基于IBBCEAS的污染气体在线检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的发展以及城市机动车辆的迅猛增加,大气卫生质量逐渐下降,日益严重的大气环境污染问题引起了政府和社会的极度重视,人们对环境质量的要求不断提高,因此进行环境污染的监测对于环境保护、控制治理污染有特别重要的意义。在环境治理的关键技术中,开发各种环境污染监测仪,尤其发展高灵敏度、实时、动态、多组分同时测量的检测技术和开发小型化、误差小的仪器,是非常重要和十分必要的。腔增强吸收光谱技术(CEAS)由于具有高灵敏性,连续实时监测的特点,在测量环境中微量污染物、甚至污染形成过程中反应中间体自由基有巨大潜在的应用,正成为重要的污染气体监测工具之一。
     本研究研制和搭建了采用大功率发光二极管(LED)为光源,以反射率为99.5%左右的平凹镜组成的长约为97cm的光学谐振腔为吸收池的非相干宽带腔增强吸收光谱仪(IBBCEAS)检测系统。采用以NO_2标准气体为检测对象来检验该实验系统在检测气体方面的可行性和准确性。最后开展了该实验系统的应用,测试了从臭氧发生器产生的臭氧气体浓度。
     通过对NO_2标准气体在626nm附近的吸收光谱测量,对实验系统检测效果进行了评估。实验表明:虽然NO_2在626nm的吸收比较弱,但利用IBBCEAS技术检测到NO_2气体最低浓度为4.5 ppm。利用文献NO_2标准气体吸收光谱,得出了腔镜的反射率随波长的分布。通过测定不同浓度的NO_2吸收,得出了一系列浓度下NO_2的吸收系数和吸收光谱,实验结果表明不同浓度下的吸收系数具有较好的线性关系,从而证明了该实验系统检测的可行性,同时也证实了IBBCEAS技术是一种灵敏度高的定量吸收光谱技术。
     采用实验系统对臭氧发生器产生的实际臭氧浓度在626nm附近进行了测量,虽然在此波段臭氧的吸收非常弱,但还是测得了透射光谱和IBBCEAS吸收光谱,推算出臭氧浓度大约为1200 ppm。
With the rapidly development of industry and agriculture and swift-increasing of motor vehicles in city, the air quality is getting worse and the pollution problem of the atmospheric environment is increasingly serious, which is of great concern by governments and society. No doubt, the detection of environmental pollutants is important for environmental protection and pollution-control. It is essential to develop many new environmental monitoring and advanced detection technologies, especially, the high-sensitivity, real-time, continuous, and portable instruments. In this thesis, we developed a highly-sensitive and continuous real-time detection system based on cavity enhanced absorption spectroscopy (CEAS), which has potential applications in monitoring the trace air pollution and even reactive radical intermediates in chemical reactions.
     An incoherent broadband CEAS (IBBCEAS) system was developed using light emitting diode (LED) as light source. The cavity is enclosed by two high-reflectivity pnano-concave mirrors (R > 99.5 %) separated by 97 cm. The system is tested by using standard NO_2 gases. A good linearity is found for NO_2 concentrations from 4 ppm to 50 ppm. With the mirror reflectivity obtained using standard NO_2, the CEAS system is used to measure the O3 concentration using absorptions at 626 nm. The ozone concentration directly from an ozone generator is approximately 1200 ppm. The detection sensitivity can be easily improved if using the spectroscopic absorption at UV regions, where the absorption corss sections of NO_2 and O3 are higher by two to three orders of magnitude.
引文
[1]唐孝炎,张远航,邵敏.大气环境化学[M].第二版.北京:高等教育出版社, 2006
    [2] Finlayson-Pitts B.J.. Tropospheric Air Pollution:Ozone, Airborne Toxics, Polycyclic Aromatic- Hydrocarbons, and Particles[J]. Science, 1997, 276: 1045-1051
    [3]岑可法.中国能源与环境可持续发展的若干问题[J].中国废铁钢, 2006, 2: 4-13
    [4]即坤赞,朱燕群,岑可法.中国能源、电力与环境可持续发展的若干问题[J].工业加热, 2005, 34: 1-5
    [5] GB16297-1996,大气污染物综合排放标准[S].北京:中国标准出版社, 1996-04-12
    [6]刘建国,刘文清,魏庆农.我国的环境监测仪器产业状况及监测高技术创新的研究[J].光电子技术与信息, 2002, 15: 14-18
    [7]刘文清,崔志成,董凤忠.环境污染监测的光学和光谱学技术[J].光电子技术与信息, 2002, 15: 1-12
    [8]吴忠标.环境监测[M].北京:化学工业出版社, 2003
    [9]张继娟,魏世强.我国城市大气污染现状与特点[J].四川环境, 2006, 25: 104-112
    [10] Fiedlera S.E., Heseb A.. Influence of the cavity parameters on the output intensity in incoherent broadband cavity-enhanced absorption spectroscopy [J]. Review of scientific instruments, 2007, 78: 073104
    [11]田贺忠.中国氮氧化物排放清单及分布特征[J].中国环境科学, 2001, 21: 493-497
    [12]张月琴,杨海鹰等.气体中氮氧化物分析方法进展[J].现代科学仪器, 2009, 3: 109
    [13] Cohen, R.C., Murphy J.G.. Photochemistry of NO2 in Earth’s Stratosphere: Constraints from Observations[J]. Chemical Reviews, 2003, 103: 4985-4998
    [14]高婕,王禹,张蓓.我国大气氮氧化合物污染控制对策[J].大气污染防治, 2004, 30: 1-3
    [15] MatsumiY., Kawasaki M.. Photolysis of Atmospheric Ozone in the Ultraviolet Region[J]. Chemical Reviews, 2003, 103: 4767-4782
    [16] Anenberg S.C., West J.J.. Intercontinental Impacts of Ozone Pollution on Human Mortality[J]. Environmental Science & Technology, 2009, 43: 6482-6487
    [17] Danielq T., Nicholasz M.. Integrated Assessment of the Spatial Variability of Ozone Impacts from Emissions of Nitrogen Oxides[J]. Environmental Science & Technology, 2006, 40: 1395-1399
    [18] GB3095-1996,环境空气质量标准[S].北京:中国标准出版社, 1996
    [19] Brown S.S.. Absorption Spectroscopy in High-Finesse Cavities for Atmospheric Studies[J]. Chemical Reviews, 2003, 103: 5219-5238
    [20]李虹杰,马建武,范新峰.大气环境监测仪器研究进展[J].科技创业, 2009, 2: 76-79
    [21]李全臣,蒋月娟.光谱仪器原理[M].北京:北京理工大学出版社, 1997
    [22]林龙森,张性雄.大气环境常见监测方法[J].福建农机, 2006, 3
    [23]杨泉.离子色谱法测定空气中的氮氧化物和氯化氢含量[J].福建分析测试, 2007, 16: 17
    [24]王振亚,李海洋,周士康.光谱技术在大气环境监测中的应用[J].物理学报, 2001, 30: 549-555
    [25]刘虎威.气相色谱方法及应用[M].北京:化学工业出版社, 2000
    [26]尚丽平,杨仁杰.现场荧光光谱技术及其应用[M].北京:科学出版社, 2009
    [27]任信荣.利用激光诱导荧光技术测量大气氢氧自由基的研究进展[J].环境科学进展, 1999, 7: 14-19
    [28]崔厚欣.差分吸收光谱法大气环境质量在线连续监测系统的设计[J].分析仪器, 2008, 1: 7-11
    [29]顾海涛,陈人,叶华俊等.基于DLAS技术的现场在线气体浓度分析仪[J].仪器仪表学报, 2005, 26
    [30]阚瑞峰.可调谐二极管激光吸收光谱法监测大气痕量气体中的浓度标定方法研究[J].光谱学与光谱分析, 2006, 26: 392-395
    [31]谢科.基于可调谐二极管吸收光谱技术的CO2气体检测系统的研究:硕士学位论文[D].重庆:重庆大学, 2008
    [32] Reid J., Garside B.K., Shewchun J.. High sensitivity point monitoring of atmospheric gases employing tunable diode lasers[J]. Applied Optics, 1978, 17: 1806-1810
    [33] Werle P.. A review of recent advances in semiconductor laser based gas monitor[J]. Spectroehimica. Acta Part A, 1998, 54: 197-236
    [34] Ball S.M., Jones R.L.. Broad-Band Cavity Ring-Down Spectroscopy[J]. Chemical Reviews, 2003, 103: 5239-5262
    [35] Fiedler S.E., Hese A., Ruth A.A.. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 2003, 371: 284-294
    [36] Wu T.. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode[J]. Applied Physics B, 2009, 94: 85-94
    [37]董磊.基于腔增强吸收光谱的污染气体检测研究:博士学位论文[D].山西:山西大学, 2007
    [38]黄伟,高晓明,张为俊等.高分辨率高灵敏度可调谐近红外二极管激光光谱探测[J].光学与光电技术, 2004, 2: 5-8
    [39]李少成.光声光谱和腔内增强吸收光谱与技术的研究与应用:博士学位论文[D].大连:大连理工大学, 2003
    [40]聂劲松.激光光谱学方法测量大气中OH自由基[J].物理学报, 2002, 31
    [41]裴世鑫.腔增强吸收光谱技术与应用研究:博士学位论文[D].合肥:中科院安徽光机所, 2007
    [42] Engeln R., Berden G., Peeters R.. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Review of Scientific Instruments, 1998, 69: 3763-3769
    [43] Keefe A.O., Scherer J.J., Paul J.B.. Integrated cavity output spectroscopy[J]. Chemical Physics Letters, 1999, 307: 343-349
    [44] Silver J.A., Stanton A.C.. Two-tone optical heterodyne spectroscopy using buried double heterostructure lead-salt diode laser[J]. Applied Optics, 1988, 27: 4438-4444
    [45] Keefe A.O., Deacon D.A.G.. Cavity ring down optical spectrometer for absorption measurementsusing pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59: 2544-2551
    [46] Zalicki P., Zare I.N.. Cavity ring-down spectroscopy for quantitative absorption measurements[J]. Chemical. Physics, 1995, 102: 2708-2717
    [47] Cheung A.S.C., Ma T., Chen H.. High—resolution cavity enhanced absorption spectroscopy using an optical cavity with ultra-high reflectivity mirrors[J]. Chemical Physics Letters 2002, 353: 275-280
    [48] Chan M.C., Yeung S.H.. High-resolution cavity enhanced absorption spectroscopy using phase- sensitive detection[J]. Chemical Physics Letters, 2002, 373: 100-108
    [49] Fiedler S.E.. Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet [J]. Chemical Physics Letters, 2003, 382: 447-453
    [50] Ball S.M., Langridge J.M., Jones R.L.. Broadband cavity enhanced absorption spectroscopy using light emitting diodes[J]. Chemical Physics Letters, 2004, 398: 68-74
    [51]陈军.宽带腔增强吸收光谱大气环境光电监测系统[P].中国: 200810062347.3, 2008
    [52]高晓明. CO2分子的近红外二极管激光吸收光谱灵敏探测[J].光学学报, 2003, 23: 609-611
    [53]裴世鑫.基于DFB型半导体激光器的腔增强吸收光谱研究[J].化学物理报, 2005, 18: 660-664
    [54]裴世鑫,高晓明,崔芬萍等. CO2的腔增强吸收与高灵敏吸收光谱研究[J].光谱学与光谱分析, 2005, 12: 1908-1911
    [55]吴涛,赵为雄,李劲松等.基于LED的非相干宽带腔增强吸收光谱技术[J].光谱学与光谱分析, 2008, 28: 2469-2472
    [56] Demtrofer W.. Laser Spectroscopy Basic Concepts and Instrument[M]. New York: Springer Verlag, 1981
    [57]王庆有.光电技术[M].北京:电子工业出版社, 2005
    [58]阎吉祥,崔小虹.激光原理技术与应用[M].北京:北京理工大学出版社, 2006
    [59] Berden G., Peeters R., Meijer G.. Cavity ring-down spectroscopy:Experimental schemes and applications[J]. International Reviews in Physical Chemistry, 2000, 19: 565-607
    [60] Courtillot I.. Sub-ppb NO2 detection by optical feedback cavity-enhanced absorption spectroscopy with a blue diode laser[J]. Applied Physics B, 2006, 85: 407-412
    [61] Schulte D.R., Herriott H.J.. Folded optical delay lines[J]. Applied Optics, 1965, 4: 883-889
    [62] Jongma P.T., Boogaarts M., Holleman L.. Trace gas detection with cavity ring down spectroscopy[J]. Review of scientific instruments, 1995, 66: 2821-2828
    [63] Kebabian P.L., Robinson W.A., Freedmana A.. Optical extinction monitor using cw cavity enhanced detection[J]. Review of scientific instruments, 2007, 78: 063102
    [64] Morville J., Kassi S., Chenevier M.. Fast, low-noiso, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking[J]. Applied Physics B, 2005, 80: 1027-1038
    [65] Nevsky A.Y.. A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges [J]. Applied Physics B, 2008, 92: 501-507
    [66] Zhao X., Lu T., Cui Z.. An experimental study of the lifetimes of the lifetimes of excited electronic states of NO2[J]. Chemical Physics Letters, 1989, 162: 140
    [67] Wang, L., Zhang J.. Detection of Nitrous Acid by Cavity Ring-Down Spectroscopy[J]. Environmental Science & Technology, 2000, 34: 4221-4227
    [68] Inbar E., Arie A.. High-sensitivity CW Fabry—Perot enhanced spectroscopy of CO2 and C2H2 using a 1064m Nd:YAG laser[J]. Applied Physics B, 1999, 68: 99-105
    [69] Gherman T.. Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy in the near-Ultraviolet: Application to HONO and NO[J]. Environmental Science & Technology, 2008, 42: 890-895
    [70] Triki M.. Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis[J]. Applied Physics B, 2008, 91: 195-201
    [71] Zybin A., KuritsyrL Y.A., Mironenko V.R.. Cavity enhanced wavelength modulation spectrometry for application in chemical analysis[J]. Applied Physics B, 2004, 78: 103-109
    [72] Langridge J.M., Ball S.M., Jones R.L.. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. Analyst, 2006, 131: 916
    [73] Langridge J.M.. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection[J]. Review of scientific instruments, 2008, 79: 123110
    [74]曾光宇,张志伟,张存林.光电检测技术[M].北京:北方交通大学. 2005
    [75]史光国.半导体发光二极管及固体照明[M].北京:科学出版社, 2007
    [76]绍杰,高晓明,黄伟等. CO2分子的近红外可调谐二极管激光吸收光谱高灵敏探测[J].量子电子学报, 2005, 22: 423-426
    [77]易亨瑜,吕百达.反射率测量技术研究的进展[J].激光技术, 2004, 28: 459-462
    [78] Mazurenka M.I.. 410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2 [J]. Chemical Physics Letters, 2003, 367: 1-9
    [79] Rikfuchs H., Dub W., Lerner B.. A Sensitive and Versatile Detector for Atmospheric NO2 and NOX Based on Blue Diode Laser Cavity Ring-Down Spectroscopy[J]. Environmental Science & Technology, 2009, 43: 7831-7836
    [80] Smalley E., Wharton L., Levy D.H.. The Fluorescence excitation spectrum of rotationally cooled NO2[J]. Chemical Physics, 1975, 63: 4977-4983
    [81] Rothman L.S.. The Hitran molecular spectrosopic database and Hawks:1996 edition[J]. Journal of Quantitative Spectroscopy & Radiative Transfer[J], 1998, 60: 665-710
    [82] Sander S.P., Friedl R.R.. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15[M], California: JPL Publication, 2006
    [83] Voigt S., Orphal J., Burrows J.P.. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250–800 nm region measured by Fourier-transform spectroscopy [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149: 1-7
    [84] Voigt S.. The temperature dependence (203-293K) of the absorption cross sections of O3 in the 230-850 nm region measured by Fourier-transform spectroscopy[J]. Journal of Photochemistry and Photobiology A: Chemistry , 2001, 143: 1-9
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.