吡柔比星脂质冻干粉的制备及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吡柔比星(pirarubicin)是一种蒽环类抗生素,对白血病、恶性淋巴瘤、乳腺癌、头颈部癌、消化系统癌、肝癌和肺癌等多种实体肿瘤有较好的疗效。但在临床应用中,仍具有以下不良反应:1、骨髓抑制和胃肠道反应;2、累积心脏毒性:同阿霉素相比较低,但多次给药后具有蓄积毒性。脂质体,作为一种新型药物载体,可以改变药物在体内的分布形式和分布规律,因此在抗癌药物的载体研究中备受关注。
     利用热分析(DSC)、红外光谱(FTIR)以及基于分子模拟的量子化学计算深入研究了吡柔比星与处方中不同磷脂之间的作用。DSC和FTIR的结果表明,在低浓度时药物很容易嵌入二硬脂酰磷脂酰胆碱(DSPC)的双分子层膜内,从而改变DSPC的相变行为,影响磷脂双层膜的流动性和磷脂的碳链构象组成。而基于分子模拟的量子化学计算结果则从分子动力学角度表明:由于磷脂头部的特殊结构,药物更易与二硬脂酰磷脂酰甘油(DSPG)的头部基团作用,从而抑制了药物进一步嵌入DSPG双分子层膜中。在上述处方的研究基础上,依据药物自身性质,结合工业生产的可操作性,设计出了适合工业化生产的脂质体新型制备方法,并论述了新型制备工艺的可能机制。
     建立了吡柔比星的体外、体内血浆和各组织中药物的分析方法和处理方法,并进行了方法学考察。动物实验结果表明,吡柔比星制备成脂质体后:1)可以大大降低其在心脏中的聚集;2)容易在脾、肺中聚集;3)体内清除快;4)虽然在血浆中生物利用度降低;但其总生物利用度仍然是显著升高的。
     采用组织病理切片、血清酶活性结合尿液代谢组学来研究吡柔比星脂质体的减毒机制。体重、行为、组织病理切片、血清酶活性结果表明市售吡柔比星注射液2次给药后对机体造成严重的损伤,而吡柔比星脂质体组则相对较低。代谢组学则从分子机制上阐明毗柔比星引发心脏毒性的本质原因:1、药物和糖苷类代谢物的蒽环类自由基引发活性氧(ROS)的浓度增高,从而引发急性心肌损伤;2、代谢物通过单电子还原产生的二级醇代谢物,干扰心肌细胞的能量代谢和细胞平衡,从而引发慢性心肌损伤。从组织分布实验中得到,吡柔比星制备成脂质体后,不仅将大大降低其在心脏的蓄积;同时加速了其在体内的清除。因此本部分从分子机制上表明吡柔比星制备成脂质体不仅可以降低心脏毒性,同时还很难产生蓄积毒性。
Pirarubicin (THP), a commonly used anthracycline, has gained widespread applications against acute leukemia, malignant lymphoma, breast cancer, gastrointestinal cancer, liver cancer, lung cancer and some solid tumors. However, there are several adverse effects in the clinics:1, bone marrow suppression and severe gastrointestinal reactions; 2, cumulative cardiotoxicity:THP has a progressive dose-dependent cardiotoxicity that irreversible evolves toward congestive heart failure. Liposome drug delivery system, which can alter the in vivo behavior of the encapsulated drug, was expoited to provide a strategy for limiting or preventing the cardiotoxicity of THP.
     Interaction between pirarubicin and distearylphosphatidylcholine (DSPC) or distearylphophatidylglycerol (DSPG) was investigated by means of differential scanning calorimetry (DSC), fourier transform infrared (FTIR) spectroscopy and quantum calculation based on molecular modeling. DSC and FTIR experiments indicated that THP could be more easily incorporated into the DSPC bilayers, whereas the-NH3+ of THP might have much stronger interactions with the PO2- in the polar head of DSPG. The quantum calculation part is to investigate the interaction between-NH3+ of THP and PO2- of phospholipids from the molecular dynamics perspective. The Eint value of the interaction between-NH3+ of THP and PO2- of phospholipids can not only reflect the thermodynamic stability, but also probe that the implying mechanism is closely related to the unique structure of the polar heads. The strong interaction between THP and the polar head of DSPG could prevent or inhibit the further penetration of THP into its bilayers; therefore, the bilayer mobility could not be easily changed.
     A novel pirarubicin liposome powder (L-THP), comprising DSPC, DSPG, cholesterol and lactose, was appropriately prepared based on the unique physico-chemical properties of THP. The new preparation method has huge market prospective for its simple operation and good repeatability in the production. Meanwhile, the mechanism was well elucidated. Furthermore, the preparing process and formulations of L-THP were optimized.
     In vitro and in vivo assay of pirarubicin were established and the corresponding analytical method were validated. Pharmacokinetic studies showed that the accumulation of THP in the heart could be greatly reduced in our L-THP. Meanwhile, it tended to accumulate in the spleen and lung. Meanwhile, there is a quick clearation of THP in the L-THP. Although the bioavability of THP in the plasma was relatively a bit lower than that of marketed pirarubicin injection, the overall bioavability could be significantly improved.
     Safety mechanism of L-THP was investigated through the studies of enzyme activity, pathological and metabonomics. Results of weight, daily behavior, enzyme activity and pathological studies showed that the myocardial damage degree of THP could be greatly reduced when encapsulated into the liposomes. Metabonomics study of urine samples suggested that there were potential biomarkers closely related with the cardiotoxicity of pirarubicin:pirarubicin can generate ROS as well as the aglycones, thus inducing the acute cardiotoxicity; C-13 alcohol metabolites through the two-electron reduction may gain chronic cardiotoxicity. It further suggested that L-THP would have less cumulative cardiotoxicity since the content of biomarkers was low. This phenomenon should be attributed to the consequence of low accumution and high clearation rate of THP.
引文
[1]Leyland-Jones B. Cancer chemotherapy:Principles and practice. in:BA,Collins JM,et al. (Ed). JB Lippincott Co, Philadelphia,1990.
    [2]Karau C, Petszulat M, Schmidt PC. Preparation and stability of inter feron-a-containing liposomes. Int. J. Pharm.1996,128:89-981.
    [3]Ren JY, ChenYL, Wu B, et al. Study of the targeting therapy on virus hepatitis: preparation and ciinical observation of the liposomeal drugs for anti-HBV1. Chin J Integrate Tradit West Hepatol,1997,7(1):11.
    [4]Gottschalk S, Cristiano RJ, Smith LC, et al. Folate receptor mediated DNA delivery into tumor cells:potosomal disruption results in enhanced gene expression. Gene Ther,1994,1:1851.
    [5]Rojansakuly. Antisense oligonucleotide therapeutics:drug delivery and targeting. Adv Drug Delivery Rev,1996,18:1151.
    [6]Crispin RD, Tao S. Particle-mediated intravascuiar delivery of oligonucleotides to tumors:associated biology and lessons from genotherapy. Drug Delivery,2001, 8:191-2131.
    [7]Kimura, K. A phase Ⅱ study of (2"R)-4'-O-tetrahydropyranyladriamycin (THP) in patients with hematological malignancies. THP Study Group. Jpn. J. Cancer Chemother.,1986,13:368-375.
    [8]Saito T, Kasai Y, Wakui A, et al. Phase Ⅱ study of (2"R)-4'-O-tetrahydropyranyladriamycin (THP) in patients with solid tumors. Multi-Institutional Cooperative Study. Jpn. J. Cancer Chemother.1986,13:1060-1069.
    [9]Dhingra K, Frye D, Newman RA,etc, Phase II clinical and pharmacological study of pirarubicin in combination with 5-fluorouracil and cyclophosphamide in metastatic breast cancer. Clin. Cancer Res.1995,1 (7):691-697.
    [10]Koh E, Ueda Y, Nakamura T, et al. Apoptosis in Young Rats with Adriamycin-Induced Cardiomyopathy-Comparison with Pirarubicin, a New Anthracycline Derivative. Pediatr. Res.,2002,51(2):256-259.
    [11]杨玉龙,宋炳生.新型抗肿瘤药吡柔比星(THP)国内临床应用概况.华西药学杂志.1998,13(3):168-174.
    [12]杨锐,姜洋.吡柔比星联合化疗应用新进展.中国肿瘤临床与康复.2003,10(6):564-566.
    [13]孙剑锋.吡柔比星为主的联合方案在肝癌介入治疗中的临床观察.中国肿瘤临床与康复.2002,9(30):92-93.
    [14]马炬明,江晓肖,陈达伟,等.应用吡柔比星介入治疗中晚期肝癌100例.中国肿瘤临床.1999,26(12):937-938.
    [15]王淑琴,黄赐汀,刘巍,等.吡柔比星为主方案治疗晚期乳腺癌517例的临床研究.中国肿瘤临床.2000,27(6):449-451.
    [16]章海燕.TA方案治疗急性非淋巴细胞白血病的临床疗效.临床和实验医学杂志.2006,5(12):1958-1961.
    [17]李群发,杜欣,黄梓伦,等.吡柔比星联合化疗治疗成人高危或难治复发急性白血病的评价.中华医学杂志.2005,85(17):1195-1200.
    [18]马健,王志红,曹永彬,等.以吡柔比星为主的联合化疗方案治疗急性白血病的疗效观察.白血病·淋巴瘤.2009,18(1):41-43.
    [19]吴伟江,绉伟波,王行环,等.膀胱癌经尿道电切除术后吡柔比星膀胱灌注预防复发临床观察.临床泌尿外科杂志.2007,22(8):612-614.
    [20]田溪泉,邢念增,王勇,等.早期吡柔比星膀胱内灌注预防膀胱癌术后复发.临床泌尿外科杂志.2006,21(1):4-9.
    [21]陈伟光,李梅,李艳薇,等.多西他赛联合吡柔比星的新辅助治疗方案治疗乳腺癌的临床观察.实用医学杂志.2009,25(10):1672-1676.
    [22]秦洪真,李席如,张艳君,等。乳腺癌多西他赛联合吡柔比星新辅助化疗与临床疗效及病理相关性分析。中国癌症杂志。2008,18(1):828-834.
    [23]海健,毛杰,唐利立,等.吡柔比星在Ⅲ期原发性乳腺癌新辅助化疗中的近期效果观察.中国普通外科杂志.2006,15(10):725-728.
    [24]孙跃民,傅军,张伟,等.吡柔比星在体外胃癌细胞温热化疗中协同作用的探讨.中国肿瘤临床.2005,32(18):1045-1050.
    [25]王晓光,傅军,郑航,等.吡柔比星在体外胃癌组织温热化疗中作用的研究.南方医科大学学报.2006,26(10):1487-1493.
    [26]姜镕.大剂量吡柔比星在治疗中晚期肺癌中的应用.中国肿瘤临床与康复.2001,8(3):96-98.
    [27]金花,李明淑.吡柔比星、表阿霉素及阿霉素在联合化疗中的临床对比观察.广东医药.2001,22(10):968-969.
    [28]贾彦焘,贾英杰,赵成,等.吡柔比星联合化疗治疗晚期肿瘤37例临床观察.肿瘤研究与临床.2005,17(1):59-60.
    [29]黄慧强,郝东磊.吡柔比星(THP)心脏毒性的国外研究概况.中国肿瘤与临床.1999,26(8):634-635.
    [30]吕俊,丁念,朱家蔷,等.蒽环类药物心脏毒性及其预防的研究进展.中国医院药学杂志.2008,28(15):1302-1306.
    [31]翟宝娥,史健.参芪扶正注射液对吡柔比星化疗时心脏毒副作用的观察.肿瘤临床与研究.2002,14(4):266-269.
    [32]李苏宜,王丽萍,宋敏.吡柔比星和阿霉素毒副反应的对比观察.肿瘤防治研究.1996,23(6):372-374.
    [33]杨玉龙,宋炳生.新型抗肿瘤药吡柔比星(THP)国内临床应用概况.华西药学杂志.1998,13(3):168-174.
    [34]潘启超.吡柔比星的药理与临床.中国新药杂志.1995,4(6):20-23.
    [35]王方彤,庄镇华.吡柔比星的药理和毒理研究.肿瘤研究与临床.2002,14(6):427-429.
    [36]Favoulet P, Cercueil JP, Fraure P, et al. Increased cytotoxicity and stability of lipiodol-pirarubicn emulsion compared to classical doxorubicin-lipiodol:potential advantage for chemoembolization of unresectable hepatocellular carcinoma. Anti-Cancer Drugs.2001,12:801-806.
    [37]Kawano K, Takayama K, Nagai T, et al. Preparation and pharmacokinetics of pirarubicin loaded dehydration-rehydration vesicles. Int. J. Pharm.2003,252:73-79.
    [38]Bangham AD, Standish MM. Diffusion of univalentions across the lamellae of woollen phospholipids. J. Mol. Biol,1965,13(2):238-252.
    [39]奚念珠,顾学裘等.药剂学.第二版,人民卫生出版社,1992.
    [40]平其能等.现代药剂学.中国医药科技出版社,1998.7.
    [41][日]株式会社医药杂志社编辑部编.安书麟,王宪洪等译.中国医药科技出版社.1992.
    [42]Gregoriadis G, Neerunjun DE. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats:possible therapeutic applications. Eur. J. Biochem.1974.47:179-185.
    [43]陆斌等.药物新剂型与新技术.第二版.人民卫生出版社,2005.
    [44]毕殿洲.药剂学.第四版.人民卫生出版社,1999.
    [45]杨琦华.药物载体的研究进展.中国新药杂志.2002,11(8):593-597。
    [46]朱盛山.药物新剂型.化学工业出版社,2003.
    [47]袁其朋.现代药物制剂技术.化学工业出版社,2005.
    [48]Yamauchi H, Kikuchi H, Sawada M, et al. Selective uptake of liposomes containing lactose mono-fatty-acid derivatives by hepatic parenchymal-cells. J. Microencapsulation.1994,11:179-188.
    [49]Yamauchi H, Kikuchi H, Sawada M, et al. Characterization and tissue distribution of liposomes containing lactose mono-fatty acid-derivatives. J. Microencapsulation. 1994,11:287-296.
    [50]Yachi K, Kikuchi H, Yamauchi H, et al. Distribution of liposomes containing mannobiose esters of fatty-acid in rats. J. Microencapsulation,1995,12:377-388.
    [51]Lasic D, Martin F. Stealth Liposomes. CRC Press, Boca Raton, EL,1995.
    [52]Maruyama K, Okuizumi S, Ishida O, et al. Phosphatidyl Polyglycerols prolong liposome circulation in vivo. J. Pharm.,1994,111:103-107.
    [53]Gideon FA, Kersten D, Crommelin JA. Liposomes and ISCOMs. J.Vaccine,2003, 21:915-920.
    [54]Shimizu K, Maitani Y, Takayama K, et al. Formulation of liposomes with a soybean-derived sterylglucoside mixture and cholesterol for liver targeting. Biol Pharm Bull,1997,20(8):881.
    [55]Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress in Lipid Research,2003,42:463-478.
    [56]Santos ND, Mayer LD, Abraham SA, et al. Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. Biochim. Biophys. Acta. 2002,1561:188-201.
    [57]袁其朋,赵会英,齐宪荣.现代药物制剂技术.化学工业出版社,2005.
    [58]屠锡德,张钧寿,朱家璧.药剂学.第三版,人民卫生出版社,2000.
    [59]朱盛山,梁文权,吕万良.药物新剂型.化学工业出版社,2003.
    [60]Guru PY, Agrawal AK, Singha UK, et al. Drug targeting in Leishmania donovani infections using tuftsin bearing liposome vehicles. FEBS Lett.1989.245:204-208.
    [61]刘亮,晋平.用于药物载体的纳米粒子的研究进展.现代化工.2005,25(S1):106-110.
    [62]张亚臣,吕宝经.纳米药物载体在临床医学中的应用.临床内科杂志.2004,21(7):502-504.
    [63]邓英杰.脂质体技术.北京:人民卫生出版社,2007.
    [64]Frohlich M, Brecht V, Peschka SR. Parameters influencing the determination of liposome lamellarity by 31P-NMR. Chem. Phys. Lipids.2001,109(1):103-112.
    [65]Muller M, Mackeben S, Muller GC. Physicochemical characterization of liposomes with encapsulated local anaesthetics. Int. J. Pharm.2004,274(1-2):139-148.
    [66]Ruozi B, Tosi G, Forni F, et al. Atomic force microscopy and photon correlation spectroscopy:two techniques for rapid characterization of liposomes. Eur.J. Pharm. Sci.2005, 25(1):81-89.
    [67][美]Drug Targeting Technology. Hans Schreier编.应翔宇主译.中国医药科技出版社,2004.
    [68]张阳德编.纳米药物学.第一版.化学工业出版社,2006.
    [69][美]leon Shargel et al.应用生物药剂学与药物动力学.李安良,吴艳芬译.原著第五版.化学工业出版社,2006.
    [70]梁文权主编.生物药剂学与药物动力学.第二版.人民工业出版社,2003.
    [71]王方彤等.吡柔比星的药理和毒理研究.第九届制药工业药理学术交流会.
    [72]郭仁宏,王金万.紫杉醇脂质体的研究进展.中国肿瘤.2008,17(8):698-702.
    [73]Li SD, Huang L. Pharmacokinetics and Biodistribution of Nanoparticles. Mol. Pharm. 2008,5(4):496-504.
    [74]Wei Y, Jasmine T, Dave A, et al. High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int. J. Pharm.2008,361:177-188.
    [75]Kshitij G, Munia G, Santosh P, et al. Nanoparticle formation from poly (acrylic acid) and oppositely charged peptides. Biophys. Chem.2006,119:303-306.
    [76]Anna M, Lipski CJ, Pino FR, et al. The effect of silica nanoparticle-modified surfaces on cell morphology cytoskeletal organization and function. Biomaterials.2008,29:3836-3846.
    [77]Lisa BP, James OB. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv.Rev.2004,56:1649-1659.
    [78]Yolanda D, Miguel J, Victoria S, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials.2007,28:1553-1564.
    [79]许国旺,路鑫,杨胜利.代谢组学研究进展.中国医学科学院学报.2007,29(6):701-711.
    [80]刘昌孝.代谢组学与医药科学研究.中国医学科学院学报.2007,29(6):712-718.
    [81]Shi YY, Zhao HM, Wu CX. Relative binding free energy calculations of DNA to daunomycin and its 13-dihydro analogue. Int. J. Biol. Macromol.1993,15:247-251.
    [82]Goormaghtigh E, Huart P, Brasseur R, et al. Mechanism of inhibition of mitochondrial enzymatic complex Ⅰ-Ⅲ by adriamycin derivatives.spectroscopy. Biochim. Biophys. Acta. 1986,861:83-94.
    [83]Joachim KS, Coats EA, Cordes HP, et al. Drug membrane interaction and the importance for drug transport, distribution, accumulation, efficacy and resistance. Arch. Pharm.1994,327:601-610.
    [84]Raimund M, Kubinyi H, Folkers G Drug-membrane interactions.GmbH, Weinheim, Germany,2002.
    [85]Zhao LY., Feng SS, Kocherginsky N, et al. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane. Int. J. Pharm.2007,338:258-266.
    [86]Constantinides PP, Inouchi N, Tritton TR, et al. A scanning calorimetric study on the interaction of anthracylclines with neutral and acidic phospholipids alone and in binary mixtures. J.Biol. Chem.1986,22:10196-10203.
    [87]Barcelo F, Escriba PV, Miralles F. A scanning calorimetric study of natural and DNA antitumor anthracycline antibiotic-DNA complexes. Chem-Biol. Interact.1990,74:315-324.
    [88]Seto GWT, Marwaha S, Kobewka DM, et al. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculation 1.1 with lipid model membranes:Differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Biochim. Biophys. Acta.2007,1768:2787-2800.
    [89]Toyran N, Severcan F. Interaction between vitamin D2 and magnesium in liposomes: differential scanning calorimetry and FTIR spectroscopy studies. J. Mol. Struct.2007,839: 19-27.
    [90]Heywang C, Chazalet MSP, Masson M, et al. Incorporation of exogenous molecules inside mono-and bilayers of phospholipids:influence of the mode of preparation revealed by SERRS and surface pressure studies. Langmuir.1996,12:6459-6467.
    [91]Bensikaddour H, Snoussi K, Lins L, et al. Interactions of ciprofloxacin with DPPC and DPPG:Fluorescence anisotropy, ATR-FTIR and 31P NMR spectroscopies and conformational analysis. Biochim. Biophys. Acta.2008,1778:2535-2543.
    [92]Lohner K, Prenner EJ. Differential scanning calorimetric and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim.Biophys.Acta.1999,1462:141-156.
    [93]Zhang YP, Lewis RN, Hodges RS, et al. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers:differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Biophys. J.1995,68:847-857.
    [94]Inoue T, Nibu Y. Miscibility of binary phospholipids mixtures under hydrated and non-hydrated conditions. Ⅳ. phosphatidylglycerols with different acyl chain length. Chem. Phys. Lipids.1995,76:181-191.
    [95]Inoue T, Kitahashi T, Nibu Y. Phase behavior of hydrated bilayer of binary phospholipids mixtures composed of 1,2-distearoylphosphatidylcholine and 1-stearoyl-2-oleoylphosphatidylcholine or 1-oleoyl-2-stearoylphosphatidylcholine. Chem. Phys. Lipids.1999,99:103-109.
    [96]Gardisks K, Hatziantoniou S, Viras K, et al. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int. J. Pharm.2006, 318:118-123.
    [97]Klajnert B, Janiszewska J, Urbanczyk LZ, et al. DSC studies on interactions between low molecular mass peptide dendrimers and model lipid membranes. Int. J. Pharm.2006,327: 145-152.
    [98]Mantsch HH, McElhaney RN. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem. Phys. Lipids.1991,57:213-226.
    [99]Ali S, Minchey S, Janoff A, et al. A different scanning calorimetry study of phosphocholines mixed with paclitaxel and its bromoacylated taxanes. Biophys. J.2000,78: 246-256.
    [100]Cong WJ, Liu QF, Luo GA, et al., Investigation on the Interactions between Pirarubicin and Phospholipids. Biophys. Chemistry.2009,143:154-160.
    [101]Lewis RNAH, McElhaney RN. FTIR spectroscopy in the study of hydrated lipids and lipid bilayer membranes, in:H.H. Mantsch, D.Chapman (Eds.), Infrared Spectroscopy of Biomolecules, John Wiley & Sons, New York,1996, pp.159-202.
    [102]Lewis RNAH, McElhaney RN. Vibrational spectroscopy of lipids, in:J.M. Chalmers, P.R. Griffith (Ed.), Handbook of Vibrational Spectroscopy, vol.5, John Wiley and Sons, Chichester, England,2002, pp.3447-3464.
    [103]Jackson M, Mantsch HH. Biomembrane structure from FT-IR spectroscopy. Spectrochim. Acta.1993,15:53-69.
    [104]Blume A, Huebner W, Messner G Fourier transform infrared spectroscopy of 13C:O labled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 1988,27: 8239-8249.
    [105]Lewis RNAH, Zhang YP, McElhaney RN. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol. Biochim. Biophys. Acta.2005,1668:203-214.
    [106]Fernandez JCG, Villalain J. The use of FT-IR for quantitative studies of the apparent pKa of lipid carboxyl groups and the dehydration degree of the phosphate group of phospholipids. Chem. Phys. Lipids.1998,96:41-52.
    [107]Lewis RNAH, McElhaney RN. The structure and organization of phospholipid bilayers as revealed by infrared spectroscopy. Chem. Phys. Lipids.1998,96:9-21.
    [108]Vries AHD, Mark AE, Marrink SJ. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Am. Chem. Soc.2004,126: 4488-4489.
    [109]Mrzkov E, Hobza P, Bohl M, et al. Hydration-induced changes of structures and vibrational frequencies of methylphosphocholine studied as a model of biomembrane lipids. J. Phys. Chem. B.2005,109:15126-15134.
    [110]Sabio M, Topiol S. A computational study of a host-guest complex. J. Mol. Recognit. 1997,10:159-168.
    [111]Rocha GB, Freire RO, Costa NBD, et al. Sparkle model for AM1 calculation of lanthanide complexes:improved parameters for Europium. Inorg. Chem.2004,43: 2346-2354.
    [112]Mashl RJ, Scott HL, Subranmaniam S, et al. Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration. Biophys J,2001, 81:3005-3015.
    [113]Kozlovsky Y, Chernomordik LV, Kozlov MM. Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphgram. Biophys J.2002,83:2634-2651.
    [114]Rog T, Pasenkiewicz GM. Effects of epicholesterol on the phosphatidylcholine bilayer: a molecular simulation study. Biophys J,2003,84:1818-1826.
    [115]Vanderkooi G Multibilayer structure of dimyristrophosphatidylcholine dehydrate as determined by energy minimization. Biochemistry.1991,30:10760-10768.
    [116]Li W, Lagowski JB. Ab initial study of phospholipid headgroups:GPE and GPC. Chem Phys Lipids.1999,103:137-160.
    [117]杨建荣,陶志华.反相高效液相色谱法测定血浆、尿液中吡柔比星含量.中国临床药学杂志.2001,2(10):102-104.
    [118]张琰,程建峰,张新安,等.高效液相色谱法检测吡柔比星的血药浓度.中国抗生素杂志,2000,5(25):356-358.
    [119]叶敏,朱珠,付强,等.人血浆中吡柔比星HPLC测定法及其在药动学研究中的应用.中国药学杂志,2007,10(42):773-776.
    [120]Kaplun YF, Touitou E. Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids. J. Pharm. Sci.1997,86: 1394-1399.
    [121]Qin J, Chen DW, Lu WG, et al. Preparation, characterization and evaluation of liposomal ferulic acid in vitro and in vivo. Drug Dev. Ind. Pharm.2008,34:602-608.
    [122]Dayan N, Touitou, E. Carriers for skin delivery of trihexyphenidyl HCl:ethosomes vs. liposomes. Biomaterials.2000,21:1879-1885.
    [123]Iguchi H, Tone H, Ishikura T, et al. Pharmacokinetics and disposition of 4'-o-tetrahydropyranyladriamycin in mice by HPLC analysis. Cancer. Chemother. Pharmacol. 1985,15:132-140.
    [124]Jahn A, Vreeland WN, DeVoe DL, et al. Microfludic directed formation of liposomes of controlled size. Langmuir.2007,23:6289-6293.
    [125]Medigene AG Preparation unilamellar liposomes from suspension/solution in single-pass mode using high pressure homogenization for encapsulation of hydrophobic drugs e.g. paclitaxel, comprises extruding suspension/solution through porous device.2008. EP1920765-A1.
    [126]Li C, Deng Y. A novel method for the preparation of liposomes:freeze drying of monophase solutions. J. Pharm. Sci.2004,93:1403-1414.
    [127]Rodriguez RB, Xamani SM. Liposomes prepared by high-pressure homogenizers. Methods Enzymol.2003,367:28-46.
    [128]Taylor TM, Davidson PM, Bruce BD, et al. Liposomal nanocapsules in food science and agriculture. Crit. Rev. Food Sci. Nutr.2005,45:587-605.
    [129]Hua ZZ, Li BG, Liu ZJ, et al. Freeze-drying of liposomes with cryoprotectants and its effect on retention rate of encapsulated ftorafur and vitamin A. Drying Technology,2003,21(8):1493-1507.
    [130]Lo YL, Tsai JC, Kuo JH. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J. Control. Release 2004,94:259-272.
    [131]Chone S, Tauchi Y, Morimoto K. Influence of particle size on the distribution of liposomes to atherosclerotic lesions in mice. Drug Dev. Ind. Pharm.2006,32:125-135.
    [132]Du S, Deng Y. Studies on the encapsulation of oxymatrine into liposomes by ethanol injection and pH gradient method. Drug Dev. Ind. Pharm.2006,32:791-797.
    [133]Dadashzadeh S, Vali AM, Rezaie M. The effect of PEG coating on in vitro cytotoxicity and in vivo disposition of topotecan loaded liposomes in rats. Int. J. Pharm.2008,353: 251-259.
    [134]Gabizon A, Isacson R, Rosengarten O, et al. An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer. Chemother. Pharmacol.2008,61:695-702.
    [135]Gary T, Jain S, Singh HP, et al. Elastic liposomal formulation for sustained delivery of antimigraine drug:In vitro characterization and biological evaluation. Drug Dev. Ind. Pharm. 2008,34:1100-1110.
    [136]Maurer N, Fenske DB, Cullis PR. Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther.2001,1:923-947.
    [137]Tardi PG, Gallagher RC, Johnstone S, et al. Coencapsulation of irinotecan and floxuridine into low cholesterol-containg liposomes that coordinate drug release in vivo. Biochim. Biophys. Acta-Biomembr.2007,1768:678-687.
    [138]Li X, Ding L, Xu Y, et al. Targeted delivery of doxorubicin using stealth liposomes modified with transferring. Int. J. Pharm.2009,373:116-123.
    [139]Shimizu K, Qi, XR, Maitani Y, et al. Targeting of soybean-derived sterylglucoside liposomes to liver tumors in rat and mouse models. Biol. Pharm. Bull.1998,21:741-746.
    [140]Zhao L, Wei YM, Zhong XD, et al. PK and tissue distribution of docetaxel in rabbits after i.v. administration of liposomal and injectable formulations. J. Pharm. Biomed. Anal. 2009,49:989-996.
    [141]朱坤潮,夏爱丽,李秀萍.多西他赛联合吡柔比星治疗19例晚期乳腺癌.肿瘤学杂志.2007,3(13):253-253.
    [142]Mordente A, Meucci E, Silvestrini A, et al. New developments in anthracycline-induced cardiotoxicity. Curr Med Chem.2009,16:1656-1672.
    [143]Niitsu N, Yamazaki J, Nakayama M, et al. Pirarubicin-induced myocardial damage in elderly patients with non-Hodgkin's lymphoma. Nippon Ronen Igakkai Zasshi,1998,35: 358-362.
    [144]Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines:molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev,2004, 56:185-229.
    [145]左亚刚,乔占英,高雪山,等。血清学标志物对急性心肌梗死的诊断价值。河北医药。1998,20(3):159-161。
    [146]Andrew NL, Teresa WMF, Richard M, et al. Prospects for clinical cancer metabolomics using stable isotope tracers. Exp. Mol. Patho.2009, in press
    [147]Jeffrey RI, Gonzalez FJ. Metabolomics. Cell Metabolism.2007,6:348-351.
    [148]Douglas BK. Metabolomics:The new science of metabolic integration. J. Mol. and Cell. Cardiol.2006,40:920-1015.
    [149]Ravenzwaay BV, Cunha G, Coelho PE, et al. The use of metabolomics for the discovery of new biomarkers of effect. Toxicology Letters,2007,172:21-28.
    [150]李灏,姜颖,贺福初.代谢组学技术及其在临床研究中的应用.遗传.2008,30(4):389-399.
    [151]洪静,陈金联.代谢组学分析技术及其在消化道肿瘤中的应用进展.世界华人消化杂志.2008,16(1):68-75.
    [152]Erkki JK. Linking medicine to metabolomics and proteomics. Eur. J. Pharm. Sci.2008, 34S:7-24.
    [153]王伟,李琳琳.代谢组学在药物作用机制研究及疾病诊断中的应用.新疆医科大学学报.2007,30(12):1436-1437.
    [154]Douglas BK. Systems biology, metabolic modelling and metabolomica in drug dicovery and development.Drug Discov.Today.2006, 11(23-24):1085-1092.
    [155]Lie FS, Yang NS. Metabolomics for phytomedicine research and drug development.Curr. Opin. Chem. Biol.2008,12:66-71.
    [156]Christopher G, Olga T, Wolfram P, et al. New approaches to toxicologic mechanisms by the application of genomics, proteomics and metabolomics. Abstracts Toxicol. Lett.2006, 164S:S1-24.
    [157]Wolfram W, Katja M. Metabolomics:from pattern recognition to biological interpretation. Drug Discov.Today.2005,10(22):1551-1558.
    [158]刘昌孝.代谢组学的发展与药物研究开发.天津药学.2005,17(2):1-6.
    [159]白景清,程翼宇.代谢组学及其在新药毒理研究中的应用.中国药学杂志.2005,40(21):1201-1204.
    [160]Keun HC, Ebbels TMD, Bollard ME, et al. Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles. Chem. Res. Toxicol.2004,17(5): 579-587.
    [161]Craig A, Sidaway J, Holmes E, et al. Systems toxicology:integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res.2006,5(7):1586-1601.
    [162]Waters NJ, Holmes E, Waterfield CJ, et al. NMR and pattern recognition studies on liver extracts and intact livers from rats treated with alpha-naphthylisothiocyanate. Biochem. Pharmacol.2002,64 (1):67-77.
    [163]Philippe AG, Isabelle T, Stephen JB, et al. Global metabolic profiling analysis on human urine by UPLC-TOFMS:Issues and method validation in nutritional metabolomics. J. Chromatogr. B.2008,871:253-260.
    [164]Guo LU, WANG JS, ZHAO XJ, et al. Study on Gender Difference Based on Metabolites in Urine by Ultra High Performance Liquid Chromatography/Time of Flight Mass Spectrometry. Chin. J. Chromatogr.2006,24(2):109-113.
    [165]Lindon JC, Nicholson JK. Analytical technologies for metabonomics and metabolomics, and multi-omics information recovery.Trends in Analytical Chemistry.2008,27(3):194-204
    [166]张洁,严丽娟,林琳,等.基于UPLC-oa TOF-MS的糖尿病及糖尿病肾病的代谢组学研究.高等学校化学学报.2008,29(11):2171-2173.
    [167]Payne TG, Southam AD, Arvanitis TN, et al. A Signal Filtering Method for Improved Quantification and Noise Discrimination in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabolomics Data. J. AM. Soc. Mass Spectrom. in press
    [168]Davis RA, Charlton AJ, Godward J, et al. Adaptive binning:An improved binning method for metabolomics data using the undecimated wavelet transform. Chem. Intel. Lab. Sys.2007,85:144-154.
    [169]Lommen A, Weg GVD, Engelen MCV, et al. An untargeted metabolomics approach to contaminant analysis:Pinpointing potential unknown compounds. Analytica Chimica Acta, 2007,584:43-49.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.