熏蒸剂对土壤微生物群落多样性的影响及其方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京市通州区大棚蔬菜试验田土壤为材料,运用现代生物化学手段,采用BIOLOG微平板与磷脂脂肪酸分析相结合的方法,探讨了熏蒸剂氯化苦和硫酰氟对农田土壤微生物群落结构和功能多样性的影响,对群落系统受到熏蒸剂扰动后的恢复能力进行了初步评价。本研究所获主要结论如下:
     1.采用BIOLOG方法系统研究了熏蒸剂氯化苦施用对土壤微生物功能多样性的影响以及氯化苦胁迫下土壤微生物功能恢复情况。研究结果表明,氯化苦处理后,土壤微生物的丰富度、均匀性和多样性均受到一定程度地影响。第一次取样,三个浓度氯化苦处理土壤的McIntosh指数与对照相比差异显著,分别降低72.31%、95.73%、97.33%,表明物种均匀性受到不同程度地影响,并且随浓度递增而加大;Simpson指数分别降低39.36%、45.93%、21.96%,说明氯化苦的添加降低了土壤微生物种群的生物多样性;而从Shannon指数来看,800mg/kg浓度处理过的土壤微生物的该指数值与对照相比增加6.66%,而80mg/kg浓度处理的该指数值与对照相比无显著差异,表明随着施药浓度的增大开始出现一定的耐受能力,生物量有所增大,丰富度指数有所增加。7d后取样结果表明,随着时间的推移,三指数都出现了波动,40mg/kg浓度处理的土壤其McIntosh指数值下降,但变化不显著,而80mg/kg和800mg/kg处理土壤的McIntosh值有小幅度的上升;高、中、低浓度处理土壤的Simpson多样性指数值均呈下降趋势,且减幅不显著;而Shannon丰富度指数经浓度梯度处理后均下降,其幅度不明显。AWCD值、Simpson指数、McIntosh指数和Shannon指数的变化能够较好的表征氯化苦胁迫下土壤微生物的功能抗性。均一性指数McIntosh能有效地指示污染环境的微生物学变化,在整个处理期间,该指数变化趋势与AWCD值变化值基本一致,表明AWCD值和McIntosh指数的表征效果较好。
     2.土壤微生物在原始状态下以糖类和氨基酸类为基础碳源进行代谢。氯化苦施用初期,对土壤微生物群落利用碳源的能力产生抑制作用。随着土壤培养时间的增加,土壤微生物逐渐适应了氯化苦,导致氯化苦对土壤微生物群落碳源利用能力的抑制程度减弱,土壤中优势种群大量繁殖,微生物对碳源的利用类型也逐渐增多。培养后期,随着土壤中内源性碳源的消耗,土壤中微生物种群出现功能性衰减,多样性降低,对BIOLOG中碳源的利用能力也减弱。80mg/kg和800mg/kg氯化苦对氨基酸、羧酸、胺类碳源的利用影响较大。4种样品中微生物生理代谢活性和碳代谢类群变现出明显差异,形成各自独特的微生物类群。
     3.在BIOLOG研究基础上,采用磷脂脂肪酸(PLFAs)方法,对熏蒸剂氯化苦和硫酰氟施用后土壤微生物群落结构变化进行了研究。研究发现,土壤中检测到PLFAs从C13到C20共计16种,包括饱和脂肪酸(16:0,18:0,20:0)、支链脂肪酸(i13:0,a14:0,i15:0,i16:0,a16:0,9Me18:0)、环丙烷脂肪酸(cy18:0)、单不饱和脂肪酸(16:1ω7c,18:1ω9c)和多不饱和脂肪酸(18:2ω6,9、22:4、20:3)。根据每种脂肪酸占总脂肪酸含量的百分数得出,偶数碳饱和脂肪酸的相对含量为41.97%,是土壤中含量最丰富的脂肪酸种类,其次是单不饱和脂肪酸和支链脂肪酸,相对含量分别为29.18%和13.22%。其中,饱和脂肪酸16:0和18:0、单不饱和脂肪酸18:1ω9c和16:1ω7c、支链脂肪酸a14:0为优势脂肪酸。多不饱和脂肪酸的相对含量较低,仅占到总PLFA的9.76%,而环丙基脂肪酸的相对含量最低,不到总PLFA的5%。通过对特征脂肪酸的分析表明,在所研究的农田生态系统中,真菌在该土壤基质中占有优势,并且在5~20cm土壤中好氧细菌为优势菌种。
     4.两种熏蒸剂氯化苦和硫酰氟对土壤微生物群落结构会产生不同程度的影响。研究发现,熏蒸剂处理过的土壤中脂肪酸a14:0、i15:0、i16:0(革兰氏阳性菌),16:1ω7c(革兰氏阴性菌),18:2ω6,9(真菌)的相对含量均有所下降,544mg/kg(SF64)的硫酰氟与212.48mg/kg(CP64)的氯化苦使i15:0/16:0下降幅度分别达到73.4%和59.8%,可以推断高浓度的气态熏蒸剂硫酰氟对细菌的杀灭能力更强。同时,硫酰氟和氯化苦施药后,16:1ω7c(革兰氏阴性菌)的降幅分别为79%和84%,a14:0、i15:0、i16:0(革兰氏阳性菌)的平均降幅分别为51.7%和68.4%。以上结果表明,在熏蒸剂的胁迫下,革兰氏阳性菌的生存能力较革兰氏阴性菌强。
As a sort of wide-spectrum fungicides,application of fumigants to agricultural soils before planting of high-value cash crops has been widely accepted by agriculture-related practitioners for decades due to its high efficiency in controlling soilborne pathogens,nematodes,rodents and weeds,but recently concerns have been raised over its pollution to the environment and potential hazards to the human health that might in turn influence the whole balance of ecosystem. To assess the influence of fumigants on soil quality,studies were conducted concerning its impact on soil microbial community function and structure.The results were summarized as follows:
     1. Soils were sampled from experimental plots of Chinese Academy of Agricultural Sciences,Tongzhou District ,Beijing.Microbial functional diversity and functional resilience after chloropicrin application were estimated with BIOLOG Eco-microplates.The results showed that the richness,evenness and diversity of soil microorganisms ,to some extent,were affected after chloropicrin treatment.The fact that the McIntosh index after chloropicrin application decreased by 72.31%,95.73% and 97.33% respectively in contrast to control soils indicated that species evenness were influenced while the magnified effects were observed as concentration increased.The Simpson index decreased by 39.36%,45.93% and 21.96% respectively showed the reduction of biodiversity after chloropicrin application.Soil Shannon index increased by 6.66% after application with 80mg/kg chloropicrin in contrast to control soils while the index differed less significantly with controls after treatment with 800mg/kg chloropicrin,which demonstrated that microbial functional diversity recovered,biomass and richness of microorganisms rising as concentration increased.Sampling after 7 days showed that all three indics fluctuated as time passed.McIntosh index decreased slightly after treatment with 40mg/kg chloropicrin,but figures rised after treatment with 80mg/kg and 800mg/kg.Simpson diversity indices of soil treated with three concentration gradients dropped less significantly.Shannon richness indics decreased in all treatments.AWCD and diversity index,such as Shannon,McIntosh and Simpson indics can be used to indicate the functional resistance to stress of chloropicrin.The fact that McIntosh evenness index whose tendency is in agreement with AWCD during the application can indicate the microbiology change of polluted environment showed that the best results can be obtained by using AWCD and McIntosh.
     2. Soil microorganisms metabolized mainly using carbonhydrates and amino acids as basic carbon sources.An obvious inhibitory effect was observed in microbial utilization of carbon substrates after the first introduction of chloropicrin.As increasing of incubation time,the decreased inhibitory effect of chloropicrin to microbial utilization of carbon substrates was observed due to the gradual adaptation of soil microbial community to chloropicrin.Soil dominant species multiplied substantially while the utilization type of microorganisms to carbon substrates increasing gradually.As comsuption of endogenous carbon source in soil,microbial species dropped functionally that resulted in the decrease of diversity and utilization of carbon substrates existing in Biolog wells.80mg/kg and 800mg/kg chloropicrin exerted strongly influence on uitilization of amino acids,carboxylic acids and amides. microbial physiological metabolism activity and carbon-metabolic species varied significantly and unique microbial communities were shaped in respective four soil samples.
     3. The effects of the applications of chloropicrin and sulfuryl fluoride on the change of microbial community structure exposed to two fumigants was studied under microcosm conditions using phospholipid fatty acid analysis(PLFA).The results showed that in control soils PLFAs within carbon number from 13 to 20 were detected,including saturated fatty acids(16:0,18:0,20:0),branched chain fatty acids(i13:0,a14:0,i15:0,i16:0,a16:0,9Me18:0),cyclopropane fatty acid(cy18:0),monounsaturated fatty acids(16:1ω7c,18:1ω9c) and polyunsaturated fatty acids(18:2ω6,9、22:4、20:3).The results based on the mole percentage of gross fatty acids showed that saturated fatty acids within even carbon number,which were the most abundant fatty acids type in soils,accounted for 41.97%.The contents of monounsaturated fatty acids and branched chain fatty acids which accounted for 29.18% and 13.22% respectively were relatively small in amount.Of those,saturated fatty acids(16:0,18:0),monounsaturated fatty acids(18:1ω9c,16:1ω7c) and brached chain fatty acid(a14:0) were dominant fatty acids.Polyunsaturated fatty acids were less popular accounting for merely 9.76%;and cyclopropane fatty acid accounting for less than 5% was the lowest proportion of gross fatty acids.Analysing the specific fatty acids indicated that in our study areas of agroecosystem, fungus were in large proportion and the dominant species were aerobic bacteria at depths from 5 to 20cm in the subsurface soil.
     4. Influene of chloropicrin and sulfuryl fluoride on soil microbial community structure was different to the extent.The study found that in soils treated with fumigants the relative contents of the fatty acids a14:0,i15:0 and i16:0 generally referred to as the biomarkers of Gram-positive bacteria, 16:1ω7c referred to the biomarkers of Gram-negative bacteria and the biomarkers of fungi, 18:2ω6,9 had decreased,while the reduction of the ratio of i15:0/16:0 in soils treated with 544mg/kg sulfuryl fluoride and chloropicrin,by 73.4% and 59.8% respectively,had been observed as to assume that gaseous sulfuryl fluoride had stronger lethality to bacteria than liquid chloropicrin. Meanwhile, after application of sulfuryl fluoride and chloropicrin, 16:1ω7c(Gram-negative bacteria) had decreased by 79% and 84% respectively, a14:0,i15:0 and i16:0(Gram-positive bacteria) had decreased by 51.7% and 68.4% respectively.The results showed that under stress of fumigants the survival rate of Gram-positive bacteria was higher than Gram-negative bacteria.
引文
[1] UNEP-WCMC.Biodiversity and Poverty Reduction[C].The importance of biodiversity for ecosystem services 2007.
    [2] Walter V R,et al.Ecosystems and HumanWell-being. Millennium Ecosystem Assessment[M]. 2005, Washington DC: Synthesis Island Press.
    [3] KP, M., Try to discuss the concept of biological diversity[J]. Biodiversity Science,1993.1(1): 20-22.
    [4]白清云.土壤微生物群落结构的化学估价方法[J].农业环境保护,1997(6).
    [5]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性, 2007.15(3):306-311.
    [6] Jenkinson D S,Ladd J N.Microbial biomass in soil:measurement and turnover in Paul[J].Soil Biochemistry,1981.5:415-471.
    [7] Stottmeister U.Effects of plants and microorganisms in constructed wetland for wastewater treatment[J]. Biotechnology Advances,2003.22:93-117.
    [8]周志华,肖化云,刘丛强.土壤氮素生物地球化学循环的研究现状与进展[J].地球与环境,2004.32(3):21-26.
    [9]吕耀.农业生态系统中氮素造成的非点源污染[J].农业环境保护,1998. 17(1):35-39.
    [10] Stanford G,Epstein.Nitrogen mineralization potentials of soils[J].Soil Sci.Soc.Amer.Proc,1974.38(1):103-107.
    [11] N?sholm.Boreal forest plants take up organic nitrogen[J].Nature,1998. 392:914-916.
    [12] Ineson P,et al.Effects of climate change on nitrogen dynamics in upland soils[J]. A soil warming study,1998.4:153-161.
    [13] Powers R F.Nitrogen mineralization along a latitudinal:interaction of temperature,moisture and substrate quality[J].For.El.Manage,1990. 30(1):19-29.
    [14]张晶,等.土壤微生物生态过程与微生物功能基因多样性[J].应用生态学报,2006. 17(6):1129-1132.
    [15] Chróst.Microbial enzymes in aquatic environments[M].1991,New York: Springer-Verlag
    [16] Sinsabaugh R L.Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[J].Ecology,1993. 74(5):1586-1593.
    [17]张丽莉,等.污染土壤的酶学修复研究进展[J].应用生态学报,2003. 14(12):2342-2346.
    [18] Nannipieri P,Bollag J M.Use of enzymes to detoxify pesticide-contaminate soils and waters[J].Journal of Environmental Quality,1991.20:510-517.
    [19] Goldstein R M,Mallory L M,Alexander M.Use of enzymes to detoxify pesticide-contaminate soils and waters[J]. Applied and Environmental Microbiology, 1985. 50:967-983.
    [20] Karam J,Nicell J A.Potential applications of enzymes in waste treatment[J]. Journal of Chemical Technology & Biotechnology,1997.69(2):141-153.
    [21] Durán N,Esposito E.Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment:a review[J]. Applied Catalysis B:Environmental,2000.28(2):83-99.
    [22] Dec J,Bollag J M.Detoxification of substituted phenols by oxidoreductive enzymes through polymerization reactions[J].Archives of Environmental Contamination and Toxicology,1990.19:543-550.
    [23] Gianfreda L,Bollag J M.Effect of soils on the behavior of immobilized enzymes[J].Soil Science Society America Journal 1994.58:1672-1681.
    [24] Dec J,Bollag J M.Effect of soils on the behavior of immobilized enzymes[J]. Environmental Science and Technology,1995.29:657-662.
    [25] Dec J,Bollag J M.Use of plant-material for the decontamination of water polluted with phenols[J].Biotechnology and Bioengineering,1994.44(9): 1132 - 1139.
    [26] Munnecke D M.Enzymatic hydrolysis of organophosphate insecticides,a possible pesticide disposal method[J].Applied and Environmental Microbiology,1975.32:7-13.
    [27] Munnecke D M.Chemical, physical, and biological methods for the disposal and detoxification of pesticides[J].Residue reviews,1979.70:1-26.
    [28] Caldwell S R,Raushel F M.Detocification of organophosphate pesticides using an immobilized phosphotriesterase form Pseudonas diminuta[J]. Biotechnology and Bioengineering,1990.37(2):103 - 109.
    [29] Masaphy S F,Fahima T,et al.Parathion degradation by Xanthomonas sp. and its crude enzyme extract in clay suspensions[J].Journal of Environmental Quality,1996.25:1248-1255.
    [30] Cervelli S,Perret D.The immobilized enzymes as biotechnological suggestion for soil decontamination[J].Annali di Chimica,1998.88(7-8):509-515.
    [31]车玉伶,等.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005. 14(1): 127-133.
    [32] Kuperman R G,Carreiro M M.Soil heavy metal concentrations,microbial biomass and enzyme activity in a contaminated grassland ecosystem[J].Soil Biology and Biochemistry,1997.29(2):179-190.
    [33]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].生态环境, 2002.11(1).
    [34] Yamamoto Hiroki,et al.Fungal flora of soil polluted with copper[J].Soil Biology and Biochemistry,1985.17(6):785-790.
    [35]中国科学院地学部.东南沿海经济快速发展地区环境污染及其治理对策.地球科学进展,2003.18(4):493-496.
    [36] Domsch K H.A comparison of methods for soil microbial population and biomass studies[J].Journal of Plant Nutrition and Soil Science,1978. 142(3):520-533.
    [37] F?gri,et al.Bacterial and fungal activity in soil:separation of bacteria and fungi by a rapid fractionated centrifugation technique.Soil Biology and Biochemistry[J],1977.9(2):105-112.
    [38] Jannasch H W,Jones G E.Bacterial populations in seawater as determined bydifferent methods of emumeration[J].Limnol Oceanogr,1959.4(2):128-139.
    [39] Garland J L.Analysis and interpretation of community-level physiological profiles in microbial ecology[J].FEMS Microbiology Ecology,1997. 24:289-300.
    [40]冯冲凌,等.基于Biolog解析添加酶液对堆肥化过程中微生物群落代谢的影响[J].环境科学,2009.30(10):3016-3021.
    [41]郑华,等.不同森林生态土壤微生物群落对Biolog-GN板碳源的利用[J].环境科学, 2007.28(5):1126-1130.
    [42]申卫收,等.不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性[J].生态学报,2008.28(6):2682-2689.
    [43] B??th E.Effect of metal-rich sludge amendments on the soil microbial community[J]. Applied and Environmental Microbiology,1998.64(1):238-245.
    [44] Shah V,Belozeroval I.Influence of metal nanoparticles on the soil microbial community and Germination of lettuce seeds[J].Water,Air,and Soil Pollution, 2008.197:143-148.
    [45] Smalla K,Wachtendorf U,Heuer H,et al.Analysis of BIOLOG GN Substrate Utilization Patterns by Microbial Communities[J].Appl Environ Microbiol, 1998. 64(4):1220-1225.
    [46]王光华,等.Biolog和PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响[J].生态学报,2008.28(1):220-226.
    [47]胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用[J].微生物学通报,2002.29(4).
    [48] White D C,et al.Biochemical measurements of microbial mass and activity from environmental samples[J].ASTM special technical publication, 1979(695):69-81
    [49]王曙光,侯彦林.磷脂脂肪酸方法在土壤微生物分析中的应用[J].微生物学通报, 2004. 31(1).
    [50] Morgan J A,Winstanley C.Microbial biomarkers[J]. Modern Soil Microbiology, 1997:331-348.
    [51] Frosteg?rd A,B??th E.The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J].Biology and Fertility of Soils, 1994. 22:59-65.
    [52] Amann R I,Ludwig W,Schleifer K.Phylogenetic identificationand in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews,1995.59:143-169.
    [53] Vestal J R,White D C.Lipid analysis in microbial ecology:Quantitative approaches to the study of microbial communities[J].Bioscience,1989. 39(8):535-541.
    [54] Tunlid A,Baird B H,Nickels J S.Determination of phosphollipid ester-linker fatty acid and polyβ-hydroxybutyrate for the stimulation of bacterial biomass and activity in the ryizosphere of the rape plant Brassica napus[J]. Canadian Journal of Microbiology,1985.31:1113-1119.
    [55] White D C.Determination of the sedimentary microbial biomass by extractible lipid phosphate[J].Oecologia,1978.41(1):51-62.
    [56] Parker J H.Sensitive assay,based on hydroxyl fatty acids from lipopolysaccharide lipid A,for Gram-negative bacteria in sendiments[J]. Applied and Environmental microbiology,1982.44(5):1170-1177.
    [57] Balkwill D L,Leach F R,et al.Equivalence of microbial biomass measures based on membrane lipid and cell wall components,adenosine triphosphate,and direct count in subsurface aquifer sediments[J].Microbial Ecology,1988. 16(1):73-84.
    [58] Wilkinson S.Microbial lipids[M].1988,London:Academic Press.
    [59]颜慧,等.长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J].应用生态学报,2008.19(1):71-75.
    [60] Pennanen T, Frosteg?rd A,et al.Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in Coniferous forests[J].Applied and Environmental Microbiology,1996.62(2):420-428.
    [61]颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006.43(5).
    [62] Haack S K, Garchow H,et al.Accuracy, reproducibility,and interpretation of fatty acid methyl ester profiles of model bacterial communities[J].Applied and Environmental Microbiology,1994.60(7):2483-2493.
    [63] Frosteg?rd A B E,Tunlio A.Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J].Soil Biology and Biochemistry,1993.25(6):723-730
    [64] Zelles L.Fatty acid patterns of phospholipid and lipopolysaccharides in the charactrrization of microbial communities[J].Biology and fertility of soils.1999.29:111-129.
    [65]王秀国.杀菌剂多菌灵高频投入对土壤微生物群落的影响及其生物修复[D]. 2009,浙江:浙江大学农业与生物技术学院.
    [66] Hill G T,Mitkowski N A,et al. Methods for assessing the composition and diversity of soil microbial communities[J].Applied Soil Ecology,2000. 15:25-36.
    [67]王爱杰,任南琪.环境中的分子生物学诊断技术[M].2003,北京:化学工业出版社.
    [68] Kozdrój J,van Elsas J D.Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches[J].Journal of Microbiological Methods,2001.43(3):197-212.
    [69] Moter A,Gobel U B.Fluorescence in situ hybridization for direct visualization of microorganisms[J].Journal of Microbiological Methods, 2000.41(2):85-112.
    [70] McCaig A E,Glover L A,Prosser J I.Molecular Analysis of Bacterial Community Structure and Diversity in Unimproved and Improved Upland Grass Pastures[J]. Applied and Environmental Microbiology,1999.65(4):1721-1730.
    [71] Williams J G,Kubelik A R,Eafalski J A,Tingey S V.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acids Research,1990.18(22):6531-6535.
    [72] Nassar A,Darrasse A,Lemattre M.Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes[J].Applied and Environmental Microbiology,1996.62(7):2228-2235.
    [73]吴少慧,张成刚.RAPD技术在微生物生物多样鉴定中的应用[J].微生物学杂志, 2000.20(2):44-47.
    [74] Medlin L K,Valentin K,Metfies K,Groben R.Molecular tools for the study of marine microbial diversity[J].2006,London:Oxford University.
    [75] Heuer H,Wieland G,Schonfeld J.Bacterial community profiling using DGGE or TGGE analysis[J].Environmental Molecular Microbiology,2001.9:177-190.
    [76] Muyzer G,Smalla K.Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis in microbial ecology[J]. Antonie van Leeuwenhoek,1998.73(1):127-141.
    [77]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002. 11(2):167-171.
    [78] Anderson J,Domsch K.A physiological method for the quantitative measurement of microbial biomass in soils[J].Soil Biology and Biochemistry,1978. 10(3):215-221.
    [79]林启美.选择性呼吸抑制技术在土壤细菌和真菌生物量测定中的应用[J].生态学报, 1999.19(6).
    [80] Garland J L,Mills A L.Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization[J].Applied and Environmental Microbiology, 1991.57(8):2351-2359.
    [81] Haack S K,Garchow H, et al.Analysis of Factors Affecting the Accuracy, Reproducibility, and Interpretation of Microbial Community Carbon Source Utilization Patterns[J].Applied and Environmental Microbiology ,1995.61(4):1458-1468.
    [82] Hackett C A,Griffiths B S.Statistical analysis of the time-course of Biolog substrate utilization;Jay,Analysis and interpretation of community-level physiological profiles in microbial ecology[J].Journal of Microbiological Methods,1997.30:63-69.
    [83] Howard P J A.Analysis of data from BIOLOG plates:Comments on the method of Garland and Mills[J].Soil Biology and Biochemistry,1997. 29(11-12):1755-1757
    [84] R?ling W F M,Van Breukelen B M,Brater M.Linking microbial community structure to pollution : Biolog-substrate utilization in and near a landfill leachate plume[J].Water science and technology,2000.41(12):47-53.
    [85]王强,等.微生物生态研究中基于BIOLOG方法的数据分析[J].生态学报,2010. 30(3):0817-0823.
    [86] Zelles L.Changes in soil microbial properties and phospholipid fatty acid fractions after chloroform fumigation. Soil Biology and Biochemistry,1997. 29(9-10):1325-1336
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.