基于非线性光纤的慢光可调谐延迟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信的迅猛发展,对通信带宽的需求也越来越大,全光通信的发展势在必行。慢光技术由于其可控光速的能力和在全光通信中的应用受到人们的广泛关注。在各种慢光系统中,光纤慢光的科学研究是近期慢光研究的热点,而利用光纤受激布里渊散射(SBS:Stimulated Brillouin scattering)效应实现慢光是慢光走向实际应用的关键。非线性光纤由于具有极强的非线性特性,在受激布里渊散射等方面具有优异的表现。研究基于非线性光纤的受激布里渊散射慢光可调谐延迟,具有十分重要的意义。
     本文首先概述了光纤中慢光技术的研究现状。基于对自行研制的掺杂纳米微粒InP新型非线性光纤的分析,总结基于非线性光纤的受激布里渊散射慢光的特点。对掺杂纳米InP微粒的新型光纤进行数值计算,得出在布里渊增益G约为15时得到一个约为738ps的慢光延迟。同时计算相同条件下普通单模光纤中的慢光,比较得出非线性光纤能在较短的距离产生了光纤内泵浦能量的转移并产生慢光延迟。
     基于以上分析,搭建实验系统测量非线性光纤、单模光纤以及光子晶体光纤的慢光参数,测得1km的非线性光纤的布里渊阈值为17.8dBm/60mw,布里渊频移为13.3GHz;布里渊增益谱宽为65MHz,较一般单模光纤的增益谱宽要宽(36MHz),且增益谱相对稳定;非线性光纤的布里渊单位最大峰值功率为0.032mw/km,大于单模光纤中的值。
     通过搭建不同的慢光实验系统实验,比较分析泵浦光和信号光匹配方法,并最终利用手动匹配法,根据已经测量得出的非线性光纤的慢光参数值,在非线性光纤中进行慢光实验,在输入信号为1555.8174nm时,得到脉冲为140ns的信号最大延迟为8ns,比输入为1555.8162nm和1555.8184nm时延迟增加了6ns和4ns;延迟随着泵浦功率的增加而增大,输入泵浦功率为18.5dBm时的延迟比输入为17.8dBm时增加了4ns左右。
     通过以上分析实验得出,由于纤芯较强的模场限制作用和光纤非均匀性的提高,非线性光纤中的布里渊效应及慢光效应会增强;同时非线性光纤中的布里渊增益谱宽也较大,有效增加了SBS慢光的有效谱宽范围,且较稳定的增益谱也较利于光纤中慢光的实现。
     文章最后讨论非线性光纤中受激布里渊散射慢光的脉冲畸变和信号失真,研究拓宽布里渊增益谱减小传输失真的方法,为课题的进一步研究指明了方向,并且为非线性光纤中慢光技术走向实际应用奠定了基础。
With the exponential growth of communication requirement and the fast development of Optical Fiber Communication, Slow light draws a great of interests. Especially, slow light based on Stimulated Brillouin scattering (SBS) shows possibility to achieve the practical application. Nonlinear fiber has excellent performance in SBS for its high nonlinearity, and it has great significance to research the SBS slow light based on the nonlinear fiber.
     First of all, Based on the optical fiber doped with nano-material InP, the characteristics of SBS slow light in this nonlinear fiber are concluded. Calculate the SBS model in this fiber, a considerable time delay of-738ps is obtained, which shows much strong SBS process and energy diversion in shorter length than single mode fiber under the same conditions.
     Based on the analyze mentioned above, experimental systems are set up to measure the slow light parameter. The results shows the Brillouin threshold of 1km nonlinear fiber is 17.8dBm/60mw. The Brillouin gain spectrum width is 65MHz, which is more wider and stable than that in single mode fiber(36MHz). The measured unit Brillouin maximum peak power(0.032mw/km) is greater than the value of single-mode fiber.
     By setting up three different experimental systems to compare and analyze the performance of pump light and signal light matching, the manual matching method is finally chosen into the SBS slow light system based on the nonlinear fiber. when the input signal pulse is 1555.8174nm(140ns), a maximum time delay of 8ns is obtained. With fixed wavelength, the signal delay increases with increasing pump power, compared with the delay under input 17.8dBm, the value is about 4ns more under 18.5dBm input.
     Based on the research above, a conclusion is achieved, that due to the strong restrictive effect of the fiber mode field and the higher non-uniformity, the slow light in nonlinear fiber is enhanced. Meanwhile, the Brillouin gain spectrum width is expanded, which leads a wider range of effective slow light. Moreover, the more stable gain spectra is conducive for the realization.
     Finally, the signal distortion and pulse aberrance are discussed. Then research broadening Brillouin gain spectrum methods to reduce the transmission distortion, which leads a way for continuous research in this project, moreover, establishes the foundation for the practical application of the slow light based on nonlinear optical fiber.
引文
[1]L. Hau, S. Harris, Z. Dutton, et al. Light Speed Reduction to 17 Metres Per Second in an Ultracold Atomic Gas. Nature.1999,397(6720):594-598
    [2]R. Rajiv, K. Sivarajan. Optical Networks:A Practical Perspective,1998
    [3]R. Boyd, D. Gauthier." Slow" And" Fast" Light. Progress in Optics.2002,43:497-530
    [4]H. Lorentz. The Theory of Electrons (1909),1952
    [5]S. Lin, K. Hsu, P. Yeh. Experimental Observation of the Slowdown of Optical Beams by a Volume-index Grating in a Photorefractive Linbo 3 Crystal. Optics Letters.2000, 25(21):1582-1584
    [6]M. Bigelow, N. Lepeshkin, R. Boyd. Superluminal and Slow Light Propagation in a Room-temperature Solid. Science.2003,301(5630):200
    [7]H. Su, S. Chuang. Room-temperature Slow Light with Semiconductor Quantum-dot Devices. Optics letters.2006,31(2):271-273
    [8]R. Camacho, M. Pack, J. Howell, et al. Wide-bandwidth, Tunable, Multiple-pulse-width Optical Delays Using Slow Light in Cesium Vapor.Physical review letters.2007,98(15):153601
    [9]K. Song, M. Herraez, L. Thevenaz. Observation of Pulse Delaying and Advancement 'in Optical Fibers Using Stimulated Brillouin Scattering. Optics Express.2005, 13(1):82-88
    [10]Y. Okawachi, M. Bigelow, J. Sharping, et al. Tunable All-optical Delays via Brillouin Slow Light in an Optical Fiber. Physical review letters.2005,94(15):153902
    [11]Z. Zhu, D. J. Gauthier, R. W. Boyd. Stored Light in an Optical Fiber via Stimulated Brillouin Scattering. Science.2007,318(5857):1748
    [12]A. Zadok, O. Raz, A. Eyal, et al. Optcially Controlled Los-Distortion Delay of GHZ-Wide Radio-Frequency Signals Using Slow Light in Fibers. IEEE Photonics Technology Letters.2007,19(5/8):462.
    [13]C. J. Summers, E. Graugnard, D. P. Gaillot. Tuning of Photonic Crystal Band Properties by Atomic Layer Deposition. Journal of Nonlinear Optical Physics & Materials.2008,17(1):1-14.
    [14]T. Schneider, M. Junker, K. Lauterbach. Potential Ultra Wide Slow-light Bandwidth Enhancement. Optics Express.2006,14(23):11082-11087
    [15]Z. Zhu, A. Dawes, D. Gauthier, et al. Broadband Sbs Slow Light in an Optical Fiber. Journal of Lightwave Technology.2007,25(1):201-206
    [16]T. Schneider, R. Henker, K. Lauterbach, et al. Comparison of Delay Enhancement Mechanisms for Sbs-based Slow Light Systems. Optics Express.2007, 15(15):9606-9613
    [17]A. Zadok, A. Eyal, M. Tur. Extended Delay of Broadband Signals in Stimulated Brillouin Scattering Slow Light Using Synthesized Pump Chirp. Optics Express.2006, 14(19):8498-8505
    [18]E. Shumakher, N. Orbach, A. Nevet, et al. On the Balance between Delay, Bandwidth and Signal Distortion in Slow Light Systems Based on Stimulated Brillouin Scattering in Optical Fibers. Optics Express.2006,14(13):5877-5884
    [19]J. Sharping, Y. Okawachi, A. Gaeta. Wide Bandwidth Slow Light Using a Raman Fiber Amplier. Nature.2003,425:695-698
    [20]Y. Okawachi, M. Foster, J. Sharping, et al. All-optical Slow-light on a Photonic Chip. Optics Express.2006,14(6):2317-2322
    [21]Y. Wang, C. Yu, L. Yan, et al.44-ns Continuously Tunable Dispersionless Optical Delay Element Using a Ppln Waveguide with Two-pump Congu-ration, Dcf, and a Dispersion Compensator. IEEE Photonics Technology Letters.2007,19(9/12):861
    [22]J. Mok, C. De Sterke, I. Littler, et al. Dispersionless Slow Light Using Gap Solitons. Nature Physics.2006,2(11):775
    [23]J. Heebner, R. Boyd. Slow'andfast'light in Resonator-coupled Waveguides.journal of modern optics.2002,49(14/15):2629-2636
    [24]Z. Zhu, D. Gauthier. Nearly Transparent Sbs Slow Light in an Optical Fiber. Optics Express.2006,14(16):7238-7245
    [25]J. Mok, B. Eggleton. Expect more Delays. Nature.2005,433(7028):811-812
    [26]M. Gonzalez-Herraez, K. Song, L. Thevenaz. Optically Controlled Slow and Fast Light in Optical Fibers Using Stimulated Brillouin Scattering.Applied Physics Letters. 2005,87:081113
    [27]D. Dahan, G Eisenstein. Tunable all Optical Delay via Slow and Fast Light Propagation in a Raman Assisted Fiber Optical Parametric Amplifier:A Route to all Optical Buffering. Optics Express.2005,13(16):6234-6249
    [28]Y. Wang, W. Zhang, Y. Huang, et al. SBS Slow Light in High Nonlinearity Photonic Crystal Fiber. National Fiber Optic Engineers Conference.2007
    [29]R. Pattnaik, S. Texier, J. Toulouse, et al. Characteristic Features of Stimulated Brillouin Scattering in a Holey Fiber. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference.2003
    [1]R. Chiao, C. Townes, B. Stoicheff. Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves. Physical Review Letters.1964, 12(21):592-595
    [2]E. Garmire, C. Townes. Stimulated Brillouin Scattering in Liquids1. Applied Physics Letters.1964,5:84-86
    [3]A. Newell, J. Moloney. Nonlinear Optics. Addison-Wesley,1992
    [4]R. Harrison, D. Yu, E. As. Stimulated Brillouin Scattering. Chapter 0.1, R. Pike and P. Sabatier, eds., Scattering:Scattering and Inverse Scattering in Pure and Applied Science.2001:1-11
    [5]L. Thevenaz. Slow and Fast Light in Optical Fibres. Nature Photonics.2008, 2(8):474-481
    [6]J. Jackson, R. Fox. Classical Electrodynamics. American Journal of Physics.1999, 67:841
    [7]Y. Tanaka, K. Hotate. Analysis of Fiber Brillouin Ring Laser Composed Of single-polarization Single-mode Fiber. Lightwave Technology, Journal of.1997, 15(5):838-844
    [8]A. Chraplyvy, et al. Limitations on Lightwave Communications Imposed by Opticalfiber Nonlinearities. Journal of Lightwave Technology.1990, 8(10):1548-1557
    [9]C. Ni, A. Kung. Effective Suppression of Ampliˉed Spontaneous Emission by Stimulated Brillouin Scattering Phase Conjugation. Optics Letters.1996, 21 (20):1673-1675
    [10]R. Smith. Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering. Applied Optics.1972, 11(11):2489-2494
    [11]M. Van Deventer, A. Boot. Polarization Properties of Stimulated Brillouin Scattering Insingle-mode Fibers. Lightwave Technology, Journal of.1994,12(4):585-590
    [12]A. Yeniay, J. Delavaux, J. Toulouse. Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers. Journal of Lightwave Technology.2002, 20(8):1425
    [13]K. Hill, D. Johnson, B. Kawasaki. E±cient Conversion of Light Over a Wide Spectral Range by Four-photon Mixing in a Multimode Graded-index Fiber. Applied Optics.1981,20(6):1075-1079
    [14]P. Thomas, N. Rowell, H. Van Driel, et al. Normal Acoustic Modes and Brillouin Scattering in Single-mode Optical Fibers. Physical Review B.1979, 19(10):4986-4998
    [15]R. Tkach, A. Chraplyvy, R. Derosier. Spontaneous Brillouin Scattering for Single-mode Opticalfibre Characterisation. Electronics Letters.1986,22:1011
    [16]W. Kaiser, M. Maier. Stimulated Rayleigh, Brillouin and Raman Spectroscopy. Laser Handbook.1972,2:1078
    [17]L. Guan, R. Zhang. Research on the Amplification Performance of Nano-materials Doped Fiber. Board of Optronics Lasers.2006,17:137
    [18]X. Chen, L. Lee, R. Zhang. A Novel Optical Fibre Doped with the Nano-material as Inp. Proceedings of SPIE.2007,6781:678128
    [19]J. Kutz, C. Hile, W. Kath, et al. Pulse Propagation in Nonlinear Optical Fiber Lines That Employ Phase-sensitive Parametric Amplifiers. J. Opt. Soc. Am. B.1994, 11:2112-2123
    [20]P. Dainese, P. Russell, N. Joly, et al. Stimulated Brillouin Scattering from Multi-ghz-guided Acoustic Phonons in Nanostructured Photonic Crystal Fibres. Nature Physics.2006,2(6):388
    [1]J. Cooley, J. Tukey. An Algorithm for the Machine Computation of Complex Fourier Series. Mathematics of computation.1965,19(90):297-301
    [2]P. Fox, M. Raichle. Stimulus Rate Determines Regional Brain Blood Flow in Striate Cortex. Annals of Neurology.1985,17(3):303-305
    [3]A. Hasegawa, F. Tappert. Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. Ii. Normal Dispersion. Applied Physics Letters.1973, 23:171
    [4]R. Hardin, F. Tappert. Applications of the Split-step Fourier Method to the Numerical Solution of Nonlinear and Variable Coeffcient Wave Equations. Siam Rev. 1973,15(423):0-021
    [5]D. Yevick, B. Hermansson. Soliton Analysis with the Propagating Beam Method. Optics Communications.1983,47(2):101-106
    [6]G Agrawal. Nonlinear Fibre Optics. San Diego, CA:Academic.1995
    [7]L. Torner, C. Menyuk, G.Stegeman.Bright Solitons with Second-order Nonlinearities. J. Opt. Soc. Am. B.1995,12:889-897
    [8]M. Feit, J. Fleck, Jr. Beam Nonparaxiality, Filament Formation, and Beam Breakup in the Self-focusing of Optical Beams. Journal of the Optical Society of America B. 1988,5(3):633-640
    [9]A. KHOMENKO, V. VICENCIO, L. JAVIER, et al. Beam Propagation in Cu+-na+ Ion Exchange Channel Waveguides. Revista Mexicana de Fisica.2009,47(003)
    [10]Z. Zhu, D. Gauthier, Y. Okawachi, et al. Numerical Study of All-optical Slow-light Delays via Stimulated Brillouin Scattering in an Optical Fiber. Journal of the Optical Society of America B.2005,22(11):2378-2384
    [11]F. Buchthal, C. Guld, P. Rosenfalck. Propagation Velocity in Electrically Activated Muscle Fibers in Man. Acta Physiol Scand.1955,34(1):75-89
    [1]E. Ippen, R. Stolen. Stimulated Brillouin Scattering in Optical Fibers. Applied Physics Letters.1972,21:539
    [2]R. Smith. Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering. Applied Optics.1972, 11(11):2489-2494
    [3]C. Lee, S. Chi. Measurement of Stimulated-brillouin-scattering Threshold Forvarious Types of Fibers Using Brillouin Optical-time-domainreflectometer. IEEE Photonics Technology Letters.2000,12(6):672-674
    [4]J. McElhenny, R. Pattnaik, J. Toulouse, et al. Unique Characteristic Features of Stimulated Brillouin Scattering in Small-core Photonic Crystal Fibers. Journal of the Optical Society of America B.2008,25(4):582-593
    [5]A. Yeniay, J. Delavaux, J. Toulouse. Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers. Journal of Lightwave Technology.2002, 20(8):1425
    [6]M. Nikles, L. Thevenaz, P. Robert. Brillouin Gain Spectrum Characterization in Single-mode Opticalbers. Lightwave Technology, Journal of.1997, 15(10):1842-1851
    [7]K. Hotate, T. Hasegawa. Measurement of Brillouin Gain Spectrum Distribution Along an Optical Fiber Using a Correlation-based Technique-proposal, Experiment and Simulation. IEICE TRANSACTIONS ON ELECTRONICS E SERIES C.2000, 83(3):405-412
    [8]Y. Koyamada, S. Sato, S. Nakamura, et al. Simulating and Designing Brillouin Gain Spectrum in Single-mode Fibers. Journal of Lightwave Technology.2004,22(2):631
    [9]A. Loayssa, R. Hernandez, D. Benito, et al. Characterization of Stimulated Brillouin Scattering Spectra by Use of Optical Single-sideband Modulation. Optics letters. 2004,29(6):638-640
    [10]X. Mao, R. Tkach, A. Chraplyvy, et al. Stimulated Brillouin Threshold Dependence on Fiber Type Anduniformity. IEEE Photonics Technology Letters.1992,4(1):66-69
    [11]J. Hansryd, F. Dross, M. Westlund, et al. Increase of the Sbs Threshold in a Short Highly Nonlinear Fiber by Applying a Temperature Distribution. Journal of Lightwave Technology.2001,19(11):1691
    [12]J. Lee, T. Tanemura, K. Kikuchi, et al. Experimental Comparison of a Kerr Nonlinearity Figure of Merit Including the Stimulated Brillouin Scattering Threshold for State-of-the-art Nonlinear Optical Fibers. Optics letters.2005,30(13):1698-1700
    [13]S. Le Floch, P. Cambon. Theoretical Evaluation of the Brillouin Threshold and the Steady-state Brillouin Equations in Standard Single-mode Optical Fibers. Journal of the Optical Society of America A.2003,20(6):1132-1137
    [14]R. Boyd, B. Masters. Nonlinear Optics. Journal of Biomedical Optics.2009, 14:029902
    [15]L. Zou, X. Bao, L. Chen. Brillouin Scattering Spectrum in Photonic Crystal Fiber with a Partially Germanium-doped Core. Optics letters.2003,28(21):2022-2024
    [1]M. Gonzalez-Herraez, K. Song, L. Thevenaz. Optically Controlled Slow and Fast Light in Optical Fibers Using Stimulated Brillouin Scattering. Applied Physics Letters.2005,87:081113
    [2]K. Song, M. Herraez, L. Thevenaz. Observation of Pulse Delaying and Advancement in Optical Fibers Using Stimulated Brillouin Scattering. Optics Express.2005, 13(1):82-88
    [3]Y. Okawachi, M. Bigelow, J. Sharping, et al. Tunable All-optical Delays via Brillouin Slow Light in an Optical Fiber. Physical review letters.2005, 94(15):153902
    [4]D. Dahan, G Eisenstein. Tunable all Optical Delay via Slow and Fast Light Propagation in a Raman Assisted Fiber Optical Parametric Amplifier:A Route to all Optical Buffering. Optics Express.2005,13(16):6234-6249
    [5]Y. Wang, W. Zhang, Y. Huang, et al. SBS Slow Light in High Nonlinearity Photonic Crystal Fiber. National Fiber Optic Engineers Conference.2007
    [6]C. Montes, D. Bahloul, I. Bongrand, et al. Self-pulsing and Dynamic Bistability in Cw-pumped Brillouin Fiber Ring Lasers. J. Opt. Soc. Am. B.1999,16:932-951
    [7]A. Gaeta, R. Boyd. Stimulated Brillouin Scattering in the Presence of External Feedback. Journal of Nonlinear Optical Physics and Materials.1992,1:581-594
    [8]L. F. Stokes, M. Chodorow, H. J. Shaw. All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold. Optics Letters.1982,7(10):509-511
    [9]Z. Zhu, M. Dawes, D. Gauthier. Slow Light via Stimulated Brillouin Scattering in Optical Fibers. LEOS Summer Topical Meetings,2006 Digest of the.2006:38-39
    [10]Z. Zhu, A. Dawes, D. Gauthier, et al. Broadband Sbs Slow Light in an Optical Fiber. Journal of Lightwave Technology.2007,25(1):201-206
    [11]M. Gonzalez Herraez, K. Song, L. Thevenaz. Arbitrary-bandwidth Brillouin Slow Light in Optical Fibers. Optics express.2006,14(4):1395-1400
    [12]M. Stenner, M. Neifeld, Z. Zhu, et al. Distortion Management in Slow-light Pulse Delay. Quantum Electron.2001,37:525-532
    [13]L. Poyneer, B. Macintosh. Spatially Filtered Wave-front Sensor for High-order Adaptive Optics. Journal of the Optical Society of America A.2004,21(5):810-819
    [14]V. Kovalev, R. Harrison. Waveguide-induced Inhomogeneous Spectral Broadening of Stimulated Brillouin Scattering in Optical Fiber.spectrum.9:10
    [15]Z. Zhu, D. Gauthier. Nearly Transparent Sbs Slow Light in an Optical Fiber. Optics Express.2006,14(16):7238-7245
    [16]T. Schneider, R. Henker, K. Lauterbach, et al. Comparison of Delay Enhancement Mechanisms for Sbs-based Slow Light Systems. Optics Express.2007, 15(15):9606-9613
    [17]L. Yi, L. Zhan, W. Hu, et al. Delay of Broadband Signals Using Slow Light in Stimulated Brillouin Scattering with Phase-modulated Pump. IEEE Photonics Technology Letters.2007,19(8):619-621
    [18]A. Cheng, M. Fok, C. Shu. Wideband Sbs Slow Light in a Single Mode Fiber Using a Phase-modulated Pump. Quantum Electronics and Laser Science Conference,2007. QELS'07.2007:1-2
    [19]Z. Zhu, A. Dawes, D. Gauthier, et al. Broadband Sbs Slow Light in an Optical Fiber. Journal of Lightwave Technology.2007,25(1):201-206
    [20]S. Chang, S. Gray, G. Schatz. Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films. Optics Express. 2005,13(8):3150-3165
    [21]T. Schneider, M. Junker, K. Lauterbach. Time Delay Enhancement in Stimulated-brillouin-scattering-based Slow-light Systems. Optics letters.2007, 32(3):220-222
    [22]S. Chin, M. Gonzalez-Herraez, L. Thevenaz. Zero-gain Slow & Fast Light Propagation in an Optical Fiber. Optics Express.2006,14(22):10684-10692
    [23]K. Hotate. SBS Slow Light in Optical Fibers with 25-ghz-bandwidth. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference.2007
    [24]K. Song, K. Hotate.25 Ghz Bandwidth Brillouin Slow Light in Optical Fibers. Optics letters.2007,32(3):217-219
    [1]P. Chang-Hasnain, R. Tucker. Link Performance of All-optical Buffers Using Slow Light. Optical Fiber Communication Conference,2005. Technical Digest. OFC/NFOEC.2005,3
    [2]F. Morichetti, A. Melloni, A. Breda, et al. A Reconfigurable Architecture for Continuously Variable Optical Slow-wave Delay Lines. Optics Express.2007, 15(25):17273-17282
    [3]D. Phillips, A. Fleischhauer, A. Mair, et al. Storage of Light in Atomic Vapor. Physical Review Letters.2001,86(5):783-786
    [4]M. Secondini. Optical Equalization:System Modeling and Performance Evaluation. Journal of Lightwave Technology.2006,24(11):4013-4021
    [5]M. Cardakli, A. Willner. Synchronization of a Network Element for Optical Packet Switching Using Optical Correlators andWavelength Shifting. IEEE Photonics Technology Letters.2002,14(9):1375-1377
    [6]B. Zhang, L. Yan, J. Yang, et al. A Single Slow-light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels. IEEE Photonics Technology Letters.2007,19(13/16):1081
    [7]D. Petrantonakis, D. Apostolopoulos, O. Zouraraki, et al. Packet-level Synchronization Scheme for Optical Packet Switched Network Nodes. Optics Express.2006, 14(26):12665-12669
    [8]P. Ku, C. Chang-Hasnain, J. Kim, et al. Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures. Proceedings of SPIE.2004,5362:69-80
    [9]B. Zhang, L. Yan, I. Fazal, et al. Slow Light on Gbit/s Di(?)erential-phase-shift-keying Signals. Optics Express.2007,15(4):1878-1883
    [10]Z. Shi, R. Boyd, D. Gauthier, et al. Enhancing the Spectral Sensitivity of Interferometers Using Slow-light Media. Optics Letters.2007,32(8):915-917
    [11]J. McMillan, X. Yang, N. Panoiu, et al. Enhanced Stimulated Raman Scattering in Slow-light Photonic Crystal Waveguides. Optics letters.2006,31(9):1235-1237
    [12]Y. Vlasov, M. O'Boyle, H. Hamann, et al. Active Control of Slow Light on a Chip with Photonic Crystal Waveguides. Nature.2005,438(7064):65-69
    [13]D. Beggs, T. White, L. O'Faolain, et al. Ultracompact and Low-power Optical Switch Based on Silicon Photonic Crystals. Optics Letters.2008,33(2):147-149
    [14]M. Lukin, A. Imamo glu. Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons. Physical Review Letters.2000,84(7):1419-1422
    [15]M. Eisaman, A. Andre, F. Massou, et al. Electromagnetically Induced Transparency with Tunable Single-photon Pulses. Nature.2005,438(7069):837-841
    [16]W. Yang, D. Conkey, B. Wu, et al. Atomic Spectroscopy on a Chip. Nature Photonics. 2007,1(6):331-335
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.