Eu~(3+)、Li~+共掺杂ZnO薄膜结构与性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发光是物体将以某种方式吸收的能量转化为光辐射的过程。全固态照明光源(半导体发光二极管,简称LED)被认为是21世纪最具有发展潜力的高技术领域之一。稀土离子Eu3+是一种良好的红光发光中心,它的激发谱峰位于395 nm左右,Li+为低价电荷的补偿离子和发光敏化剂。本课题根据在ZnO基质中掺杂稀土离子Eu3+作为分立发光中心的设想,采用脉冲激光沉积(pulsed laser deposition,即PLD)薄膜外延技术,制备并初步研究了Eu3+、Li+共掺杂ZnO薄膜的结构及光学性质。
     控制Si衬底温度为400℃的情况下,调节真空室氧压分别为0Pa、2×10-2Pa、2×10-1Pa以及2×100Pa时制备ZnO:Eu3+, Li+/Si薄膜。通过X射线衍射仪和荧光分光光谱仪测试了样品的晶体结构与发光特性。XRD谱表明,Eu3+、Li+共掺杂的ZnO薄膜具有c轴择优取向,XRD谱中除ZnO晶向以外没有出现其它结晶峰,表明掺杂元素Eu3+、Li+均已进入到ZnO晶格中,形成了以Eu3+为发光中心的ZnO纤锌矿结构。当以395 nm的激发光照射样品时,在PL光谱中观察到了稀土Eu3+在594 nm、613 nm附近的特征发光峰。
     在背底真空为10-5Pa时,充入氧气,控制氧分压为2×10-1 Pa,改变衬底温度,分别在室温、100℃、200℃、300℃、400℃和500℃时,制备Eu3+、Li+共掺杂的ZnO薄膜。同样测得其XRD谱线与室温下的PL谱。分析图谱可知,稀土离子能有效掺进ZnO晶格中,得到高度c轴择优取向的单晶薄膜。温度较低时,用325 nm的激发波长激发,观察不到Eu3+的本征发光峰,ZnO与Eu3+之间没有进行有效的能量传递;但温度较高的情况下,所制备样品的PL谱中出现Eu3+的本征发光峰,分析认为是较高的温度下,Eu3+可以获得足够的迁移能进入到ZnO晶格内部,有利于从基质向稀土离子传递能量。
     当ZnO基质中掺杂离子Eu3+、Li+的掺杂浓度降低时,测得所制备样品的PL谱,Eu3+本征发光峰的强度增强,认为可能是当浓度超过某一值时发生了一定程度的猝灭。
Emitting light is a process that the substance gives out energy after absorbing radiation in some way. Solid-state light sources (light emitting diodes, LEDs) are considered one of the most potential high-tech areas in the 21st century. Rare earth ion Eu3+is a good red luminescence center, and its excitation spectrum peak is at about 395nm, Li+ions act as the low compensation charge and luminescence sensitizer. In this dissertation, Eu rare earth was doped into the ZnO matrix as the separate luminescence center by the pulse laser deposition method, and the crystal structure and optical properties of the films were studied.
     ZnO:Eu3+, Li+/Si films were prepared on silicon substrates under the substrate temperature of 400℃by PLD technology at different oxygen pressures. The crystal structure and optical properties were studied with the X-ray diffractometer and fluorophotometer. By the X-ray diffraction, it can be seen that the ZnO:Eu3+, Li+films are highly c-axis oriented. In the XRD spectrum, no other crystal orientations are observed except the ZnO crystal orientation, which indicates that the doping elements of Eu3+and Li+have incorporated into the crystal lattice of ZnO, and conform the wurtzite structure with Eu3+as its luminescence centre. When irradiated under the wavelength of 395nm, obvious emission at the wavelength of about 594 nm,613 nm from the rare-earth element of Eu3+can be observed in the photoluminescence spectra.
     Eu3+、Li+co-doped ZnO films were prepared under different substrate temperature with the 2X10-1 Pa oxygen partial pressure. The XRD spectrum and PL spectrum at room temperature were measured. The results show that rare earth ions can be effectively coped into the ZnO crystal, and the single crystal films are of high c-axis. When the temperature was low, the Eu3+ emission peak could not be observed under the excitation light of 325 nm wavelength, there were not effective energy transfer between ZnO matrix and the doped Eu3+ions; while the temperature was high, the Eu3+emission peak appeared under the 325 nm wavelength excitation in the PL spectra. It can be concluded that the rare earth ions of Eu3+can obtain sufficient transferring energy to enter the ZnO crystal lattice which is helpful for the energy transfer from ZnO matrix to the rare ions.
     When the doping concentration of Eu3+、Li+in the ZnO matrix decreases, the intensity of the Eu3+intrinsic luminescence peak in the PL spectra increases under the same conditions. That may be because when the concentration exceeds a critical value, the quenching occurs to some extent.
引文
[1]P. Papanier. Cost-effective LEDs fit snugly in today's energy-conscious world [J]. Electronic Design,2000:93-110.
    [2]ZHENG Dai-shun, QIAN Ke-yuan, LUO Yi. Fabrication and luminescence characteristics studies of the high power white LEDs with low tc and high Ra [J]. Journal of Optoelectronics-Laser(光电子·激光),2006,17(12):1422-1426. (in Chinese)
    [3]Junji Kido. Masato Kimura, Katsutoshi Nagai. Multilayer white light-emitting organic electroluminescent device [J]. Science,1995,26(7),1332-1334.
    [4]Zhao Bo, Li Qing-shan, Qi Hong-xia, et al. White Light Emission from the Composite System of ZnO/Porous Si [J]. Chinese Physics Letters,2006,23(5),1299-1301.
    [5]Wang Jingjing, Li Qingshan, Chen Da, et al. Study of structure and photo-luminescence properties of the ZnO thin film deposited by pulse laser deposition [J]. Journal of Optoelectronics Laser,2006,17(9),1065-1068. (in Chinese)
    [6]Wang Z Y, Hu L Z, Zhao J, et al. Effect of the variation of temperature on the structural and optical properties of ZnO thin films prepared on Si (111) substrates using PLD [J]. Vacuum, 2005,78 (1).
    [7]S H BAE, S YLEE, B JUN JIN, et al. Growth and characterization of ZnO thin films grown by pulsed laser deposition [J]. Applied surface science,2001,169,525-528.
    [8]林碧霞,傅竹西,贾云波.非掺杂ZnO薄膜中紫外与绿色发光中心[J].物理学报,2001,50(11),2208-2212.
    [9]Song Guoli, Sun Kaixia. Photoluminescence Emission Properties of Nanocrystal line ZnO Films [J].光子学报,2005,34(4),590-593.
    [10]P. Che, J. Meng b, L. Guo. Oriented growth and luminescence of ZnO:Eu films prepared by sol-gel process [J]. Journal of Luminescence,2007,122(26),168-171.
    [11]A. Ishizumi, Y. Takahashi, A. Yamamoto, et al. Fabrication and optical properties of Eu3+-doped ZnO nanospheres and nanorods [J]. Materials Science and Engineering B,2008, 146:212-215.
    [12]Wang Meili, Huang Changgang, Huang Zhi, et al. Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method [J]. Optical Materials,2009, 31(10),1502-1505.
    [13]S. Yudate, T. Fujii, S. Shirakata. Structural properties of Eu-doped GaN films prepared by RF magnetron sputtering [J]. Thin Solid Films,2008,517:1453-1456
    [14]JIANG Xiao-lan, LU Shu-chen. Preparation and Luminescent Properties of the Nanocrystal CaO:Eu3+[J]. Chin. J. Lumin,2009,30(5),640-643.
    [15]U. Ozgur, Ya. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys,2005,98 (04),1301-1303.
    [16]陈治明,半导体概论.北京:电子工业出版社,2007.
    [17]Junying Zhang, Haibing Feng, Weichang Hao. et al. Blue-emitting ZnO sol and film obtained by sol-gel process [J]. Journal of Sol-Gel Science and Technology,2006,39(1), 37-39.
    [18]M.N. Kamalasanan, and Subhas Chandra. Sol-gel synthesis of ZnO thin films [J]. Thin Solid Films,1996,288(1-2),112-115.
    [19]B. K. Choi, D. H. Chang, Y. S. Yoon, et al. Optical characterization of ZnO thin films deposited by sol-gel method [J]. Journal of materials science. Materials in electronics,2006, 17(12),1011-1015.
    [20]J.Petersen, C. Brimont. Optical properties of ZnO thin films prepared by sol-gel process [J]. Microelectronics Journal,2009,40 (2),239-241.
    [21]徐伟中,叶志镇,周婷,等.MOCVD法以NO气体为掺杂源生长p型ZnO薄膜[J].半导体学报,2005,26(1).
    [22]周新翠,叶志镇,徐伟中.et al. MOCVD法制备磷掺杂p型ZnO薄膜[J].半导体学报,2006,27(1),91-95.
    [23]林辉,周圣明,顾书林.金属有机化学气相沉积生长m面或a面ZnO薄膜的方法.CN200710040427.4,2007,05,08.
    [24]黄飞,孙仲亮,孟凡明.Microstructure and Optical Properties of ZnO Thin Films by RF Magnetron Sputtering [J].真空电子技术,2008,02,1-4.
    [25]李丽,方亮,廖克俊.等.直流磁控溅射制备ZnO薄膜的结构及电学性质研究[J].中国真空学会第六届全国会员大会暨学术会议论文集.2004.
    [26]程松华,曾祥斌.RF磁控溅射法原位制备c轴择优取向ZnO薄膜[J].半导体光电,2007,28(1),60-63.
    [27]周扬,仇满德,付跃举.蓝宝石衬底上磁控溅射法室温制备外延ZnO薄膜[J].人工晶体学报,2009,38(1),74-77.
    [28]周映雪,余根才,吴志浩.ZnO薄膜的分子束外延生长及性能[J].发光学报,2004,25(3),287-290.
    [29]李树玮,小池一步,矢野满明.Structural and Optical Characterization of ZnO and ZnMgO Films on a-Plane Sapphires by Molecular Beam Epitaxy [J].光散射学报,2003, 16(1),90-94.
    [30]李春香,张宝林,申人升,等.MOCVD法制作n-ZnO/p-Si异质结及其电致发光研究 [J].光电子激光,2009,20(5),601-604.
    [31]汪壮兵,陈凌涛,李祥,等.电子束蒸发制备纳米ZnO薄膜及其特性研究[J].安徽大学学报,2008,32(2),60-64.
    [32]TANG Qing-xin, LU Li-xia, Qi Xiu-ying, et al. High Quality ZnO Thin Films Prepared by 02 and Ar Plasma-assisted E-beam Evaporation [J]. Chin. J. Lumin,2003,24(3),284-288.
    [33]C. W. Bunn, Proc. Phys. Soc. London 47,835,1935.
    [34]R. B. Heller, J. McGannon and A. H. Weber [J]. Appl. Phys,21,1283(1950).
    [35]G. P. Mohatny and L.V. Azaroff [J]. Chem. Phys,35,1268(1961).
    [36]R. R. Reeber [J]. Appl. Phys,41,5063(1970).
    [37]D. C. Reynolds and T. C. Collins, Phys. Rev.185,1099(1969).
    [38]W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett.20,59(1968).
    [39]C. Klingshirn, R. Hauschild, H. Priller, et al. ZnO rediscovered [J]. Superlattices and Microstructures,38 (05),209-222.
    [40]TANG W, CAMERON D C. Aluminum doped zinc oxide transparent conductors deposited by the sol-gel process [J]. Thin Solid Films,1994,238:83-87..
    [41]KIM H, P IQUE A. Effect of aluminum doping onzinc oxide thin films grown by pulsed laser deposition for organic light emitting devices [J]. Thin Solid Films,2000,12:798-802.
    [42]D.R. Sahu, Jow-Lay Huang. Design of ZnO/Ag/ZnO multilayer transparent conductive films [J]. Materials Science and Engineering. B,2006,130(1-3),295-299.
    [43]D.R. Sahu, Shin-Yuan Lin, Jow-Lay Huang. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. [J] Applied Surface Science.2006, 252 (20),7509-7514.
    [44]D.R. Sahu, C.Y. Chen, S.Y. Lin, et al. Effect of substrate temperature and annealing treatment on the electrical and optical properties of silver-based multilayer coating electrodes [J]. Thin Solid Films,2006,515(3),932-935.
    [45]P. Yu, et al. in the Proc.23nd Int. Conf. On the Physics of Semiconductor [J]. World Scientific. Singapore.1996,1453.
    [46]D. M. Bagnall, et al. [J] Appl. Phys. Lett.1998,73(8),1038
    [47]K. Minegishi, et al. [J] Jpn. J. Appl. Phys.1997,36 (11 A),1453-1455
    [48]A. Tsukazaki, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J] Natrue Materials,2005,4 (25)
    [49]H.T. Ng, Jun Li, Michal K. Smith, et al. Growth of Epitaxial Nanowires at the Junctions of Nanowalls [J] Science,2003,300 (5623),1249-1252
    [50]X. Y. Kong, Y. Ding, R. Yang, et al. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. [J] Science,2004,303 (5662),1348-1351
    [51]Z. W. Pan, Z. R. Dai, Z.L. Wang. Nanobelts of Semiconducting Oxides.[J] Science,2001, 291 (5510),1947-1949
    [52]X. D. Wang, C. J. Summers, Z. L. Wang. Video quality assessment based on structural distortion measurement [J] Nano Lett,2004,19 (2),121-132
    [53]Z. R. Tian, James A. Voigt,Jun Liu. Complex and oriented ZnO nanostructures.[J] Natrue Materials,2003,2,821-826
    [54]C. Coskun. Et al. Radiation hardness of ZnO at low temperatures. [J] Sci. Technol.2004,19 (6),752-756
    [55]Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors [J]. Phys. Rev. B.2001,63(19):195-205.
    [56]Zhang De heng, Wang Qing pu, Xue Zhong ying. Ultra violet photoluminescence of ZnO films on different substrates [J]. Acta Physica Sinica,2003,52(06),1484-1487. (in Chinese)
    [57]Lin B X, Fu Zhu-xi, Jia Y B, et al. The Ultra violet and green photoluminescence centers in un-doped zinc oxide films [J]. Acta Physica Sinica,2001,50(11),2208-2211. (in Chinese)
    [58]Eunice S P Leong, Yu S F, and Lau S P. Directional edge emitting UV random laser diodes [J]. Appl Phys Lett,2006,89:2211-2219.
    [59]Song Guoli, Sun Kaixia, Study on the Visible emission mechanism of nanocrystalline ZnO thin films [J]. Acta Photonica Sinica,2006,35(03),389-393. (in Chinese)
    [60]Lu Shuchen, Song Guoli, Xiao Zhiyan, et al. Preparation and nano-crystals ZnO powder and study on its luminescence [J]. Chin. J. Lumin.2002,23 (3),306-310.
    [61]P. Che, J. Meng b, L. Guo. Oriented growth and luminescence of ZnO:Eu films prepared by sol-gel process [J]. Journal of Luminescence,2007,122(26),168-171.
    [62]A. Ishizumi, Y. Takahashi, A. Yamamoto, et al. Fabrication and optical properties of Eu3+-doped ZnO nanospheres and nanorods [J]. Materials Science and Engineering B 2008, 146:212-215
    [63]Wang Meili, Huang Changgang, Huang Zhi, et al. Synthesis and photolumine-scence of Eu-doped ZnO microrods prepared by hydrothermal method [J]. Optical Materials,2009, 31(10),1502-1505.
    [64]Song Guoli, Sun Kaixia, Yang Youtong. Preparation and photoluminescence investigation of Europium-doped Zinc oxide nanocrystalline [J]. Spectroscopy and Spectral Analysis, 2007,27(4),639-642.
    [65]Chen Li, Zhang Jia-hua, Zhang Xia, et al. Synthesis and optical properties of Eu3+,Li+ codoped ZnO:Zn phosphors [J] Journal of Optoelectronics·Laser.2008,19(05),632-635.
    [66]S. Yudate, T. Fujii, S. Shirakata. Structural properties of Eu-doped GaN films prepared by RF magnetron sputtering [J]. Thin Solid Films 2008,517,1453-1456.
    [67]Liu Shuman, Liu Fengqi, Zhang Zhihua. Photoluminescence of ZnO:Tb nanoparticles [J]. Acta Physica Sinica,2000,49(11),2307-2309.
    [68]Liu Shuman, Xu Zheng, Liu Fengqi, et al. Energy transfer between rare earth ions and nanocrystalline matrix in rare earth doped ZnS nanocrystals [J]. Journal of the Chinese rare earth society.2001,19(6),566-569.
    [69]LU Zhongyuan, HE Fangfang, XU Pichi, et al. Effects of Heat-treatment Temperature on Eu3+and Li+Co-doped ZnO Photoluminescence by Sol-gel Process [J]. Journal of Wuhan University of Technology-Mater Sci. Ed.2008,23(1),20-23.
    [70]Kang Ming, Xie Kenan, Lu Zhongyuan, et al. Preparation of nanometer material ZnO:Eu, Li with red fluorescence by the Sol-Gel method [J]. Journal of Sichuan University (Engineering science edition),2005,37 (1),65-68.
    [71]Liang De-chun, Li Qing-shan, Zhang Li-chun, et al. The effect of growth parameters and post-processing on the optical properties of ZnO thin films [J]. Laser Journal,2008,29(05), 74-76. (in Chinese)
    [72]B.D. Cullity. Elements of X-ray Diffraction,2nd edtion [M]. Addision-Wesley Pub Co, 1978.
    [73]Institute of Physics Chinese Academy of Sciences. Solid Luminescence [M], University of Science and Technology of China.1976.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.