度、患者性别、肿瘤部位、血管浸润、神经侵犯无相关性(p>0.05)。由于胰腺癌细胞系AsPC-1和PANC-1的miR-494表达水平下降最为明显,因此选取AsPC-1和PANC-1作为实验细胞系,转染miR-494mimics后,miR-494表显著上调(P<0.01),转染miR-494inhibitor后miR-494下调(P<0.05),证实转染有效。同各自的对照相比,转染miR-494mimics后AsPC-1(45.13±5.38%,P<0.01)和PANC-1(41.42±3.95%,P<0.01)细胞增殖受到显著抑制,转染miR-494inhibitor后AsPC-1(23.15±2.18%,P<0.05)和PANC-1(16.59±3.23%,P<0.05)细胞增殖增强。平板克隆结果显示,转染miR-494mimics后AsPC-1和PANC-1克隆数显著降低。流式细胞检测结果显示上调miR-494后,同各自对照相比,AsPC-1(12.3±0.5%vs19.5±0.6%,P<0.05)和PANC-1细胞(8.9±0.8%vs17.1±0.3%,P<0.05)细胞凋亡增强,AsPC-(63.3.1%vs73.7±2.5%,P<0.05)和PANC-1细胞(40.5.6±4.2%vs58.6±3.7%,P<0.01)细胞周期G1期细胞比率显著增加。同各自对照相比,上调miR-494后AsPC-1(17.5±2.1%vs40.7±1.7%,P<0.01)和PANC-1细胞(14.6±3.3%vs60.9±3.8%,P<0.01)衰老显著增加。Western blot检测显示经转染miR-494mimics后Bcl-2和CyclinDl显著下调,乙酰化p53.BAX和p21显著上调。Transwell检测各组细胞侵袭和迁移能力发现,上调miR-494后,AsPC-1和PANC-1细胞侵袭和迁移能力显著减弱,侵袭相关蛋白MMP-2和MMP-9显著下降。药敏结果显示,同各自的对照相比,在转染miR-494后,AsPC-1细胞对5-FU(7.93±1.05vs27.56±2.89ug/mL,P<0.01)和GEM(17.5±1.39vs82.56±4.27ug/mL,P<0.01)IC50值显著下降,PANC-1细胞对5-FU(9.41±1.63vs42.62±3.16ug/mL,P<0.01)和GEM(25.33±1.75vs63.25±5.36ug/mL, P<0.01)的IC50也显著下降,即上调miR-494后,AsPC-1和PANC-1对5-Fu和GEM的药物敏感性明显增强。免疫组织化学结果显示,胰腺癌组织中c-Myc(52.74±1.534%vs26.49±1.56%,P<0.001)和SIRT1(48.35±1.51%vs20.51±1.34%,P<0.001)阳性细胞数比率明显高于正常组织。实时定量PCR显示,同正常组织相比,胰腺癌组织中c-Myc(1.379±0.086vs0.940±0.070,P=0.0017)和SIRT1(1.583±0.0.110vs1-044±0.092,P=0.0022)基因高表达。胰腺组织中miR-494同c-Myc(r=-0.6799,P<0.001)和SIRTl(r=-0.5293,P<0.001)基因表达负相关,提示miR-494可能调控c-Myc和SIRT1.生物信息学预测软件(miRanda, miRDB and TargetScan)显示,miR-494与c-Myc和SIRT1的3’-UTR有共同的结合位点,提示miR-494可能靶向c-Myc和SIRT1.转染miR-494mimics后c-Myc和SIRT1基因和蛋白表达均显著下调,转染miR-494inhibitor后c-Myc和SIRT1基因和蛋白表达均上调。对miR-494同c-Myc和SIRT1基因表达的相关性分析提示:miR-494同c-Myc (r=-0.6374,P=0.0142)和SIRT1(r=-0.5973, P=0.0239)负相关。miR-494mimics与包含野生型c-Myc或SIRT1的3’-UTR质粒共转染的荧光活性明显低于对照组,证实miR-494直接靶向c-Myc和SIRT1.转染c-Myc干扰小片段后,c-Myc和SIRT1显著下降(P<0.01),细胞增殖受抑制,细胞G1期阻滞,细胞衰老增强,侵袭能力减弱(P<0.05)。然而siRNA-c-Myc组对细胞凋亡无明显影响(P>0.05)。提示miR-494的作用不单纯依赖c-Myc。共转染c-Myc和SIRT1干扰小片段后,同单独干扰c-Myc组相比,对增殖和侵袭抑制以及周期阻滞更为明显(P<0.01)。另外,共转染组组PANC-1细胞凋亡率增加(12.65±0.55%vs.16.85±0.75%,P=0.0457),凋亡和周期相关蛋白的结果同上调miR-494结果一致。提示miR-494的作用是通过同时靶向c-Myc和SIRT1实现。BALB/c裸鼠成瘤实验结果显示上调miR-494后PANC-1细胞的成瘤能力下降(0.83±0.18vs0.32±0.07g,P<0.05)。Western blot检测瘤体c-Myc和SIRT1的表达下调。
     实验结论:
     1.miR-494在胰腺癌组织中和胰腺癌细胞系的低表达,低表达miR-494与患者年龄,肿瘤大小,胰腺癌侵袭转移以及预后密切相关,检测miR-494的表达有助于判断胰腺癌恶性程度及预后。
     2.上调miR-494在胰腺癌细胞AsPC-1和PANC-1细胞中的表达,可显著抑制细胞增殖,增加凋亡和衰老细胞比例,发生G1期阻滞,减弱细胞侵袭和迁移能力,增强细胞对5-Fu和GEM的药物敏感性。提示miR-494可能作为胰腺癌基因治疗靶点。
     3.c-Myc和SIRT1在胰腺癌组织中高表达,并与miR-494负相关。在PANC-1细胞中,上调miR-494后,c-Myc和SIRT1表达下调;下调miR-494后,c-Myc和SIRT1上调;miR-494与c-Myc和SIRT1负相关。结合双荧光结果,证实miR-494直接靶向c-Myc和SIRT1。
     4.同时下调c-Myc和SIRT1在PANC-1细胞中的表达后,生物学效应及效应蛋白表达改变同上调miR-494一致;单一下调c-Myc后,凋亡未见明显改变,且对细胞增殖抑制和周期阻滞较下调c-Myc和SIRT1弱。提示miR-494可能通过靶向c-Myc和SIRT1发挥生物学效应。上调miR-494抑制胰腺癌细胞的体外成瘤能力。
Purpose:MicroRNAs are essential for the regulation of cell proliferation and had been implicated in tumorigenesis. However, the roles and molecular mechanisms of aberrant microRNAs in pancreatic cancer remain unclear. In this study,we investigate the expression levels of miR-494in pancreatic cancer tissues and pancreatic cancer cells, and significance of SIRT1in human pancreatic carcinoma and their association with the clinical pathologic characters, and evaluate the relationship between miR-494expression levels and clinic characteristics. After restoration of miR-494, biological behaviours of Aspc-1and PANC-1cells were investigated such as cellular growth, senescence, cycle progression, apoptosis and chemosensitivity etc. We also explore the mechanism of the antitumor effects of miR-494. To confirm the potential targets of miR-494, we prove the direct interaction between miR-494and its targets c-Myc and SIRT1. To elucidate the antitumor mechanisms of miR-494, we silenced c-Myc/SIRT1expression through the introduction of siRNA-c-Myc/into PANC-1cells. After inhibition of miR-494, biological behaviours were investigated. We hypothesized that miR-494might be involved in pancreatic cancer progression through the modulation of c-Myc and SIRT1.
     Experimental Design:The expression levels of miR-494were detected in of pancreatic cancer tissues and pancreatic cacer cells(AsPC-1, BxPC-3, PANC-1, SW1990and Miapaca-2) using qRT-PCR. We analyze the correlations among the variety expression levels of SIRT1and pancreatic cancer clinical pathologic characters. To explore the roles of miR-494in pancreatic cancer progression, AsPC-1and PANC-1cells were transfected with miR-494mimics, miR-494inhibitor and their respective negative controls (NC). After transfection, the expression of miR-494in AsPC-1and PANC-1cells was detected by qRT-PCR. MTT was used to measure the proliferation of AsPC-1and PANC-1cells after transfection with miR-494mimics/inhibitor. To further investigate the mechanisms of miR-494in proliferation inhibition, apoptosis and cell cycle were analyzed using flow cytometry while cell senescence was analyzed using β-Galactosidase (β-Gal) staining. Moreover, several associated proteins, including BAX, Bcl-2, acetylated p53, p21and CyclinDl were detected by western blot analysis. The effects of miR-494on the migration and invasive ability of pancreatic cancer cells were investigated using Transwell analysis after transfection with miR-494. We also observed whether miR-494could sensitize pancreatic cancer cells to5-FU and GEM. Immunohistochemistry (IHC)was used to detect the expression of c-Myc and SIRT1in86cancer tissues (PC) and41normal pancreatic tissues (NP). Next, we determined the expression levels of c-Myc and SIRT1mRNAs in PC and NP tissues, and analysis the correlation between miR-494levels and c-Myc and SIRT1mRNA expression in pancreatic cancer tissues. The putative targets of miR-494were revealed by bioinformatic analyses, includingmiRanda, miRDB and TargetScan algorithms. The expression of c-Myc and SIRT1was detected qRT-PCR and western blot results after transfection of miR-494mimics/inhibitor. After that, the correlation between miR-494levels and c-Myc and SIRT1mRNA expression was analysised. Furthermore, we cloned3'-UTR sequences that contained the predicted target sites (wild type, WT) or mutated sequences (mutant type, MUT) of c-Myc and SIRT1into the pGL3vector. A luciferase reporter assay was then used to prove the direct interaction between miR-494and its targets. To confirm the antitumor mechanisms of miR-494, we silenced c-Myc/SIRTl expression through the introduction of siRNA-c-Myc/SIRT1into PANC-1cells. Cell biology behaviors were investigated after inhibition of c-Myc/SIRT1. Further, restoration of miR-494was evaluated in nude mice to confirm whether our findings shown above in vitro would be reproducible in vivo.
     Results:The mean expression level of miR-494in PC tissues was significantly lower than that of NP tissues (0.567±0.049vs1.000±0.104, P<0.001). We also found that miR-494was significantly down-regulated in four different pancreatic cancer cell lines (AsPC-1, BxPC-3, PANC-1and SW1990) compared with NP tissues, especially in AsPC-1(0.171±0.023vs1.060±0.131, p=0.0026) and PANC-1cells (0.270±0.024vs1.060±0.131, p=0.004). Low miR-494expression was found to be significantly correlated with age (p=0.0438), tumor size (p=0.0041), TNM stage (p=0.0003), lymphatic invasion (p=0.0010) and distant metastasis (p=0.0362). However, there was no obvious correlation between miR-494levels and other clinic features. Kaplan-Meier survival curves showed that patients with high miR-494expression levels had significantly longer survival time than patients with low miR-494levels (P=0.0366). After restoration of miR-494, the proliferation of AsPC-1and PANC-1cells was significantly inhibited by45.13±5.38%and41.42±3.95%, respectively (F<0.01). While after transfection with miR-494inhibitor, the proliferation rate increased by23.15±2.18%and16.59±3.23%(P<0.05). Moreover, AsPC-1and PANC-1cells transfected with miR-494mimics displayed fewer and smaller colonies than negative control. The number of apoptotic cells were markedly increased in AsPC-1(12.3±0.5%vs19.5±0.6%, P<0.05) and PANC-1cells (8.9±0.8%vs17.1±0.3%, P<0.05) transfected with miR-494. Furthermore, overexpression of miR-494notably increased the proportion of cells in the G1phase in AsPC-1(63.3±3.1%vs73.7±2.5%, P<0.05) and PANC-1cells (40.5.6±4.2%vs58.6±3.7%, P<0.01). Analysis of β-Gal staining indicated that miR-494significantly induced senescence of AsPC-1(17.5±2.1%vs40.7±1.7%, P<0.01) and PANC-1cells (14.6±3.3%vs60.9±3.8%, P<0.01). Bcl-2and CyclinD1were significantly down-regulated, whereas acetylated p53, BAX and p21were obviously up-regulated. The migration and invasive ability of pancreatic cancer cells were significantly decreased after transfection with miR-494. After restoration of miR-494, the IC50of AsPC-1cells exposed to5-FU (7.93±1.05vs27.56±2.89ug/mL, P<0.01) and GEM (17.5±1.39vs82.56±4.27ug/mL, P<0.01) were significantly decreased. Moreover, the IC50of PANC-1cells exposed to5-FU (9.41±1vs1.63vs42.62±3.16ug/mL, P<0.01) and GEM (25.33±1.75vs63.25±5.36ug/mL, P<0.01) were also decreased. Compared to the NP group, the percentage of cells that were positive for c-Myc (52.74±1.534%vs26.49±1.56%, P<0.001)and SIRT1(48.35±1.51%vs20.51±1.34%, P<0.001) were significantly increased in the PC group. The expression levels of c-Myc (1.379±0.086vs0.940±0.070, P=0.0017) and SIRT1(1.583±0.0.110vs1.044±0.092, P=0.0022) mRNAs were also significantly up-regulated in the PC group. A significant inverse correlation between miR-494levels and c-Myc(r=-0.6799, P<0.001) and SIRT1(r=-0.5293, P<0.001) mRNA expression was observed in pancreatic cancer tissues. The qRT-PCR and western blot results confirmed that miR-494restoration led to the down-regulation of c-Myc and SIRT1expression, whereas the inhibition of miR-494expression increased c-Myc and SIRT1expression. In addition, we found that miR-494expression was negatively correlated with c-Myc (r=-0.6374, P=0.0142) and SIRTl(r=-0.5973, P=0.0239) expression. Luciferase reporter assay proved that miR-494targeted c-Myc and SIRT1. Specific knockdown of c-Myc by siRNA significantly inhibited the proliferation and invasion of PANC-1cells and induced cell cycle arrest and senescence. The down-regulation of c-Myc did not lead to obvious apoptosis, which implied that the effects of miR-494on pancreatic cancer do not rely exclusively on targeting c-Myc. After co-transfection of PANC-1cells with c-Myc-RNAi and SIRTl-RNAi further inhibited proliferation, invasion and cell cycle arrest. Moreover, the co-transfection induced obvious apoptosis in PANC-1cells (12.65±0.55%vs.16.85±0.75%, P=0.0457), which was similar to the effect of miR-494induction. After co-transfection, the associated proteins BAX, Bcl-2, acetylated p53, p21and CyclinDl expression levels were consistent with induction of miR-494. Restoration of miR-494inhibited the growth of pancreatic cancer cells in vivo (0.83±0.18vs0.32±0.07g, P<0.05). Western blot analysis demonstrated that the expression levels of c-Myc and SIRT1appeared to be significantly down-regulated in the pancreatic cancer xenografts.
     Conclusions:
     1. MiR-494was down-regulated in pancreatic cancer tissues and cell lines. Low miR-494expression was significantly correlated with age, tumor proliferation, and could participate in invasion and metastasis of pancreatic cancer. The expression of miR-494may be viewed as a biomarker of malignancy degree and prognosis of pancreatic cacer.
     2. Overexpression of miR-494in pancreatic cancer cells could significantly inhibit cell proliferation by inducing senescence, G1phase arrest and apoptosis. Moreover, restoration of miR-494expression also inhibited migration and the invasive ability of pancreatic cancer cells. The induction of miR-494enhanced the chemosensitivity of pancreatic cancer cells to5-FU and Gemcitabine. These results indicated that miR-494might be involved in the carcinogenesis of pancreatic cancer and that its low expression levels could be considered as a novel diagnostic and prognostic indicator.
     3. MiR-494down-regulated c-Myc and SIRT1expression by directly binding to the3'-UTR of c-Myc and SIRT1mRNA. Inhibition of miR-494increased expression of c-Myc and SIRT1. Furthermore, the inverse correlation between miR-494levels and c-Myc or SIRT1expression was observed in pancreatic cancer tissues as well as cell lines. Therefore, these results confirmed that miR-494directly targeted c-Myc and SIRT1.
     4. After co-transfection of PANC-1cells with c-Myc-RNAi and SIRT1-RNAi, the biological behaviours were similar to the effect of miR-494induction. Howover, the down-regulation of c-Myc did not lead to obvious apoptosis, which implied that the effects of miR-494on pancreatic cancer do not rely exclusively on targeting c-Myc.
引文
1. Siegel R, Naishadham D, Jemal A:Cancer statistics,2012. CA:A Cancer Journal for Clinicians 2012,62(1):10-29.
    2. Li D, Xie K, Wolff R, Abbruzzese JL:Pancreatic cancer. The Lancet 2004, 363(9414):1049-1057.
    3. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R:Human RISC couples microRNA biogenesis and posttranscriptional gene silencing, cell 2005, 123(4):631-640.
    4. Lai EC:Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics 2002,30(4):363-364.
    5. Bartel DP:MicroRNAs:genomics, biogenesis, mechanism, and function, cell 2004, 116(2):281-297.
    6. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM:bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. cell 2003,113(1):25-36.
    7. Calin GA, Croce CM:MicroRNA signatures in human cancers. Nature Reviews Cancer 2006,6(11):857-866.
    8. Volinia S:A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences 2006, 103(7):2257-2261.
    9. Croce CM:Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics 2009,10(10):704-714.
    10. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu C, Oue N, Yasui W:Relation between microRNA expression and progression and prognosis of gastric cancer:a microRNA expression analysis. The lancet oncology 2010,11(2):136-146.
    11. Paranjape T, Slack FJ, Weidhaas JB:MicroRNAs:tools for cancer diagnostics. Gut 2009,58(11):1546-1554.
    12. Lowery AJ, Miller N, McNeill RE, Kerin MJ:MicroRNAs as Prognostic Indicators and Therapeutic Targets:Potential Effect on Breast Cancer Management. Clinical Cancer Research 2008,14(2):360-365.
    13. Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L, Wiuf C, Sorensen FJ, Kruhoffer M, Laurberg S et al:Diagnostic and Prognostic MicroRNAs in Stage II Colon Cancer. Cancer Research 2008,68(15):6416-6424.
    14. Nelson KM, Weiss GJ:MicroRNAs and cancer:past, present, and potential future. Molecular Cancer Therapeutics 2008,7(12):3655.
    15. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM:Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005,433(7027):769-773.
    16. Wurdinger T, Costa FF:Molecular therapy in the microRNA era. The Pharmacogenomics Journal 2006,7(5):297-304.
    17. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA:MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007, 26(30):4442-4452.
    18. Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M, Borges M, Goggins M: Pancreatic Cancers Epigenetically Silence SIP1 and Hypomethylate and Overexpress miR-200a/200b in Association with Elevated Circulating miR-200a and miR-200b Levels. Cancer Research 2010,70(13):5226-5237.
    19. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM:MicroRNA Expression Patterns to Differentiate Pancreatic Adenocarcinoma From Normal Pancreas and Chronic Pancreatitis. JAMA:The Journal of the American Medical Association 2007, 297(17):1901-1908.
    20. Eilers M, Eisenman RN:Myc's broad reach. Genes & Development 2008, 22(20):2755-2766.
    21. Oster SK, Ho CSW, Soucie EL, Penn LZ:The myc oncogene:MarvelouslY complex. Advances in cancer research 2002,84:81-154.
    22. BJORN VENNSTROM, DIANA SHEINESS, JAN ZABIELSKI, BISHOP JM: Isolation and characterization of c-myc, a cellular homolog of the Oncogene (v-myc) of Avian Myelocytomatosis Virus Strain29. JOURNAL OF VIROLOGY,1982, 42(3):773-779.
    23. Cole MD:The myc oncogene:its role in transformation and differentiation. Annual review of genetics 1986,20(1):361-384.
    24. Henriksson M, Luscher B:Proteins of the Myc network:essential regulators of cell growth and differentiation. Advances in cancer research 1996,68:109-182.
    25. Chadd E Nesbit, Jean M Tersak, Prochownik EV:MYC oncogenes and human neoplastic disease. Oncogene 1999,18:3004-3016.
    26. Pelengaris S, Khan M, Evan G:c-MYC:more than just a matter of life and death. Nature Reviews Cancer 2002,2(10):764-776.
    27. Natalie Meyer, Penn LZ:Reflecting on 25 years with MYC. Nature Reviews Cancer 2008,8:976-990.
    28. Amati B, Alevizopoulos K, Vlach J:Myc and the cell cycle. Front Biosci 1998, 3:D250-D268.
    29. Evan G:A Matter of Life and Cell Death. Science 1998,281 (5381):1317-1322.
    30. Albihn A, Johnsen JI, Arsenian Henriksson M:MYC in oncogenesis and as a target for cancer therapies. Advances in cancer research 2010,107:163-224.
    31. Treszl A, Adany R, Rakosy Z, Kardos L, Begany A, Gilde K, Balazs M:Extra copies of c-myc are more pronounced in nodular melanomas than in superficial spreading melanomas as revealed by fluorescence in situ hybridisation. Cytometry PartB:Clinical Cytometry 2004,60(1):37-46.
    32. Wu CH, Van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW:Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences 2007,104(32):13028.
    33. Felsher DW:Oncogene addiction versus oncogene amnesia:perhaps more than just a bad habit? Cancer Research 2008,68(9):3081.
    34. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW:Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science's STKE 2002,297(5578):102.
    35. Pelengaris S, Khan M, Evan GI:Suppression of Myc-induced apoptosis in P cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression, cell 2002,109(3):321-334.
    36. Vita M, Henriksson M:The Myc oncoprotein as a therapeutic target for human cancer. Seminars in Cancer Biology 2006,16(4):318-330.
    37. Prochownik EV:c-Myc as a therapeutic target in cancer. Expert Review of Anticancer Therapy 2004,4(2):289-302.
    38. Larsson L-G, Henriksson MA:The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Experimental Cell Research 2010, 316(8):1429-1437.
    39. Soucek L, Evan GI:The ups and downs of Myc biology. Current Opinion in Genetics& Development 2010,20(1):91-95.
    40. Yuan J, Minter-Dykhouse K, Lou Z:A c-Myc-SIRTl feedback loop regulates cell growth and transformation. The Journal of Cell Biology 2009,185(2):203-211.
    41. Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B, Larsson LG, Hermeking H:The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proceedings of the National Academy of Sciences 2012,109(4):E187-E196.
    42. Zhao G, Cui J, Zhang J, Qin Q, Chen Q, Yin T, Deng S, Liu Y, Liu L, Wang B: SIRT1 RNAi knockdown induces apoptosis and senescence, inhibits invasion and enhances chemosensitivity in pancreatic cancer cells. Gene Therapy 2011, 18(9):920-928.
    43. Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y, Yang J, Paun B, Jin Z, Agarwal R:MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009,49(5):1595-1601.
    44. Mardin WA, Mees ST:MicroRNAs:Novel Diagnostic and Therapeutic Tools for Pancreatic Ductal Adenocarcinoma? Annals of Surgical Oncology 2009, 16(11):3183-3189.
    45. Chang SS, Jiang WW, Smith I, Poeta LM, Begum S, Glazer C, Shan S, Westra W, Sidransky D, Califano JA:MicroRNA alterations in head and neck squamous cell carcinoma. International Journal of Cancer 2008,123(12):2791-2797.
    46. Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, Zheng J, Xu J, Cheng JQ, Lin JY, Ma X: Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Child's nervous system 2009,25(1):13-20.
    47. Roccaro AM, Sacco A, Chen C, Runnels J, Leleu X, Azab F, Azab AK, Jia X, Ngo HT, Melhem MR:microRNA expression in the biology, prognosis, and therapy of Waldenstr6m macroglobulinemia. Blood 2009,113(18):4391-4402.
    48. Liu L, Jiang Y, Zhang H, Greenlee AR, Han Z:Overexpressed miR-494 down-regulates PTEN gene expression in cells transformed by anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide. Life Sciences 2010, 86(5-6):192-198.
    49. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang L-L:Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003,425(6954):191-196.
    50. Huffman DM, Grizzle WE, Bamman MM, Kim J-s, Eltoum IA, Elgavish A, Nagy TR:SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Research 2007,67(14):6612-6618.
    51. Bradbury C, Khanim F, Hayden R, Bunce C, White D, Drayson M, Craddock C, Turner B:Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 2005,19(10):1751-1759.
    52. Stunkel W, Peh BK, Tan YC, Nayagam VM, Wang X, Salto-Tellez M, Ni B, Entzeroth M, Wood J:Function of the SIRT1 protein deacetylase in cancer. Biotechnology journal 2007,2(11):1360-1368.
    53. Hida Y, Kubo Y, Murao K, Arase S:Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Archives of dermatological research 2007, 299(2):103-106.
    54. Tsukamoto Y, Kato J-i, Ikeda H:Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 1997,388(6645):900-903.
    55. Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang S-HL, Watkins DN, Herman JQ Baylin SB:Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS genetics 2006,2(3):e40.
    56. Ota H, Tokunaga E, Chang K, Hikasa M, Iijima K, Eto M, Kozaki K, Akishita M, Ouchi Y, Kaneki M:Sirtl inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 2005, 25(2):176-185.
    57. Kamel C, Abrol M, Jardine K, He X, McBurney MW:SirT1 fails to affect p53-mediated biological functions. Aging cell 2006,5(1):81-88.
    58. Guarente L:Calorie restriction and SIR2 genes—owards a mechanism. Mechanisms of ageing and development 2005,126(9):923-928.
    1. Eilers M, Eisenman RN:Myc's broad reach. Genes& Development 2008, 22(20):2755-2766.
    2. Natalie Meyer, Penn LZ:Reflecting on 25 years with MYC. Nature Reviews Cancer 2008,8:976-990.
    3. Sauv6 S, Tremblay L, Lavigne P:The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA:insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. Journal of molecular biology 2004, 342(3):813.
    4. Henriksson M, Ltischer B:Proteins of the Myc network:essential regulators of cell growth and differentiation. Advances in cancer research 1996,68:109.
    5. Dang CV:c-Myc target genes involved in cell growth, apoptosis, and metabolism. Molecular and cellular biology 1999,19(1):1-11.
    6. Eisenman RN:Deconstructing myc. Genes & development 2001, 15(16):2023-2030.
    7. Chadd E Nesbit, Jean M Tersak, Prochownik EV:MYC oncogenes and human neoplastic disease. Oncogene 1999,18:3004-3016.
    8. Blancato J, Singh B, Liu A, Liao DJ, Dickson RB:Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer:FISH, in situ hybridisation and immunohistochemical analyses. British Journal of Cancer 2004, 90(8):1612-1619.
    9. Pelengaris S, Khan M, Evan G:c-MYC:more than just a matter of life and death. Nature Reviews Cancer 2002,2(10):764-776.
    10. Albihn A, Johnsen JI, Arsenian Henriksson M:MYC in oncogenesis and as a target for cancer therapies. Advances in cancer research 2010,107:163-224.
    11. Treszl A, Adany R, Rakosy Z, Kardos L, Begany A, Gilde K, Balazs M:Extra copies of c-myc are more pronounced in nodular melanomas than in superficial spreading melanomas as revealed by fluorescence in situ hybridisation. Cytometry PartB:Clinical Cytometry 2004,60(1):37-46.
    12. Wu CH, Van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW:Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences 2007,104(32):13028.
    13. Pelengaris S, Khan M, Evan GI:Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression, cell 2002,109(3):321-334.
    14. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW:Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science's STKE 2002,297(5578):102.
    15. Prochownik EV:c-Myc as a therapeutic target in cancer. Expert Review of Anticancer Therapy 2004,4(2):289-302.
    16. Vita M, Henriksson M:The Myc oncoprotein as a therapeutic target for human cancer. Seminars in Cancer Biology 2006,16(4):318-330.
    17. Larsson L-G, Henriksson MA:The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Experimental Cell Research 2010, 316(8):1429-1437.
    18. Soucek L, Evan GI:The ups and downs of Myc biology. Current Opinion in Genetics& Development 2010,20(1):91-95.
    19. Hatakeyama S, Watanabe M, Fujii Y, Nakayama KI:Targeted destruction of c-Myc by an engineered ubiquitin ligase suppresses cell transformation and tumor formation. Cancer Research 2005,65(17):7874-7879.
    20. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW:Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 2005,436(7052):807-811.
    21. Amati B:Integrating Myc and TGF-β signalling in cell-cycle control. Nature cell biology 2001,3(5):E112-E113.
    22. Eilers M:Control of cell proliferation by Myc family genes. Molecules and cells 1999, 9(1):1.
    23. Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsnnky H, Moroy T, Bartek J, Massague J, Hanel F:Repression of pl5INK4b expression by Myc through association with Miz-1. Nature cell biology 2001,3(4):392-399.
    24. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R:Non-transcriptional control of DNA replication by c-Myc. Nature 2007,448(7152):445-451.
    25. Prall OW, Rogan EM, Musgrove EA, Watts CK, Sutherland RL:c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Molecular and cellular biology 1998,18(8):4499-4508.
    26. Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F:The c-Myc target gene network. In:2006:Elsevier; 2006:253-264.
    27. Burgess DJ:Metabolism:Warburg behind the butyrate paradox? Nature Reviews Cancer 2012.
    28. Schmid P, Schulz WA, Hameister H:Dynamic expression pattern of the myc protooncogene in midgestation mouse embryos. Science 1989,243(4888):226-229.
    29. Mateyak MK, Obaya AJ, Adachi S, Sedivy JM:Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell growth & differentiation:the molecular biology journal of the American Association for Cancer Research 1997,8(10):1039.
    30. Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV:Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proceedings of the National Academy of Sciences 1993,90(13):6175-6178.
    31. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB:MicroRNA regulation of a cancer network:consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proceedings of the National Academy of Sciences 2008, 105(50):19678-19683.
    32. Lotterman CD, Kent OA, Mendell JT:Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle 2008,7(16):2493-2499.
    33. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT:c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005,435(7043):839-843.
    34. Ryan KM, Birnie GD:Cell-cycle progression is not essential for c-Myc to block differentiation. Oncogene 1997,14(23):2835.
    35. La Rocca SA, Crouch DH, Gillespie D:c-Myc inhibits myogenic differentiation and myoD expression by a mechanism which can be dissociated from cell transformation. Oncogene 1994,9(12):3499.
    36. Grandori C, Cowley SM, James LP, Eisenman RN:The Myc/Max/Mad network and the transcriptional control of cell behavior. Annual review of cell and developmental biology 2000,16(1):653-699.
    37. Foley KP, Eisenman RN:Two MAD tails:what the recent knockouts of< i> Mad1 and< i> Mxi1 tell us about the MYC/MAX/MAD network. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1999,1423(3):M37-M47.
    38. Packham G, Porter CW, Cleveland JL:c-Myc induces apoptosis and cell cycle progression by separable, yet overlapping, pathways. Oncogene 1996,13(3):461.
    39. Laurenti E, Wilson A, Trumpp A:Myc's other life:stem cells and beyond. Current opinion in cell biology 2009,21(6):844-854.
    40. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S:LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 2005,132(5):885-896.
    41. Knoepfler PS, Cheng PF, Eisenman RN:N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes & development 2002,16(20):2699-2712.
    42. Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A, Knoepfler PS, Cheng P-F, MacDonald HR, Eisenman RN:Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 2008, 3(6):611-624.
    43. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell 2007,131(5):861-872.
    44. Okita K, Ichisaka T, Yamanaka S:Generation of germline-competent induced pluripotent stem cells. Nature 2007,448(7151):313-317.
    45. Shackleton M, Quintana E, Fearon ER, Morrison SJ:Heterogeneity in cancer: cancer stem cells versus clonal evolution, cell 2009,138(5):822-829.
    46. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J, Perry SR, Tonon G, Chu GC, Ding Z: p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 2008,455(7216):1129-1133.
    47. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY:Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2008, 2(4):333-344.
    48. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature genetics 2008,40(5):499-507.
    49. Lin C-H, Jackson AL, Guo J, Linsley PS, Eisenman RN:Myc-regulated microRNAs attenuate embryonic stem cell differentiation. The EMBO Journal 2009, 28(20):3157-3170.
    50. Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C, Chen C-Z, Cleary ML:The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Research 2010, 70(9):3833-3842.
    51. Gunaratne PH:Embryonic stem cell microRNAs:defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Current stem cell research& therapy 2009,4(3):168-177.
    52. Lowe SW, Cepero E, Evan G:Intrinsic tumour suppression. Nature 2004, 432(7015):307-315.
    53. Menssen A, Hermeking H:c-MYC and SIRT1 locked in a vicious cycle. Oncotarget 2012,3(2):112.
    54. Meyer N, Kim SS, Penn LZ:The Oscar-worthy role of Myc in apoptosis. In: Seminars in cancer biology:2006:Elsevier; 2006:275-287.
    55. Cotter TG:Apoptosis and cancer:the genesis of a research field. Nature Reviews Cancer 2009,9(7):501-507.
    56. Wu S, Cetinkaya C, Munoz-Alonso MJ, Von Der Lehr N, Bahram F, Beuger V, Eilers M, Leon J, Larsson L-G:Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 2003,22(3):351-360.
    57. Eischen CM, Woo D, Roussel MF, Cleveland JL:Apoptosis triggered by Myc-induced suppression of Bcl-XL or Bcl-2 is bypassed during lymphomagenesis. Molecular and cellular biology 2001,21(15):5063-5070.
    58. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL:Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes & development 1999,13(20):2658-2669.
    59. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W:Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence, cell 2012,149(6):1269-1283.
    60. Jacobs JJ, Scheijen B, Voncken J-W, Kieboom K, Berns A, van Lohuizen M:Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis viaINK4a/ARF. Genes & development 1999,13(20):2678-2690.
    61. Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y: E2F1 and c-Myc potentiate apoptosis through inhibition of NF-κB activity that facilitates MnSOD-mediated ROS elimination. Molecular cell 2002,9(5):1017-1029.
    62. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM:c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function:a mechanism for oncogene-induced genetic instability. Molecular cell 2002,9(5):1031-1044.
    63. Walczynski J, Lyons S, Jones N, Breitwieser W:Sensitisation of c-MYC-induced B-lymphoma cells to apoptosis by ATF2. Oncogene 2013.
    64. Wang C, Tai Y, Lisanti MP, Liao DJ:c-Myc induction of programmed cell death may contribute to carcinogenesis:a perspective inspired by several concepts of chemical carcinogenesis. Cancer biology & therapy 2011,11(7):615-626.
    65. Boone DN, Qi Y, Li Z, Hann SR:Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proceedings of the National Academy of Sciences 2011,108(2):632-637.
    66. Eischen CM, Roussel MF, Korsmeyer SJ, Cleveland JL:Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Molecular and cellular biology 2001, 21(22):7653-7662.
    67. Egle A, Harris AW, Bouillet P, Cory S:Bim is a suppressor of Myc-induced mouse B cell leukemia. Proceedings of the National Academy of Sciences of the United States of America 2004,101(16):6164-6169.
    68. Campisi J:Cellular senescence as a tumor-suppressor mechanism. Trends in cell biology 2001,11:S27-S31.
    69. Wu C-H, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW:Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences 2007,104(32):13028-13033.
    70. Zhang J, Lou X, Yang S, He S, Yang L, Liu M, Zhu H, Shan Q, Su S, Zhan Q: BAG2 is a target of the c-Myc gene and is involved in cellular senescence via the p21< sup> CIP1/sup> pathway. Cancer Letters 2012,318(1):34-41.
    71. Zhuang D, Mannava S, Grachtchouk V, Tang W, Patil S, Wawrzyniak J, Berman A, Giordano T, Prochownik E, Soengas M:C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 2008,27(52):6623-6634.
    72. Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, Schleker T, Perna D, Tronnersjo S, Murga M: Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nature cell biology 2009,12(1):54-59.
    73. Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE:Monitoring Tumorigenesis and Senescence In Vivo with a< i> p16< sup> INK4a-Luciferase Model, cell 2013,152(1):340-351.
    74. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL:Cellular senescence and the senescent secretory phenotype:therapeutic opportunities. The Journal of clinical investigation 2013,123(3):966.
    75. Duangmano S, Dakeng S, Jiratchariyakul W, Suksamrarn A, Smith DR, Patmasiriwat P:Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle. International journal of molecular sciences 2010, 11(12):5323-5338.
    76. Cifuentes-Rojas C, Shippen DE:Telomerase regulation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2012, 730(1):20-27.
    77. Hydbring P, Bahram F, Su Y, Tronnersjo S, Hogstrand K, von der Lehr N, Sharifi HR, Lilischkis R, Hein N, Wu S:Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proceedings of the National Academy of Sciences 2010,107(1):58-63.
    78. Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA:A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009, 460(7259):1149-1153.
    79. Jackson SP, Bartek J:The DNA-damage response in human biology and disease. Nature 2009,461(7267):1071-1078.
    80. Ditch S, Paull TT:The ATM protein kinase and cellular redox signaling:beyond the DNA damage response. Trends in biochemical sciences 2012,37(1):15-22.
    81. Zhou B-BS, Elledge SJ:The DNA damage response:putting checkpoints in perspective. Nature 2000,408(6811):433-439.
    82. Wen Y-Y, Chou P-C, Phan L, Su C-H, Chen J, Hsieh Y-C, Xue Y-W, Qu C-J, Gully C, Parreno K:DNA Damage-Mediated c-Myc Degradation Requires 14-3-3 Sigma. Cancer Hallmarks 2013,1(1):3-17.
    83. Pusapati RV, Rounbehler RJ, Hong S, Powers JT, Yan M, Kiguchi K, McArthur MJ, Wong PK, Johnson DG:ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proceedings of the National Academy of Sciences of the United States of America 2006,103(5):1446-1451.
    84. Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Parsons JL, Dianov GL: ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Molecular cell 2012,45(6):801-813.
    85. CHRISTIAN REINHARDT H, SCHUMACHER B:The p53 network:cellular and systemic DNA damage responses in aging and cancer. Trends in genetics 2012, 28(3):128-136.
    86. Choi PS, van Riggelen J, Gentles AJ, Bachireddy P, Rakhra K, Adam SJ, Plevritis SK, Felsher DW:Lymphomas that recur after MYC suppression continue to exhibit oncogene addiction. Proceedings of the National Academy of Sciences 2011, 108(42):17432-17437.
    87. Felsher DW:MYC inactivation elicits oncogene addiction through both tumor cell-intrinsic and host-dependent mechanisms. Genes& cancer 2010, 1(6):597-604.
    88. Felsher DW:Oncogene addiction versus oncogene amnesia:perhaps more than just a bad habit? Cancer Research 2008,68(9):3081-3086.
    89. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI:Modelling Myc inhibition as a cancer therapy. Nature 2008,455(7213):679-683.
    90. Kim JY, Valencia T, Abu-Baker S, Linares J, Lee SJ, Yajima T, Chen J, Eroshkin A, Castilla EA, Brill LM:c-Myc phosphorylation by PKCζ represses prostate tumorigenesis. Proceedings of the National Academy of Sciences 2013, 110(16):6418-6423.
    91. Raynes R, Pombier KM, Nguyen K, Brunquell J, Mendez JE, Westerheide SD:The SIRT1 Modulators AROS and DBC1 Regulate HSF1 Activity and the Heat Shock Response. PloS one 2013,8(1):e54364.
    92. Zhao G, Cui J, Zhang J, Qin Q, Chen Q, Yin T, Deng S, Liu Y, Liu L, Wang B: SIRT1 RNAi knockdown induces apoptosis and senescence, inhibits invasion and enhances chemosensitivity in pancreatic cancer cells. Gene therapy 2011, 18(9):920-928.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.