TD-SCDMA非对称多合体功率放大器设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2010年全球移动用户数量突破50亿,同时,移动用户对业务的需求日趋多样化。移动通信系统需要具备更大的系统容量和更高的数据速率以满足众多移动用户的需求。第三代移动通信系统采用非恒包络调制方式及多载波技术,增大了系统容量,提高了数据速率,但也增大了信号的峰均比。
     为了线性放大具有高PAPR的信号,功率放大器必须工作在效率低下的功率回退区域,这不仅造成能源浪费,而且耗散在功率放大器上的大量热能,严重影响移动通信系统的稳定性及功率放大器的寿命。因此,提高功率放大器的效率不仅可以节能减排、保护环境,而且能提高运营商的竞争优势。
     在众多提高功率放大器效率的技术中,多合体(Doherty)放大器具有电路结构简单、成本低、效率提升明显等优点,结合数字预失真技术,其线性度可得到较大改善,因而成为业界的首选方案。
     本文首先讨论了高效率功率放大器的关键技术,详细分析了Doherty功率放大器的工作过程,概述了Doherty功率放大器的技术现状。针对经典Doherty功率放大器上下两路不能同时饱和的缺陷,找到解决方法,即采用不等功率输入的非对称Doherty电路,然后在ADS软件平台上进行电路仿真,在Altium Designer软件平台上完成印制电路板设计。最后对不等功率输入的非对称Doherty功率放大器进行调试,并完成了测试。
     TD-SCDMA 9载波测试信号下,平均输出功率43dBm时,功率放大器功率附加效率达到41.1%,数字预失真纠正后,邻道ACLR为–44.3dBc,EVM为11.5%。测试结果表明,非对称Doherty功率放大器具有较高的效率优势,与数字预失真技术结合后,能满足TD-SCDMA系统对信号线性度的要求,可应用于TD-SCDMA系统。
The amount of global mobile subscribers exceeded 5 billion in 2010; meanwhile, the business needs of mobile users are increasingly diversified. Greater capacity and higher data rates are required for the mobile communication systems to meet the requirements of subscribers. Non-constant envelope modulation and multi-carrier technique are adopted in third generation mobile communication systems (3G), enlarging system capacity, increasing data rates, and also resulting in higher peak to average power ratio (PAPR).
     The power amplifier should operate in power back-off region to linearly amplify signals with high PAPR, resulting in low efficiency, which not only cause energy waste, and large numbers of thermal energy dissipation on the power amplifier, seriously affected the life of the stability and power amplifiers for mobile communication systems. Therefore, improvement of the efficiency of power amplifier is helpful to energy-saving, emission reduction and protection of the environment, and can improve the operator's competitive advantage.
     Among numerous techniques of efficiency enhancement, Doherty is widely accepted and adopted owing to its simple circuit structure, low cost, and excellent performance. Besides, linearity of Doherty power amplifier can be greatly improved with combination of digital pre-distortion (DPD).
     In this article, key techniques of high efficiency PA are first illustrated, then detailed analysis on operation of Doherty amplifier is given, and current research achievements in Doherty PA are reviewed. Uneven structure is employed to overcome drawbacks of classical Doherty PA. Circuit simulation and design of PCB are fulfilled by means of ADS and Altium Designer respectively. Finally, the uneven Doherty PA is debugged and tested.
     The power added efficiency is 41.1% at 43dBm average output power, tested under TD-SCDMA 9 carriers signal, ACLR and EVM are improved to–44.3dBc and 11.5% respectively after linearization of DPD. It’s shown that, uneven Doherty PA is highly efficient, and applicable to TD-SCDMA system with the combination of digital pre-distortion technique.
引文
[1]张传福.彭灿,刘丑中.第三代移动通信技术及其演进.北京:人民邮电出版社, 2008年.
    [2]彭祖国.宽带高效率功率放大器数字辅助技术.电子科技大学, 2010年.
    [3]陈邦媛.射频通信电路.科学出版社. 2004.
    [4]王忠勇. TD-SCDMA射频电路设计,人民邮电出版社, 2009年.
    [5] Stefan H Muller, Johannes B Huber. A comparison of peak power reduction schemes for OFDM. Global Telecommunications Conference. 1997. GLOBECOM’97, IEEE, 1997, 1: 3–8.
    [6] Tellado J Cioffi J. Peak power reduction for multicarrier transmission. Proceedings Globecom’98, Sydney, Australia, 1998.
    [7] Marco Breiling, Stefan H. Müller-Weinfurtner, and Johannes B. Huber. SLM Peak-Power Reduction Without Explicit Side Information. IEEE Communications Letters, 2001, 5(6): 239–241.
    [8] Zhixing Yang, Haidong Fang, Changyong Pan. ACE With Frame Interleaving Scheme to Reduce Peak-to-Average Power Ratio in OFDM Systems. IEEE Transaction on Broadcasting, 2005, 51(4): 571–575.
    [9] J. A. Davis, J. Jedwab. Peak-to-Mean Power Control and Error Correction for OFDM Transmission Using Golay Sequences and Reed-Muller Codes. IEEE Electronics Letters. 1997, 2, 33(4): 267–268.
    [10] Xiaodong Li, L. J. Cimini. Effects of clipping and filter on the performance of OFDM, IEEE Communications Letters, 1998, 2(5): 131~133.
    [11] H. Kuo, S. W. Cheung, Simon S. F. Hau, A Novel Peak-Windowing Technique for WCDMA Systems. IEEE, 2006, 5(4): 1758~1761.
    [12] Ed Hemphill, Steve Summerfield, George Wang and Dave Hawke. Peak Cancellation Crest Factor Reduction Reference Design. XAPP1033 (v1.0) November 18, 2007.
    [13] Frederick H. Raab, Peter Asbeck, Steve Cripps. Power Amplifiers and Transmitters for RF and Microwave. IEEE Transactions on Microwave Theory and Techniques. Vol. 50, No. 3, pp: 814–826, March, 2002.
    [14] Y. Akawa, Y. Nagata,“Highly efficient digital mobile communications with a linear modulation method,”IEEE J. Select. Areas Commun. , June 1987, vol. SAC-5, pp. 890-895.
    [15] Eun C, Powers E J,“A new volterra predistorter based on the indirect learning architecture,”IEEE Trans. Signal Processing, Jan. 1997, 45: 223–227.
    [16] W. H. Doherty. A new high efficiency power amplifier for modulated waves. Proceedings of the IRE Volume: 24, Issue: 9. 1936. pp: 1163–1182.
    [17] Henri. Harju, Timo. Rautio, Simo. Hietakangas, Timo. Rahkonen. Envelope Tracking Power Amplifier with Predistortion Linearization. Circuit Theory and Design 18th on European Conference. 2007. pp: 388–391.
    [18] Stevel.Cripps. Advanced Techniques in RF power amplifier Design. Artech House. 2002.
    [19] Frederick.H.Raab. Efficiency of Doherty RF Power Amplifier Systems. IEEE Transactions on Broadcasting.Vol.BC–33, No, 3. 1987. pp: 77–83.
    [20] Jangheon Kim, Bilel Fehri, Slim Boumaiza, etc. Power Efficiency and Linearity Enhancement Using Optimized Asymmetrical Doherty Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques. Vol. 59, NO. 2, pp. 425–434, Feb, 2011.
    [21] Sung-Chan Jung, Oualid Hammi, Fadhel M. Ghannouchi, Design Optimization and DPD Linearization of GaN-Based Unsymmetrical Doherty Power Amplifier for 3G Multicarrier Applications. IEEE Transcations on Microwave Theory and Tehchniques. Vol. 57, No. 9, pp.2105–2113, Sep, 2009.
    [22] Jangheon Kim, Jeonghyeon Cha, Ildu Kim. Optimum Operation of Asymmetrical Cells Based Linear Doherty Power Amplifiers—Uneven Power Drive and Power Matching. IEEE Transcations on Microwave Theory and Tehchniques. Vol. 53, No. 5, pp. 1802-1809, May, 2005.
    [23] A. Z. Markos, K. Bathich, F. Golden. A 50W Unsymmetrical GaN Doherty Amplifier for LTE Applications. Proc. of the 40th European Microwave Conf. pp. 994–997. 2010.
    [24] Yong-Sub Lee, Mun-Woo Lee, Yoon-Ha Jeong. Unequal-Cells-Based GaN HEMT Doherty Amplifier with an Extended Efficiency Range. IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, pp. 536–538, Aug, 2008.
    [25] Marco J. Pelk, W. C. Edmund Neo, John R. Gajadharsing. A High-Efficiency 100W GaN Three-Way Doherty Amplifier for Base-Station Applications. IEEE Transactions on Micriwave Theory and Techniques. Vol. 56, No. 7, pp 1582–1591, July 2008.
    [26] W. C. Edmund Neo, Jawad Qureshi, Marco J. Pelk. A Mixed-Signal Approach Towards Linear and Efficient N-Way Doherty Amplifiers. IEEE Transactons on Microwave Theory and Techniques. Vol. 55, No. 5, pp. 866–879, May 2007.
    [27] Nuttapong Srirattana, Arvind Raghavan, Deukhyoun Heo. Analysis and Design of a High-Efficency Multistatge Doherty Power Amplifier for Wrieless Communicaitons. IEEE Transactions on Microwave Theory and Techniques. Vol. 53, No. 3, pp. 852–860. Mar 2005.
    [28] Ildu Kim, Jeonghyeon Cha, Sungchul Hong. Highly Linear Three-Way Doherty Amplifier With Uneven Power Drive for Repeater System. IEEE Micorwave and Wireless Components Letters. Vol. 16, No. 4, pp. 176–178, Apr, 2006.
    [29] Suo Hai-lei, Bao Jing-fu. Three-way Doherty power amplifier with uneven power drive. IEEE 11th International Conference on Communication Technology Proceedings. pp. 293–296, 2008.
    [30] Jangheon Kim, Junghwan Moon, Young Yun Woo. Analysis of a Fully Matched Saturated Doherty Amplifier with Excellent Efficiency. IEEE Transactions on Microwave Theory and Techniques. Vol. 56, No. 2, pp. 328–338, Feb, 2008.
    [31] Jangheon Kim, Bumman Kim, Young Yun Woo. Advanced Design of Linear Doherty Amplifier for High Efficiency using Saturated Amplifier. pp 1573–1576, 2007.
    [32] Jangheon Kim, Junghwan Son, Junghwan Moon. A Saturated Doherty Power Amplifier Based on Saturated Amplifier. IEEE Microwave and Wireless Components Letters. Vol. 20, No. 2, pp. 109–111, Feb 2010.
    [33] Seiki Goto, Tetsuo Kunii, Akira Inoue. Efficiency Enhancement of Doherty Amplifier with Combination of Class-F and Inverse Class-F Schemes for S-Band Base Station Application. pp. 839–842, 2004.
    [34] Gil Wong Choi, Hyoung Jong Kim, Woong Jae Hwang. High Efficiency Class-E tuned Doherty Amplifier using GaN HEMT. pp. 925–928, 2009.
    [35] Yong-Sub Lee, Mun-Woo Lee, Yoon-Ha Jeong. High- Efficiency Class-E-Cells-Based GaN HEMT Doherty Amplifier for WCDMA Applications. Proc. of the 38th European Microwave Conf. pp. 428–431, 2008.
    [36] Yong-Sub Lee, Mun-Woo, Yoon-Ha Jeong. High-Efficiency Doherty Amplifier Using GaN HEMT Class-F Cells for WCDMA Application. ICMMT 2008 Proceedings.
    [37] Yong-Sub Lee, Mun-Woo Lee, Yoon-Ha Jeong. Highly Efficient Doherty Amplifier Based on Class-E Topology for WCDMA Applications. IEEE Microwave and Wireless Components Letters. Vol. 18, No. 9, pp. 608-610. Sep, 2008.
    [38] Junghwan Moon, Jangheon Kim, Ildu Kim. Highly Efficiency Three-Way Saturated Doherty Amplifier With Digital Feedback Predistortion. IEEE Micriwave and Wireless Components Letters. Vol. 18, No. 8 , pp. 539–541, Aug, 2008.
    [39] Jinsung Choi, Daehyun Kang, Dongsu Kim. Optimized Envelope Tracking Operation of Doherty Power Amplifier for High Efficiency Over an Extended Dynamic Range. IEEE Transactions on Microwave Theory and Techniques. Vol. 57, No. 6, pp. 1508–1515, Jun 2009.
    [40] Youngoo Yang, Jeonghyeon Cha, Bumjae Shin. A Microwave Doherty Amplifier Employing Envelope Tracking Technique for High Efficiency and Linearity. IEEE Microwave and Wireless Components Letters. Vol. 13, No. 9, pp. 370–372, Sep 2003.
    [41] Junghwan Moon, Junghwan Son, Jungjoon Kim. Doherty Amplifier with Envelope Tracking for High Efficiency. Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International pp. 1086–1089.
    [42] Ildu Kim, Junghwan Moon, Seunghoon Jee. Optimized Design of a Highly Efficient Three-Stage Doherty PA Using Gate Adaption. IEEE Transactions on Microwave Theory and Techniques. Vol. 58, No. 10, Oct, 2010.
    [43] Bumman Kim, Jangheon Kim, Ildu Kim. The Dohety Power Amplifier. IEEE Microwave Magazine. pp. 42–50, 2006.
    [44] 3GPP TS 25.105 V4.12.0 (2008–12)
    [45]赵青梅,浅谈印制电路板的设计,内蒙古石油化工,2006年
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.