LDS698分子在溶剂中的超快动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用时间分辨泵浦探测瞬时吸收光谱技术研究了LDS698染料分子在甲醇(methanol)、丙酮(acetone)、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)四种不同溶剂中的超快动力学过程。我们得到了两种超快弛豫过程:一种时间尺度为几百飞秒的快速弛豫过程,一种为时间尺度在皮秒量级的相对慢速弛豫过程。通过分析,对于快速弛豫过程,我们认为其应为分子内部振动能量再分配的过程(IVR),并且在甲醇溶剂中的这个快过程要快于在其他三种溶剂中,我们认为其是因为在甲醇溶剂中LDS698分子会和甲醇分子形成氢键,其形成了一种促进IVR过程的效应。对于慢速弛豫过程,我们认为是由locally excited(LE)态向twisted intramolecular charge transfer (TICT)态弛豫的过程,即TICT态的形成过程。并且除了甲醇溶剂之外的三种溶剂,弛豫时间随着溶剂粘滞系数的增大而增大。我们对TICT态在不同溶液中的转动角度进行了计算,得到转动角度和溶液的黏度系数也成正比例关系。而转动角度越大,即意味着达到这个角度的时间越长,即TICT态的形成时间越长,从而溶液的黏度系数和TICT态的形成时间成正比关系。这和我们实验中观察到的相一致。在甲醇中的慢速弛豫时间则要远大于其他三种溶剂,我们认为在甲醇溶剂中,甲醇分子之间会因为氢键而形成一种网状结构,从而阻碍LDS698分子的转动,使TICT态的形成时间增大。
With the rapid development of femtosecond lasers, several optical techniques are utilized to characterize ultrafast dynamics of complex molecules in solution experimentally, for instance, transient absorption, fluorescence depletion, fluorescence up-conversion. Ultrafast dynamics of complex molecules in solution is a topic of interest. In a solution system, a solute molecule in its excited state relax by several ultrafast dynamical processes such as intramolecular vibrational energy redistribution (IVR), diffusive solvent relaxation, twisted intramolecular charge transfer(TICT) etc.. Studies on these processes can reveal information on intra- and/or inter- molecular interaction that plays a key role for understanding solvent effect in chemistry.
     In this paper, for understanding the influence of the solvent properties on forming process of TICT state of dye molecules, we have focused on the ultrafast relaxation of the exited LDS698 in several solvents with different viscosity, such as methanol, acetone, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), using a femtosecond time-resolved pump/probe transient absorption spectroscopy with a pulse width of 90 fs and wavelengths of 800 nm and 400 nm. For the study of the steady-state absorption and emission spectra, we get three characteristics. First, there is a larger Stokes shift of absorption and fluorescence spectra. Second, the spectra have a wide bandwidth without fine structure. Third, the absorption and fluorescence do not have a mirror symmetry relation. Based on these characteristics and some previous studies, after excited by the laser, there will be a charge transfer process, and forming twisted intramolecular charge transfer (TICT) state.
     For the transient absorption spectra, the best fitting for the obtained curves can be achieved by using a biexponential decay function in this study. Two decay processes are observed. One is a rapid decay process on the scale of hundreds of femtoseconds and the other is a slower decay process on the picosecond scale. The fast decay accounts for an intramolecular vibrational energy redistribution (IVR) process. The time constant of the fast process in methanol is smaller than that in other solvents, which is attributable to the hydrogen-bond between the solute and solvent molecules in methanol. The slower decay process is considered as a forming TICT state from LE state, and the relaxation time depends on the viscosity of the solvents but methanol. In methanol, the time is much longer than in other solvents. It may be explained that the rotation of the extended pyridyl aminoethyl group is hindered by the stronger hydrogen-bond between the methanol molecules.
引文
[1] Fork R L, Greene B I, Shank C U. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Appl. Phys. Lett.,1981,38:671-672.
    [2] Spence D E, Kean P N, Sibbett W. 60-fs pulse generation from a self-mode-locked Ti:sapphire laser[J]. Opt. Lett., 1991,16:42-44.
    [3] Morgner U, Kartner F X, Cho S H. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser[J]. Opt. Lett., 1999,24:411-413.
    [4] Nisoli M, De Silvestri S, Sveto O. Compression of high-energy laser pulses below 5fs[J]. Opt. Lett., 1997,22:522-524.
    [5]赵坷,王佩琳.飞秒激光在超快过程中的应用研究[J].量子电子学报, 2001,18(2):97-102.
    [6]杨宏,张铁桥,王树峰,龚旗煌.钛蓝宝石飞秒超快光谱技术及其应用进展[J].物理学报, 2000,49(7):1292-1296.
    [7]周炳琨等.激光原理(第四版)[M].北京:国防工业出版社, 2000.
    [8] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt. Commu., 1985,56:219-221.
    [9] Jonas D M, Lang M J, Nagasawa Y, Joo T, Fleming G R. Pump-Probe Polarization Anisotropy Study of Femtosecond Energy Transfer within the Photosynthetic Reaction Center of Rhodobacter sphaeroides R26[J]. J. Phys. Chem., 1996,100:12660-12673.
    [10] Book L D, Arnett D C, Hu H, Scherer N F. Ultrafast Pump-Probe Studies of Excited-State Charge-Transfer Dynamics in Blue Copper Proteins[J]. J. Phys. Chem. A, 1998,102:4350-4359.
    [11] Liu B G, Jin M X, Liu H, He C Y, Jiang D W, Ding D J. Femtosecond time-resolved measurement of LDS698 molecular processes under high pressure[J]. Appl. Phys. Lett., 2008,92:241916-3.
    [12] Gustavsson T, Cassara L, Gulbinas V, Gurzadyan G, Mialocq J C, Pommeret S, Sorgius M, Van der Meulen P. Femtosecond spectroscopic study of relaxation processes of three amino-substituted coumarin dyes inmethanol and dimethyl sulfoxide[J]. J. Phys. Chem. A, 1998,102:4229-4245.
    [13] Toele P, Zhang H, Trieflinger C, Daub J, Glasbeek M. Femtosecond fluorescence upconversion study of a boron dipyrromethene dye in solution[J]. Chem. Phys. Lett., 2003,368:66-75.
    [14] Singh P K, Nath S, Bhasikuttan A C, Kumbhakar M, Mohanty J, Sarkar S K, Mukherjee T, Pal H. Effect of donor orientation on ultrafast intermolecular electron transfer in coumarin-amine systems[J]. J. Chem. Phys., 2008,129:114504-11.
    [15] Zhong Q H, Wang Z H, Sun Y, Zhu Q H, Kong F A. Vibrational relaxation of dye molecules in solution studied by femtosecond time-resolved stimulated emission pumping fluorescence depletion[J]. Chem. Phys. Lett., 1996,248:277-282.
    [16] Zhou L C, Liu J Y, Zhao G J, Shi Y, Peng X J, Han K L. The ultrafast dynamics of near-infrared heptamethine cyanine dye in alcoholic and aprotic solvents[J]. Chem. Phys., 2007,333:179-185.
    [17] Zhou P W, Song P, Liu J Y, Shi Y, Han K L, He G Z. Rotational reorientation dynamics of Oxazine 750 in polar solvents[J]. J. Phys. Chem. A, 2008,112:3646-3655.
    [18]吕振国,李庆行,余振新.利用激光感应瞬态光栅研究超快弛豫现象[J].激光技术, 1991,15(4):224-118.
    [19] Rose T S, Rosker M J, Zewail A H. Femtosecond real-time observation of wave packet oscillations(resonance)in dissociation reactions[J]. J.Chem. Phys., 1998,88:6672-6673.
    [20] Pedersen S, Herek J L, Zewail A H. The Validity of the "Diradical" Hypothesis: Direct Femtosecond Studies of the Transition-State Structures[J]. Science, 1994,266:1359-1364.
    [21] Fleming G R, Wolynes P G. Chemical Dynamics in Solution[J]. Phys. Today, 1990,43:36-43.
    [22]郭逊敏,宛岩,孔繁敖,夏安东.飞秒时间分辨的荧光亏蚀系统:中国,200510137407.x[P]. 2006-6-28.
    [23]樊美公等.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001.
    [24]王兆华,魏志义,张杰.飞秒脉冲测量技术[J].物理, 2002,31(10):659-666.
    [25] Zewail A H. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond[J]. J. Phys. Chem. A, 2000,104:5660-5694.
    [26] Stratt R M, Maroncelli M. Nonreactive Dynamics in Solution: The Emerging Molecular View of Solvation Dynamics and Vibrational Relaxation[J]. J. Phys. Chem., 1996,100:12981-12996.
    [27] Barbara P F, Jarzeba W. Ultrafast Photochemical Intramolecular Charge Transfer and Excited State Solvation[J]. Adv. Photochem. , 1990,15:1-68.
    [28] Wemer A M,Ippen E P. Femtosecond excited state relaxation of dye molecules in solution[J]. Chem. Phys. Lett., 1985,114:456-460.
    [29] Laermer F,Elsaesser T,Kaiser W. Ultrashort vibronic and thermal relaxation of dye molecules after femtosecond ultraviolet excitation[J]. Chem. Phys. Lett., 1989,156:381-386.
    [30] Horng M L, Gardecki J A, Papazyan A, Maroncelli M. Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited[J]. J. Phys. Chem., 1995,99:17311-17337.
    [31] Litvinenko K L, Webber N M, Meech S R. An ultrafast polarisation spectroscopy study of internal conversion and orientational relaxation of the chromophore of the green fluorescent protein[J]. Chem. Phys. Lett., 2001,346:47-53.
    [32] Macpherson A N, Gillbro T. Solvent dependence of the ultrafast S2-S1 internal conversion rate ofβ-carotene[J]. J. Phys. Chem. A., 1998,102:5049-5058.
    [33] Pecourt J M L, Kohler B, Peon J. Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water[J]. J.Am.Chem.Soc., 2000,122:9348-9349.
    [34] Shi Y, Liu J Y, Han K L. Investigation of the internal conversiontime of the chlorophyll a from S3,S2 to S1[J]. Chem.Phys.Lett., 2005,410:260-263.
    [35] Guo D M, Wan Y, Xia A D, Wang S F, Liu J Y, Han K L. Rapid internal conversion in a symmetric molecule LD 700 studied by means of femtosecond fluorescence depletion[J]. Chin. Phys. B, 2009,18:142-148.
    [36] Robinson P J, Holbrook K. Unimolecular Reaction[M]. New York:Wiley, 1972.
    [37] Liu J Y, Fan W H, Han K L, Xu D L, Lou N Q. Ultrafast Dynamics of Dye Molecules in Solution as a Function of Temperature[J]. J. Phys. Chem. A, 2003,107:1914-1917.
    [38] He Y, Xiong Y J, Wang Z H, Zhu Q H, Kong F A. Theoretical analysis of ultrafast fluorescence depletion of vibrational relaxation of dye molecules in solution[J]. J. Phys. Chem. A, 1998,102:4266-4270.
    [39] Kovalenko S A, Schanz R, Hennig H, Ernsting N P. Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy[J]. J. Chem. Phys., 2001,115:3256-3273.
    [40] Banno M, Ohta K, Tominaga K. Ultrafast vibrational dynamics and solvation complexes of methyl acetate in methanol studied by sub-picosecond infrared spectroscopy[J]. J. Raman Spectrosc., 2008,39:1531-1537.
    [41] Owrutsky J C, Rattery D, Hochstrasser R M. Vibrational Relaxation Dynamics in Solutions[J]. Annu. Rev. Phys. Chem., 1994,45:519-555.
    [42] Elsaesser T, Kaiser W. Vibrational and vibronic relaxation of large polyatomic molecules in liquids[J]. Annu. Rev. Phys. Chem., 1991,42:83-107.
    [43] Bautista J A, Connors R E, Raju B B, Hiller R G, Sharples F P, Gosztola D, Wasielewski M R, Frank H A. Excited State Properties of Peridinin: Observation of a Solvent Dependence of the Lowest Excited Singlet State Lifetime and Spectral Behavior Unique among Carotenoids[J].J. Phys. Chem. B, 1999,103:8751-8758.
    [44] Senthilkumar S, Nath S, Pal H. Photophysical Properties of Coumarin-30 Dye in Aprotic and Protic Solvents of Varying Polarities[J]. Photochemistry and Photobiology, 2004,80:104-111.
    [45] Singh A K, Ramakrishna G, Ghosh H N, Palit D K. Photophysics and Ultrafast Relaxation Dynamics of the Excited States of Dimethylaminobenzophenone[J]. J. Phys. Chem. A, 2004,108:2583-2597.
    [46] Huang Y Y, Cheng T R, Li F Y, Huang C H, Wang S F, Huang W T, Gong Q H. Photophysical Studies on the Mono- and Dichromophoric Hemicyanine Dyes III. Ultrafast Fluorescence Up-conversion in Methanol: Twisting Intramolecular Charge Transfer and“Two-State Three-Mode”Model[J]. J. Phys. Chem. B, 2002,106:10041-10050.
    [47] Mondal J A, Ghosh H N, Ghanty T K, Mukherjee T, Palit D K. Twisting Dynamics in the Excited Singlet State of Michler's Ketone[J]. J. Phys. Chem. A, 2006,110:3432-3446.
    [48] Kovalenko S A, Ruthmann J, Ernsting N P. Ultrafast Stokes shift and excited-state transient absorption of coumarin 153 in solution[J]. Chem. Phys. Lett., 1997,271:40-50.
    [49] Chudoba C, Nibbering E T J, Elsaesser T. Site-specific excited-state solute-solvent interactions probed by femtosecond vibrational spectroscopy[J]. Phys. Rev. Lett., 1998,81:3010-3013.
    [50] Ohta K, Kang T J, Tominaga K, Yoshihara K. Ultrafast relaxation processes from a higher excited electronic state of a dye molecule in solution: A femtosecond time-resolved fluorescence study[J]. Chem. Phys. 1999,242:103-114.
    [51] Morlet-Savary F, Ley C, Jacques P, Fouassier J P. Photophysics of a bridged 7-diethylamino-4-methyl-coumarin C102: Studying the hydrogen bonding effect by time resolved stimulated emission[J]. J. Phys. Chem. A, 2001,105:11026-11033.
    [52] Królick R, Jarz?ba W, Mostafavi M, Lampre I. Preferential solvationof Coumarin 153s-The role of hydrogen bonding[J]. J. Phys. Chem. A, 2002,106:1708-1713.
    [53] Naber A, Fischer U C, Kirchner S, Dziomba T, Kollar G, Chi L F, Fuchs H. Architecture and Surface Properties of Monomolecular Films of a Cyanine Dye and Their Light-Induced Modification[J]. J. Phys. Chem. B, 1999 (103) 2709.
    [54] Gretchikhine A, Schweiter G, Van der Auweraer M, De Keyzer R, Van den Brouchke D, De Schryver F C. Femtosecond transient absorption and luminescence decay studies of spectrally sensitized photographic emulsions[J]. J. Appl. Phys., 1999,85:1283-1293.
    [55] Fabian J, Nakazumi H, Matsuoka M. Near-Infrared Absorbin Dyes[J]. Chem.Rev.,1992,92:1197-1226.
    [56] Wu L Z, Tang X J, Jiang M H, Tung C H. Synthesis and Study of Two-Photon Induced Fluorescence of Novel Dyes[J]. Chin. Chem. Lett., 1999,10:1019-1022.
    [57] Mujumder S R, Mujumder R B, Grant C M, Waggoner A S. Cyanine-Labeling Reagents: Sulfobenzindocyanine Succinimidyl Esters[J]. Bioconjugate Chem., 1996,7:356-362.
    [58] Seifert J L, Connor R E, Kushon S A, Wang M, Armitage B A. Spontaneous Assembly of Helical Cyanine Dye Aggregates on DNA Nanotemplates[J]. J. Am. Chem. Soc., 1999,121:2987-2995.
    [59] Nunnaly B K, He H, Li L C, Tucker S A, McGown L B. Characterization of Visible Dyes for Four-Decay Fluorescence Detection in DNA Sequencing[J]. Anal. Chem., 1997,69:2392-2397.
    [60] Wandelt B, Mielniczak A, Cywinski P. Monitoring of cAMP-imprinted polymer by fluorescence spectroscopy[J]. Biosensors and Bioelectronics, 2004,20:1031-1039.
    [61] Wandelt B, Mielniczak A, Turkewitsch P, Darling G D, Stranix B R. Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity[J]. Biosensors and Bioelectronics,2003,18:465-471.
    [62] Levitus M, Martin Negri R, Aramendia P F. Rotational Relaxation of Carbocyanines. Comparative Study with the Isomerization Dynamics[J]. J. Phys. Chem., 1995,99:14231-14239.
    [63] Chibisov A K, Zakharova G V, G?rner H. Effects of substituents in the polymethine chain on the photoprocesses in indodicarbocyanine dyes[J]. J. Chem. Soc., Faraday Trans., 1996,92:4917-4925.
    [64] Murphy S, Sauerwein B, Drickmer H G, Schuster G B. Spectroscopy of Cyanine Dyes in Fluid Solution at Atmospheric and High Pressure: The Effect of Viscosity on Nonradiative Processes[J]. J. Phys. Chem., 1994,98:13476-13480.
    [65] Aramendia P F, Martin Negri R, San Roman E. Temperature Dependence of Fluorescence and Photoisomerization in Symmetric Carbocyanines. Influence of Medium Viscosity and Molecular Structure[J]. J. Phys. Chem., 1994,98:3165-3173.
    [66] Van der Meer M J, Zhang H, Rettig W, Glasbeek M. Femto- and picosecond fluorescence studies of solvation and non-radiative deactivation of ionic styryl dyes in liquid solution[J]. Chem. Phys. Lett., 2000,320:673-680.
    [67] Borden C J, Rosenthal S J, Shank C V. Ultrafast Solvation Processes in Polar Liquids Probed with Large Organic Molecules[J]. J. Phys. Chem. A, 1999,103:10506-10516.
    [68] Cho M, Rosenthal S J, Scherer N F, Ziegler L D, Fleming G R. Ultrafast solvent dynamics: Connection between time resolved fluorescence and optical Kerr measurements[J]. J. Chem. Phys., 1992,96:5033-5038.
    [69] Rosenthal S J, Xie X, Du M, Fleming G R. Femtosecond solvation dynamics in acetonitrile: Observation of the inertial contribution to the solvent response[J]. J. Chem. Phys., 1991,95:4715-4718.
    [70] Kovalenko S A, Ernsting N P, Ruthmann J. Femtosecond Stokes shift in styryl dyes: Solvation or intramolecular relaxation?[J]. J. Chem. Phys., 1997,106:3504-3511.
    [71] Smith N A, Meech S R, Rubtsov I V, Yoshihara K. Ultrafast solvent dynamics: Connection between time resolved fluorescence and optical Kerr measurements[J]. Chem. Phys. Lett., 1999,303:209-217.
    [72] Guo X M, Xia A D. Ultrafast excited states relaxation dynamics in solution investigated by stimulated emission from a styryl dye[J]. J. Lumin., 2007,122:532-535.
    [73] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr.J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09[CP], Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
    [74] Dreizler M R, Gross E K U.(Eds.) Density Functional Theory[M]. Heidelberg(Germany):Springer Verlag, 1990.
    [75] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988,37:785-789.
    [76] Caricato M, Ingrosso F, Mennucci B, Tomasi J. A time-dependent polarizable continuum model: Theory and application[J]. J. Chem. Phys., 2005,122:154501-11.
    [77] Sun M T. Charge transfer state induced from locally excited state by polar solvent[J]. Chem. Phys. Lett., 2005,408:128-133.
    [78] Beenken W J D, Pullerits T. Spectroscopic units in conjugatedpolymers: A quantum chemically founded concept?[J]. J. Phys. Chem. B, 2004,108:6164-6169.
    [79] Sun M T, Kjellberg P, Beenken W J D, Pullerits T. Comparison of the electronic structure of PPV and its derivative DIOXA-PPV[J]. Chem. Phys., 2006,327:474-484.
    [80] Lakowicz J R. Principles of fluorescence spectroscopy[M]. third ed., New York:Springer, 2006. p. 210.
    [81] Palit D K, Singh A K, Bhasikuttan A C, Mittal J P. Relaxation dynamics in the excited states of LDS-821 in solution[J]. J. Phys. Chem. A, 2001,105:6294-6304.
    [82] Fan R W, Xia Y Q, Chen D Y. Solid state dye lasers based on LDS 698 doped in modified polymethyl methacrylate[J]. Opt. Exp., 2008,16:9804-9810.
    [83]álvarez M, Amat-Guerri F, Costela A, García-Moreno I, Liras M, Sastre R. Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices[J]. Opt. Commun., 2006,267:469-479.
    [84] Xia Y Q, Jiang Y G, Fan R W, Dong Z W, Zhao W J, Chen D Y, Umesh G. Ultrafast nonlinear optical properties of dye-doped PMMA discs irradiated by 40 fs laser pulses[J]. Opt. Laser Technol., 2009,41:700-704.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.