碳及碳基复合材料的可控合成、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在探索新颖结构的碳及碳基复合材料的控制合成及性能研究。在高温热解条件下合成了碳/碳核/壳结构的纳米纤维和花状的氮掺杂碳纳米片,在低温水热条件下合成了蠕虫状Pd/C核-壳结构的纳米复合材料,并通过循环伏安法研究了所得样品对生物小分子的电催化性能。论文的主要内容概括如下:
     1. 600°C下在高压釜中共热解四氢呋喃和二茂铁合成了不同于以往碳纤维结构的碳/碳核/壳结构的纳米纤维,碳纤维直径在50 nm左右,而长度可达几个微米。纳米纤维内核的直径在10 nm左右,壳的厚度在20 nm左右,并且碳核的石墨层与碳壳的石墨层在堆垛方向上是相互垂直的。当在反应体系中引入1 mLH_2O时,得到的产物为空心的六足状碳材料;当反应中只有四氢呋喃时,得到的产物为实心碳球。对比实验证实来源于二茂铁分解产生的金属Fe为碳纤维生长的催化剂。我们根据实验结果,提出了其可能的形成过程。此研究工作已被国际期刊杂志Advanced Materials Research接受。
     2.在聚丙烯酰胺的存在下,以PdCl_2和α-乳糖为原料在200°C下通过一步水热-碳化过程合成得到蠕虫状Pd/C核-壳结构的纳米复合材料。随着反应温度由140°C升高到200°C,碳壳层的厚度从5 nm增加到40 nm。当PAM或者PdCl_2的用量增加时,会得到球状的Pd/C核-壳结构。我们参照不同时间段产物的结构分析提出了诱捕-还原-碳化的生长机理:聚丙烯酰胺通过配位作用与Pd~(2+)结合并形成小的团簇,α-乳糖将Pd~(2+)还原为金属Pd,并同时碳化将生成的Pd颗粒包覆起来。这样的合成路线可拓展到球状Ag/C核-壳结构的纳米复合材料合成。循环伏安法研究证实了蠕虫状Pd/C核-壳结构的纳米复合材料对生物小分子抗坏血酸具有电催化活性。此研究工作于2011年发表在国际期刊杂志J. Phys. Chem. C上。
     3. 700°C下利用反应釜中吡咯和碱式碳酸镁的热解反应制备了花状的氮掺杂碳纳米片。片的尺寸可达几微米,厚度在2-3 nm。通过调控反应温度还得到了管状、带状的氮掺杂碳材料。我们研究了反应温度对氮各种化学态含量的影响:高温条件下石墨型的氮占主导,而低温下吡咯型的氮占主导,且其热稳定顺序为:石墨型>吡啶型>吡咯型。此外,循环伏安研究证实氮掺杂碳纳米片对H_2O_2具有很好的电催化活性,并且其还原电流与扫描速率平方根成线性关系,说明电极过程是受扩散控制的。
In this dissertation, controlled synthesis and properties were developed to prepare carbon and carbonaceous composite materials with novel structures. Carbon/carbon core/shell nanofibers and flower-like N-doped carbon nanosheets have been prepared by co-pyrolysis at high temperature. Worm-like palladium/carbon (Pd/C) core-shell nanocomposites have been hydrothermally prepared at low temperature. We also study their electrocatalytic activity toward biomolecules through cyclic voltammetry (CV). The main points are summarized as follows:
     1. Carbon/carbon core/shell nanofibers with diameters of ~50 nm and lengths up to several micrometres have been prepared by co-pyrolysis of tetrahydrofuran and ferrocene in a stainless steel autoclave at 600°C. The diameter of carbon core is ~10 nm, and the thickness of carbon shell is ~20 nm. It is found that the graphene layers of carbon core are perpendicular to the ones of carbon shell in stacking orientation. When hollow hexapod-like carbon materials can be obtained with water introduced into reaction system. Moreover, the ferrocene is absence, only solid carbon spheres are observed. Comparative experiments confirm that the metallic iron catalysts, originating from the decomposition of ferrocene, are responsible for the formation of nanofibers. And a possible growth process for the three shaped carbon materials is proposed.
     2. Worm-like palladium/carbon (Pd/C) core-shell nanocomposites have been hydrothermally prepared starting from PdCl_2 andα-lactose monohydrate (α-LM) in the presence of polyacrylamide (PAM) at 200°C. The thickness of carbonaceous shells varied from 5 to 45 nm with increasing temperature from 140 to 200°C. When the dose of PAM or PdCl_2 was increased, spherical Pd/C core-shell nanocomposites were obtained. Time-dependent experiments confirmed that formation of Pd/C core-shell nanocomposites underwent an entrapment-reduction-carbonization process. Cross-linked PAM clusters with rich -CONH_2 entrap the Pd~(2+) ions in solution by a coordination effect. Then the chelated Pd~(2+) ions are gradually reduced to metallic Pd byα-LM. Finally, carbonization coating occurs on the surfaces of Pd nanoparticles fixed by PAM clusters. Such a route has also been extended to synthesize spherical Ag/C core-shell composites. A cyclic voltammetry (CV) study reveals that the as-prepared Pd/C core-shell nanocomposites exhibit electrocatalytic activity toward oxidation of ascorbic acid (AA).
     3. Flower-like N-doped carbon nanosheets with the thickness of 2-3 nm and the sizes up to several microns have been prepared by co-pyrolysis of pyrrole and 3MgCO_3·Mg(OH)_2·3H_2O in a stainless steel autoclave at 700°C. We also obtain N-doped carbon nanotubes and nanobelts when varying the reaction temperature. The influence of reaction temperature on the nitrogen contents and chemical states are also studied. It is found that the graphitic N is dominant at high temperature, while the pyrrolic N is dominant at low temperature. The order of thermal stability follows graphitic N > pyridinic N > pyrrolic N. A cyclic voltammetry (CV) study reveals that the N-doped carbon nanosheets exhibit good electrocatalytic activity toward the oxidation of H_2O_2. A linear relationship between the amperometric responses and the scan rates square-root is observed, indicating that the electrode process is spread control.
引文
[1] Angus J. C., et al. J. Appl. Phys. 1968, 39, 3915.
    [2] Li Y. D., Qian Y. T., et al. Science 1998, 281, 246.
    [3] Gogotsi Y.; Welz S.; Ersoy D. A., et al. Nature 2001, 411, 283.
    [4] Lou Z. S., Chen Q. W., Qian Y. T., et al. J. Am. Chem. Soc. 2003, 125, 9302.
    [5]文潮,金志浩,关锦清,等.高等学校化学学报2004, 25(6), 1043.
    [6] Iijima S., Nature 1991, 354, 56.
    [7] Dresselhaus M. S., Dresselhaus G., Saito R. Carbon 1995, 33, 883.
    [8] Iijima S., Ichihashi T. Nature 1993, 363, 603.
    [9] Bethune D. S., Kiang C. H., Devries M. S., et al. Nature 1993, 363, 605.
    [10] Guerret-Piecourt C., Lebouary Y., Loiseau A., et al. Nature 1994, 372, 6508.
    [11] Kiang C. H., Goddard W. A., Beyers R., et al. Carbon 1995, 33, 903.
    [12] Journet C., Maser W. K., Bernier P., et al. Nature 1997, 388, 756.
    [13] Kiang C. H., Goddard W. A., Beyers R., et al. J. Phys. Chem. 1994, 98, 6612.
    [14] Journet C., Maser W. K., Bernier P., et al. Nature 1997, 388(6644), 756.
    [15] Bonard J. M., Chauvin P., Klinke C. Nano Lett. 2002, 2, 655.
    [16] Chen B., Parker G., Han J., et al. Chem. Mater. 2002, 14, 1891.
    [17] Vanyorek L., Loche D., Katona H. et al. J. Phys. Chem. C. 2011, 115, 5894.
    [18] Guo T., Nikolaev P., Thess A., et al. Chem. Phys. Lett. 1995, 243, 49.
    [19] Luo T., Liu J. W., Qian Y. T., et al. Carbon 2005, 43(4), 755.
    [20]张恩磊,唐元洪,张勇.合成纤维,2007, 36(3), 30.
    [21] Matsumoto Y., Oo M. T., Nakao M., et al. Mater. Sci. Eng. B 2000, 74, 218.
    [22] Wang B. B., Lee S., Yan H., et al. Thin Solid Films. 2005, 474, 103.
    [23] Adhyapak P. V., Maddanimath T., Pethkar S., et al. J. Pow. Sour. 2002, 109(1), 105.
    [24]王胤,陈玉静,王凤香,等.扬州大学学报(自然科学版) 2004, 7(3), 5.
    [25] Hoshi F., Tsugawa K., Goto A., et al. Diam. Relat. Mater. 2001, 10(2), 254.
    [26] Isoioka M., Okada T., Maysubara K., Carbon 1992, 30, 859.
    [27]闫晓琦,李颖,周江宁,等.南开大学学报(自然科学版) 2003, 36(1),56.
    [28] Hulteen J. C., Chen H. X., Chambliss C. K. Nanostruc. Mate. 1997, 9(1-8), 133.
    [29] Lake L.M. Leeture presented at conference [A]. Global Outlook for Carbon Fiber 2002, Ralelgh, -NC.USA, 2002, 21.
    [30]顾正彬,季根华,卢明辉.南京工业大学学报(自然科学版) 2010, 32(3), 105.
    [31] Avouris P., Chen Z., Pereberinos V., Nature Nanotechnology 2007, 2, 605.
    [32] Geim A. K., Novoselov K. S. Nat. Mat. 2007, 6, 183.
    [33] Novoselov K. S., Geim A. K., Morozov S. V., et al. Science 2004, 306, 666.
    [34] Li X. L., Wang X. R., Zhang L., et al. Science 2008, 319, 1229.
    [35] Tung V. C., Allen M. J., Yang Y., et al. Nature Nanotechnology 2009(4), 25.
    [36]代波,邵晓萍,马拥军,裴重华.材料导报2010, 24(2), 17.
    [37] Hummers W. S., Offeman R. E. J. Am. Chem. Soc. 1958, 80, 1339.
    [38] He H., Klinowski J., Forster M., Lerf A. Chem. Phys. Lett. 1998, 287, 53.
    [39] Cai W. W., Piner R. D., Ruoff R. S., et al. Science 2008, 321, 1815.
    [40] Kosynkin D. V., Higginbotham A. L., Sinitskii A., et al. Nature 2009, 458, 872.
    [41] Cano-Marquez A. G., Rodriguez-Macias F. J., Campos-Delgado J., et al. Nano Lett. 2009, 9, 1527.
    [42] Berger C., Song Z. M., Li X. B., et al.Science 2006, 312, 1191.
    [43] Huang H., Chen W., Chen S., Wee A. T. S. ACS Nano 2008, 2, 2513.
    [44] Sutter P.W., Flege J. I., Sutter E. A. Nature Mater. 2008, 7, 406.
    [45] Pan Y., Zhang H. G., Shi D. Y., et al. Adv. Mater. 2009, 21, 2777.
    [46] Kim K. S., Zhao Y., Jang H., et al. Nature 2009, 457, 706.
    [47] Obraztsov A. N., Obraztsova E. A., Tyurnina A. V., et al. Carbon, 2007, 45, 2017.
    [48] Reina A., Jia X. T., Ho J., et al. Nano Lett. 2009, 9(1), 30.
    [49] Coraux J., N’Diaye A. T., Busse C., et al. Nano Lett. 2008, 8(2), 565.
    [50] Bae S., Kim H., Lee Y., et al. Nat. Nanotechnol. 2010, 5(8), 574.
    [51] Strupinski W., Grodecki K. Wysmolek A., et al. Nano Lett. 2011, 11, 1786.
    [52]吴峻青,周仕学,杨敏建,等.煤炭科学技术2006, 34(11), 75.
    [53] Bianco S., Giorcelli M., Musso S., et al. Journal of Nanoscience and Nanotechnology 2010, 10(6), 3860.
    [54] Yang Z. X., Xia Y. D., Mokaya R. J. Am. Chem. Soc. 2007, 129, 1673.
    [55]郭明,王金才,吴连波,李洪锡,沈祖洪.电源技术2004, 28(6), 385.
    [56] Frackowisk E., Gautier S., Gaucher H., et al. Carbon 1999, 37, 61.
    [57]刘春燕,唐致远,赵秉英.天津大学学报2001, 34(1), 31.
    [58] Shen J. M., Feng Y. T. J. Phys. Chem. C 2008, 112, 13114.
    [59] Burke A. J Power Sources 2000, 91, 37.
    [60]王晓峰,王大志,梁吉.无机化学学报2003, 19(2), 137.
    [61]王晓峰,王大志,梁吉.无机材料学报2003, 18(2), 331.
    [62] Kim C., Kim J. S., Kim S. J., et al. J. Electrochem. Soc. 2004, 151(5), A769.
    [63] Hung T. C., Chen C. F., Whang W. T. Electrochem. Solid State Lett. 2009, 12, K41..
    [64] Ruoff R. S., Stoller M. D., Park S., Zhu Y. W., An J. H. Nano Lett. 2008, 8(10), 3498.
    [65] O’Regan B., Gratzel M. Nature 1999, 353, 737.
    [66] Zhu H. W., Zeng H. F., Subramanian V., et al. Nanotechnology 2008, 19, 465204.
    [67] Suzuki K., Yamaguchi M., Kumagai M., et al. Chem. Lette. 2003, 32, 28.
    [68] Seo S. H., Kim S. Y., Koo B. K., et al. Langmuir 2010, 26(12), 10341.
    [69] Mochida I., Kawabuchi Y., Kawano S., et al. Fuel 1997, 76(6), 543.
    [70] Mochida I., Kisamori S., Hironaka M., et al. Energy & Fuels 1994, 8, 1341.
    [71] Tang L. H., Wang Y., Li Y. M., et al. Adv. Funct. Mater. 2009, 19, 2782.
    [72] Banks C. E., Davies T. J., Wildgoose G. G., et al. Chem. Commun. 2005, 829.
    [73] Banks C. E., Moore R. R., Davies T. J., et al. Chem. Commun. 2004, 1804.
    [74] Banks C. E., Compton R. G. Analyst 2005, 130, 1232.
    [75]王和慧,陈一凡,胡梦茜,等.纳米科技2009, 6(5), 11.
    [76]秦玉香,胡明,李海燕,等.无机化学学报2006, 21(2), 277.
    [77] Saito Y., Uemura S. Carbon 2000, 38, 169.
    [78] Bonard J. M., Kind H., St?ckli T., et al. Solid-State Electron. 2001, 45, 893.
    [79]秦玉香,胡明.无机材料学报2008, 23(3), 515.
    [80] Heer W. A., Bacsa W. S., Chatelain A. et al. Science 1995, 268, 845.
    [81] Heer W. A., Chatelain A., Ugarte D. Science 1995, 270, 1179.
    [82] Ruoff, R. S., Lorents, D. C., Chan, B., et al. Science 1993, 259, 346.
    [83] Banhart F., Grobert N., Terrones M. J. Modern Phys. B. 2001, 15(31), 4037.
    [84] Jiao J., Seraphin S. J. Appl. Phys. 1996, 80, 103.
    [85] Harris P. J. F., Tsang S. C. Chem. Phys. Lett. 1998, 293, 53.
    [86] Tomita S., Hikita M., Fujii M. Chem. Phys. Lett. 2000, 316, 361.
    [87] Song H. H., Chen X., Chen X., et al. Carbon 2003, 41, 3037.
    [88] Singjai P., Wongwigkarn K., Laosiritaworn Y., et al. Current Applied Physics, 2007, 7, 662.
    [89] Seo W. S., Kim S. M., Kim Y. M., Sun X., Dai H. J. Small 2008, 4, 1968.
    [90] Qian H. S., Yu S. H., Luo L. B., et al. Chem. Mater. 2006, 18, 2102.
    [91] Zhu G. X., Wei X. W., Jiang S. J. Mater. Chem. 2007, 17, 2301.
    [92] Wei X. W., Zhu G. X., Xia C. J., Ye Y. Nanotechnology 2006, 17, 4307.
    [93] Hao Q., Xu L. Q., Li G. D., et al. Langmuir 2009, 25, 6363.
    [94] Xi G. C., Wang C., Wang X., et al. J. Phys. Chem. C 2008, 112, 965.
    [95] Yu J. C., Hu X. L., Li Q., et al. Chem.—Eur. J. 2006, 12, 548.
    [96] Wang W. Z., Qiu S., Xi B. J., et al. Chem. Asian J. 2008, 3, 834.
    [97] Wang W. Z., Sun L., Fang Z., et al. Cryst. Growth Des. 2009, 9, 2117.
    [98] Sun X. M., Li Y. D. Langmuir 2005, 21, 6019.
    [99] Sun X. M., Li Y. D. Angew. Chem., Int. Ed. 2004, 43, 597.
    [100] Gong J. Y., Yu S. H., Qian H. S., et al. J. Phys. Chem. C 2007, 111, 2490.
    [101] Luo L. B., Yu S. H., Qian H. S., et al. Chem. Commun. 2006, 7, 793.
    [102] Wang W. Z., Xiong S. L., Chen L. Y., et al. Cryst. Growth Des. 2006, 6, 2422.
    [103] Chlopek J., Czajkowska B., Szaraiec B., et al. Carbon 2006, 44, 1106.
    [104] Smart S. K., Cassaday A. T., Lu G. Q., et al. Carbon 2006, 44, 1034.
    [105] Gong J. Y., Yu S. H., Qian H. S., et al. J. Phys. Chem. C 2007, 111, 2490.
    [106] Guo S. R., Gong J. Y., Jiang P., et al. Adv. Funt. Mater. 2008, 18, 872.
    [107] Kim D. K., Zhang Y., Kehr. J. Journal of Magnetism and Magnetic Materials 2001, 225, 256.
    [108] Wen Z. H., Liu J., Li J. H. Adv. Mater. 2008, 20, 743.
    [109] Lee K. T., Jung Y. S., Oh S. M. J. Am. Chem. Soc. 2003, 125, 5652.
    [110] Makowski P., Cakan R. D., Antonietti M., et al. Chem. Commun. 2008, 999.
    [111] Harada, T., Ikeda, S., Hashimoto, et al. Langmuir 2010, 26, 17720.
    [112] Shao Y. Y., Sui, J. H., Yin G. P., Gao, Y. Z. Appl. Catal. B 2008, 79, 89.
    [113] Sumpter B. G., Meunler V., Romo-Herrera J. M., et al. ACS Nano 2007, 1, 369.
    [114] Ma Y. C., Foster A. S., Krashenlnnlkov A. V., et al. Phys. Rey. B 2005, 72, 205416.
    [115] Zhou C. W., Kong J., Yellmez E., Dal H. J. Science 2000, 290, 1552.
    [116] Deng D. H., Pan X. L., Yu L., et al. Chem. Mater. 2011, 23(5), 1188.
    [117] Qu, L., Liu, Y., Baek, J. B., Dai, L. ACS Nano 2010, 4, 1321.
    [118] Tang, Y., Allen, B. L., Kauffman, D. R., et al. J. Am. Chem. Soc. 2009, 131, 13200.
    [119] Reddy A. L. M., Srivastava A., Gowda S. R., et al. ACS Nano 2010, 4, 6337.
    [120] Imran Jafri R., Rajalakshmi N., Ramaprabhu S. J. Mater. Chem. 2010, 20, 7114.
    [121] Li X., Wang H., Robinson J. T., et al. J. Am. Chem. Soc. 2009, 131, 15939.
    [122] Wang Y., Shao Y., Matson D. W., Li J., Lin Y. ACS Nano 2010, 4, 1790.
    [123]朱素冰,孙思修,周薇薇,许军舰,李彦.物理化学学报2004, 20(11), 1320.
    [124] Terrones M., Grobert N., Olivares J., et al. Nature 1997, 388, 52.
    [125] Terrones M., Redlich P., Grobert N., et al. Adv. Mater. 1999, 11, 655.
    [126] Terrones M., Terrones H., Grobert N., et al. Appl. Phys. Lett. 1999, 75, 3932.
    [127] Terrones M., Ajayan P. M., Banhart F., et al. Appl. Phys. A: Mater. Sci. Process. 2002, 74, 355.
    [128] Han W. Q., Kohler-Redlich P., Seeger T., et al. Appl. Phys. Lett. 2000, 77, 1807.
    [129] Wang Y., Shao Y Y., Matson D. W., et al. ACS Nano 2010, 4(4), 1790.
    [130] Migamoto Y., Cohen M. L., Louie S. G. Solid State Commun. 1997, 102, 605.
    [131] Sen R., Satishkumar B. C., Govindaraj A., et al. Chem. Phys. Lett. 1998, 287, 671.
    [132] Golberg D., Dorozhkin P. S., Bando Y., et al. Appl. Phys. A 2003, 76, 499.
    [133] Gong K., Du F., Xia Z., et al. Science 2009, 323, 760.
    [134] Xiong W., Du F., Liu Y., et al. J. Am. Chem. Soc. 2010, 132, 15839.
    [135]Yu D. S., Zhang Q., Dai L. M., J. Am. Chem. Soc. 2010, 132, 15127.
    [136] Jia N. Q., Wang, L. J., Liu, L., et al. Electrochem. Commun. 2005, 7, 349.
    [137] Jia N. Q., Liu, L., Zhou, Q., et al. Electrochim. Acta. 2005, 51, 611.
    [138]董俊萍,曲晓敏,王利军,等.化学学报2007, 65(21), 2405.
    [139] Reddy A. L. M., Srivastsva A., Gowda S. R., et al. ACS Nano 2010, 4(11), 6337.
    [140] Lee K. S., Lee W. J., Park N. G., et al. Chem. Commun. 2011, 47, 4264.
    [1]曹辉.宇航材料工艺1993, 4, 34.
    [2]曾祥云,李家俊,师春生.材料导报1998, 12(1), 64.
    [3]范月英,成会明,苏革,等.新型炭材料1999, 14(2), 14
    [4]张恩磊,唐元洪,张勇.合成纤维2007, 36(3), 30.
    [5] Yoon S. H., Lim S. Y., Hong S. H., et al. Carbon 2005, 43, 1828.
    [6]郭明,王全才,吴连波,等.电池2004, 34, 384.
    [7] Yoon S. H., Lim S. Y., Song Y., et al. Carbon 2004, 42, 1723.
    [8]吴国涛,王淼,李振华,等.化学物理学报2003, 16(4), 299.
    [9] Takeuchi K. J., Marschilok A. C., Lau G. C., et al. J. Power Sources 2006, 157, 543.
    [10]王占锋,廖寄乔,周健伟.碳素2007,129, 20.
    [11] Yoon S. H., Park C. W., Yang H. J., et al. Carbon 2002, 42, 21.
    [12]刘鸿鹏,乔文明,詹亮,凌立成.电子原件与材料2008, 27(11), 64.
    [13] Singh C., Quested T., Boothroyd, C. B., et al. J. Phys. Chem. B. 2002, 106, 10915.
    [14] Cheol J. L., Jeunghee P., Jeong A. Y. Chem. Phys. Lett. 2002, 360, 250.
    [15] Endo M., Muramatsu H., Hayashi T., et al. Nature 2005, 433, 476.
    [16] Kim Y. A., Hayashi T., et al. Carbon 2005, 43, 3005.
    [17] Huang Z. P., Wang D. Z., et al. Applied Physics A 2002, 74, 387.
    [18] Ajayan P. M., Iijima S. Nature 1993, 361, 333
    [19] McCulloch D. G., Prawer S., Hoffman A. Phys. Rev. B 1994, 50, 5905.
    [20] Kang Z. H., Wang E. B., Gao L., et al. J. Am. Chem. Soc. 2003, 125, 13652.
    [1] Caruso F. Adv. Mater. 2001, 13, 11.
    [2] Zhang H., Han J. S., Yang B. Adv. Funct. Mater. 2010, 20, 1533.
    [3] Guo S. R., Gong J. Y., Jiang P., Wu M., Lu Y., Yu S. H. Adv. Funct. Mater. 2008, 18, 872.
    [4] Wen Z. H., Liu J., Li J. H. Adv. Mater. 2008, 20, 743.
    [5] Yu Y., Gu L., Zhu C. B., van Aken P. A., Maier J. J. Am. Chem. Soc. 2009, 131, 15984.
    [6] Wang Y., Wu M., Jiao Z., Lee J. Y. Chem. Mater. 2009, 21, 3210.
    [7] Yu Y., Gu L., Wang C. L., Dhanabalan A., van Aken P. A., Maier J. Angew. Chem., Int. Ed. 2009, 48, 6485.
    [8] Makowski P., Cakan R. D., Antonietti M., Goettmann F., Titirici M. M. Chem. Commun. 2008, 8, 999.
    [9] Harada T., Ikeda S., Hashimoto F., Sakata T., Ikeue K., Torimoto T., Matsumura, M. Langmuir 2010, 26, 17720.
    [10] Ruoff R. S., Lorents D. C., Chan B., Malhotra R., Subramoney S. Science 1993, 259, 346.
    [11] Dravid V. P., Host J. J., Teng M. H., Elliot B., Hwang J. H., Johnson D. L., Mason T. O., Weertman J. R. Nature 1995, 374, 602.
    [12] Jiao J., Seraphin S., Wang X. K., Withers J. C. J. Appl. Phys. 1996, 80, 103.
    [13] Hayashi T., Hirono S., Tomita M., Umemura S. Nature 1996, 381, 772.
    [14] Kosugi K., Bushiri M. J., Nishi N. Appl. Phys. Lett. 2004, 84, 1753.
    [15] Dosa P. I., Erben C., Iyer V. S., Vollhardt K. P. C., Wasser I. M. J. Am. Chem. Soc. 1999, 121, 10430.
    [16] Zhi L. J., Hu Y. S., El Hamaoui B., Wang X., Lieberwirth I., Kolb U., Maier J., Mullen K. Adv. Mater. 2008, 20, 1727.
    [17] Seo W. S., Kim S. M., Kim Y. M., Sun X, Dai H. J. Small 2008, 4, 1968.
    [18] Hao Q., Xu L. Q., Li G. D., Qian Y. T. Langmuir 2009, 25, 6363.
    [19] Xi G. C., Wang C., Wang X., Qian Y. T., Xiao H. Q. J. Phys. Chem. C 2008, 112, 965.
    [20] Yu J. C., Hu X. L., Li Q., Zheng Z., Xu Y. M. Chem.—Eur. J. 2006, 12, 548.
    [21] Wang W. Z., Qiu S., Xi B. J., Chen L. Y., Xiong S. L., Zhang Z. D. Chem. Asian J. 2008, 3, 834.
    [22] Wang W. Z., Sun L., Fang Z., Chen L. Y., Zhang, Z. D. Cryst. Growth Des. 2009, 9, 2117.
    [23] Sun X. M., Li Y. D. Langmuir 2005, 21, 6019.
    [24] Sun X. M., Li Y. D. Angew. Chem., Int. Ed. 2004, 43, 597.
    [25] Gong J. Y., Yu S. H., Qian H. S., Luo L. B., Li T. W. J. Phys. Chem. C 2007, 111, 2490.
    [26] Luo L. B., Yu S. H., Qian H. S., Gong J. Y. Chem. Commun. 2006, 7, 793.
    [27] Wang W. Z., Xiong S. L., Chen L. Y., Xi B. J., Zhou H. Y., Zhang Z. D. Cryst. Growth Des. 2006, 6, 2422.
    [28] Li H. B., Kang W. J., Xi B. J., Yan Y., Bi H. Y., Zhu Y. C., Qian Y. T. Carbon 2010, 48, 464.
    [29] Scherrer P. Nachr. Ges. Wiss. G?ttingen 1918, 2, 98.
    [30] Klug H. P., Alexander L. E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons: New York, 1974.
    [31] McCulloch D. G., Prawer S., Hoffman A. Phys. Rev. B 1994, 50, 5905.
    [32] Qian H. S., Yu S. H., Luo L. B., Gong J. Y., Fei L. F., Liu X. M. Chem. Mater. 2006, 18, 2102.
    [33] Chen M., Wang L. Y., Han J. T., Zhang J. Y., Li Z. Y., Qian D. J. J. Phys. Chem. B 2006, 110, 11224.
    [34] Philippova O. E., Rulkens R., Kovtunenko B. I., Abramchuk S. S., Khokhlov A. R., Wegner G. Macromolecules 1998, 31, 1168.
    [35] Deng Y. J., Dixon J. B., White G. N., Loeppert R. H., Juo A. S. R. Colloid Surf. A: Physicochem. Eng. Asp. 2006, 281, 82.
    [36] Huber K., Witte T., Hollmann J., Keuker-Baumann S. J. Am. Chem. Soc. 2007, 129, 1089.
    [37] Lages S., Schweins R., Huber K. J. Phys. Chem. B 2007, 111, 10431.
    [38] Feng B., Hou Z. S., Yang H. M., Wang X. R., Hu Y., Li H., Qiao Y. X., Zhao X. G., Huang Q. F. Langmuir 2010, 26, 2505.
    [39] Roy P. S., Bagchi J., Bhattacharya S. K. Colloid Surf. A: Physicochem. Eng. Aspects. 2010, 359, 45.
    [40] Ma D. K., Zhang M., Xi G. C., Zhang J. H., Qian Y. T. Inorg. Chem. 2006, 45, 4845.
    [41] Zhu J. X., Sun T., Hng H. H., Ma J., Boey F. Y. C., Lou X. W., Zhang H., Xue, C., Chen H. Y., Yan Q. Y. Chem. Mater. 2009, 21, 3848.
    [42] Arrigoni O., De Tullio M. C. Biochim. Biophys. Acta: Gen. Subj. 2002, 1569, 1.
    [43] Li F. H., Song J. X., Li F., Wang X. D., Zhang Q. X., Han D. X., Ivaska A. Niu, L. Biosens. Bioelectron. 2009, 25, 883.
    [1] Shao Y. Y., Sui, J. H., Yin G. P., Gao, Y. Z. Appl. Catal. B 2008, 79, 89.
    [2] Sumpter B. G., Meunler V., Romo-Herrera J. M., et al. ACS Nano 2007, 1, 369.
    [3] Ma Y. C., Foster A. S., Krashenlnnlkov A. V., Nlemlnen R. M. Phys. Rey. B 2005, 72, 205416.
    [4] Zhou C. W., Kong J., Yellmez E., Dal H. J. Science 2000, 290, 1552.
    [5] Deng D. H., Pan X. L., Yu L., et al. Chem. Mater. 2011, 23(5), 1188.
    [6] Qu L., Liu Y., Baek J.-B., Dai L. ACS Nano 2010, 4, 1321.
    [7] Tang Y., Allen B. L., Kauffman D. R., Star A. J. Am. Chem. Soc. 2009, 131, 13200.
    [8] Reddy A. L. M., Srivastava A., Gowda S. R., Gullapalli H., Dubey M., Ajayan P. M. ACS Nano 2010, 4, 6337.
    [9] Imran Jafri R., Rajalakshmi N., Ramaprabhu S. J. Mater. Chem. 2010, 20, 7114.
    [10] Li X., Wang H., Robinson J. T., Sanchez H., Diankov, G., Dai, H. J. Am. Chem. Soc. 2009, 131, 15939.
    [11] Wang, Y., Shao, Y., Matson, D. W., Li, J., Lin, Y. ACS Nano 2010, 4, 1790.
    [12]朱素冰,孙思修,周薇薇,许军舰,李彦.物理化学学报2004, 20(11), 1320.
    [13] Terrones M., Grobert N., Olivares J., Zhang J. P., Terrones H., Kordatos K., Hsu W. K., Hare J. P., Townsend P. D., Prassides K., Cheetham A. K., Kroto H. W., Walton D. R. M. Nature 1997, 388, 52.
    [14] Terrones M., Redlich P., Grobert N., Trasobares S., Hsu W.-K., Terrones H., Zhu Y.-Q., Hare J. P., Reeves C. L., Cheetham A. K., Ruhle M., Kroto H. W., Walton D. R. M. Adv. Mater. 1999, 11, 655.
    [15] Terrones M., Terrones H., Grobert N., Hsu W. K., Zhu Y. Q., Hare J. P., Kroto H. W., Walton D. R. M., Kohler-Redlich P., Ruhle M., Zhang J. P., Cheetham A. K. Appl. Phys. Lett. 1999, 75, 3932.
    [16] Terrones M., Ajayan P. M., Banhart F., Blase X., Carroll D. L., Charlier J. C.,Czerw R., Foley B., Grobert N., Kamalakaran R., Kohler-Redlich P., Ruhle M., Seeger T., Terrones H. Appl. Phys. A: Mater. Sci. Process. 2002, 74, 355.
    [17] Han W. Q., Kohler-Redlich P., Seeger T., Ernst F., Ruhle M., Grobert N., Hsu W. K., Chang B. H., Zhu Y. Q., Kroto H. W., Walton D. R. M., Terrones M., Terrones H. Appl. Phys. Lett. 2000, 77, 1807.
    [18] Wang Y., Shao Y Y., Matson D. W., Li J. H., Lin Y. H. ACS Nano 2010, 4(4), 1790.
    [19]孙丽美,曹殿学,王贵领,吕艳卓,张密林.物理化学学报2008, 24(2), 323.
    [20] McCulloch D. G., Prawer S., Hoffman A. Phys. Rev. B 1994, 50, 5905.
    [21] Yang D., Velamakanni A., Bozoklu G., et al. Carbon 2009, 47, 145.
    [22] Wang X. B., Liu Y. Q., Zhu, D. B., et al. J. Phys. Chem. B 2002, 106, 2186.
    [23] Casanovas J., Ricart J. M., Rubio J., et al. J. Am. Chem. Soc. 1996, 118, 8071.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.