猪DDX3X的功能分析及其对猪繁殖与呼吸综合征病毒增殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DDX3X是含DEAD-box家族的RNA解旋酶成员之一。DEAD-box解旋酶参与许多的生物学过程,如:调节转录、RNA剪切、核运输、控制mRNA的翻译等。研究表明DDX3X参与天然免疫应答,增强抗病毒物质的产生;另一方面,DDX3X有可能是病毒达到天然免疫逃避的目的的手段之一。
     PRRSV是一种单股正链RNA病毒,属于动脉炎病毒科属,引起PRRS,给世界养猪业造成了极大的损失。生产有效的PRRSV疫苗是养猪业迫切的需求。目前还不清楚猪DDX3X的功能及其对PRRSV增殖的影响,鉴于此,本研究主要是分析猪DDX3X的功能及其对PRRSV增殖的影响,主要研究内容如下:
     1.猪DDX3X基因的扩增、序列分析、及进化树的绘制
     通过对猪基因EST数据库的分析,设计特异性引物,PK-15细胞RNA为模板,RT-PCR扩增获得猪DDX3X基因序列。分析发现猪DDX3X的核苷酸序列全长为1986bp,编码662个氨基酸,与鼠、人、牛、鸡、日本血吸虫的氨基酸序列同源性分别为97%、97%、98%、90%、53%,系统进化树分析虽然表明不同物种DDX3X的氨基酸序列存在一定差异,但是DDX3X在进化上还是比较保守的,并且猪DDX3X与牛DDX3X的亲缘关系最近。
     2.猪DDX3X的亚细胞定位
     将猪DDX3X基因插入真核表达载体pEGFP-C2中构建猪DDX3X与EGFP融合的真核表达质粒pEGFP-C2-DDX3X,转染PK-15细胞后发现猪DDX3X主要定位于胞浆,没有发现猪DDX3X在细胞核中的定位。
     3.猪DDX3X参与IFN-p诱导
     以猪DDX3X的真核表达质粒pCAGGS-HA-DDX3X转染PK-15细胞,通过荧光定量检测证实猪DDX3X能上调IFN-βmRNA水平的表达。进一步利用猪DDX3X的干扰分子sipDDX3X干扰细胞内源性猪DDX3X的表达,检测猪DDX3X对SeV/poly(dA:dT)诱导IFN-β的影响,结果猪DDX3X的敲除明显下调SeV/poly(dA:dT)诱导的IFN-βmRNA水平。利用双荧光素酶检测系统证实猪DDX3X能显著激活IFN-p启动子。
     4.猪DDX3X以剂量依赖的形式促进TBK1/IPS-1激活IFN-p启动子
     利用红荧光蛋白和绿荧光蛋白作标记证实猪DDX3X与TBK1/IPS-1在PK-15细胞中均存在共定位现象,由此说明猪DDX3X与TBK1/IPS-1存在相互作用。进一步利用双荧光素酶检测系统证实猪DDX3X促进TBK1/IPS-1激活IFN-β启动子,并呈剂量依赖的形式,也进一步证实了猪DDX3X与TBK1/IPS-1存在相互作用。
     5.猪DDX3X与PRRSV的相互作用
     将pEGFP-C2-DDX3X真核表达质粒转染Marc-145细胞,然后接种PRRSV,DAPI染色后用激光共聚焦显微镜观察证实PRRSV感染不改变猪DDX3X在Marc-145细胞中的定位。在SJPL细胞中瞬时表达猪DDX3X,用绝对定量和TCID50检测发现猪DDX3X抑制PRRSV的增殖,进一步实验发现PRRSV能够上调PAM细胞中猪DDX3X的表达。
DDX3X is a RNA helicase, which belongs to the DEAD-box family of RNA helicases. DEAD-box helicases participate in many cellular processes, such as translational and transcriptional regulation, RNA splicing and nucleus export. On one hand, the results show that DDX3X takes part in the natural immune response and enhances the production of antiviral substances. On the other hand, DDX3X may be one of the means that virus achieve the purpose of the natural immune evasion.
     PRRSV is a single-strand RNA virus and is a member of the Arteritis virus. PRRSV causes PRRS, which brings great challenges to the pig industry around the world. Production of an effective vaccine is urgently required in the pig industry. Currently, we don't understand the functions of porcine DDX3X and the effect on the proliferation of PRRSV. So this study aimed to analyze the function of porcine DDX3X and the effect on the proliferation of PRRSV. The main contents were as follows:
     1. The Cloning, sequence analysis and phylogenetic tree construction of the porcine DDX3X gene
     The porcine EST database was analyzed, and then the specific primers were designed. RNA of PK-15 cells was used as the template and the porcine DDX3X gene sequence was amplified via RT-PCR. The result of sequencing analysis indicated that the full length of porcine DDX3X's nucleotide was 1986bp and the open reading frame had 662 amino acids. And it had a amino acid homology of 97%,97%,98%,90%, and 53% with rodents, human, cattle, chicken and schistosoma japonicum, respectively. Although the result of phylogenetic tree analysis showed that there were some differences among the amino acid sequences of different species DDX3X, DDX3X was quite conserved in evolution, and porcine DDX3X had the closest relationship with cattle DDX3X.
     2. The subcellular localization of porcine DDX3X
     The porcine DDX3X gene was inserted into the eukaryotic expression vector PEGFP-C2 to construct the eukaryotic expression plasmid of pEGFP-C2-DDX3X, and it was transfected into the PK-15 cells. Then we found that porcine DDX3X was mainly located in the cytoplasm, not in the nucleus.
     3. porcine DDX3X participated in the IFN-βproduction
     pCAGGS-HA-DDX3X was transfected into the PK-15 cells, then it was confirmed that porcine DDX3X could increase the levels of IFN-βmRNA expression by relative quantitative detection. Further, the siRNA named sipDDX3X which interfered with the endogenous porcine DDX3X was designed and was transfected into the PK-15 cells. Then the porcine DDX3X's effect on the IFN-βwhich was induced by SeV/poly(dA:dT) was detected. The result showed that the IFN-βmRNA levels induced by SeV/poly(dA:dT) were significantly decreased after the endogenous porcine DDX3X was knocked out. Meanwhile porcine DDX3X activated the IFN-βpromoter via dual luciferase assay system.
     4. The porcine DDX3X promoted TBK1/IPS-1 to activate the IFN-βpromoter in a dose-dependent manner
     porcine DDX3X and TBK1/IPS-1 which were marked by the red fluorescent protein and green fluorescent protein co-localized in PK-15 cells. The result indicated that porcine DDX3X interacted with TBK1/IPS-1. Further, porcine DDX3X promoted TBK1/IPS-1 to activate the IFN-P promoter in a dose-dependent manner, which further confirmed that porcine DDX3X interacted with TBK1/IPS-1.
     5. The interaction between porcine DDX3X and PRRSV
     pEGFP-C2-DDX3X was transfected into Marc-145 cells which were then infected with PRRSV. The subcellular localization of porcine DDX3X was observed by laser confocal microscopy after DAPI staining. The result made it clear that PRRSV didn't change the porcine DDX3X's subcellular localization. Further study found that porcine DDX3X inhibited the proliferation of PRRSV, which was detected by absolute quantification and TCID50 and PRRSV could increase the expression of porcine DDX3X mRNA in PAM cells.
引文
1.殷震,刘景华.动物病毒学[M](第2版).科学出版社,1997
    2.赵艳.病毒感染的天然免疫识别机制.国际病毒学杂志,2007,14(6):165-169
    3. Akira S. TLR signaling. Curr Top Microbiol Immunol.2006,311:1-16
    4. Ariumi Y, Kuroki M, Abe K, Dansako H, Ikeda M, Wakita T, et al. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J Virol, 2007,81:13922-6
    5. Benfield D A, Christopher-Hennings J, Nelson E A, Rowland R R, Nelson J K, Chase C L. Persistent fetal infection of porcine reproductive and respiratory syndrome (PRRS) virus. Proceedings of the American Association on Swine Practitioners,1997, Canada
    6. Berthelot K, Muldoon M, Rajkowitsch L, Hughes J, McCarthy JE. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol Microbiol,2004, 51:987-1001
    7. Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A, Winnard Jr P, et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene,2008,11:11
    8. Chang C C, Yoon K J, Zimmerman J J. Evolution of porcine reproductive and respiratory syndrome virus during sequential passages in pigs. J Virol,2002, 76:4750-4763
    9. Chang PC, Chi CW, Chau GY, Li FY, Tsai YH, Wu JC, et al. DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene,2006,25:1991-2003
    10. Chao CH, Chen CM, Cheng PL, Shih JW, Tsou AP, Lee YH. DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res, 2006,66:6579-88
    11. Chaomin Sun1, Cara T. Pager2, Guangxiang Luo3, Peter Sarnow2, Jamie H. D. Cate4,5,6*. Hepatitis C Virus Core-Derived Peptides Inhibit Genotype lb Viral Genome Replication via Interaction with DDX3X. PLoS ONE,2010,5,1-10
    12. Chung-Sheng Lee1, Anusha P. Dais1, Mark Jedrychowski2, Arvind H. Patel3,Jeanne L. Hsu'and Robin Reed1,*. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Research,2008,1-11
    13. David W. Silverside, Nedzad Music, Mario Jacques, Carl A. Gagnon*, Richard Webby. Investigation of the Species Origin of the St. Jude Porcine Lung Epithelial Cell Line (SJPL). J Virol,2010,84:5454-5455
    14. Didier Soulat1,3, Tilmann BUrckstUmmer2, Sandra Westermayer1, Adriana Goncalves Angela Bauch2, Adrijana Stefanovi02, Oliver Hantsche12, Keiryn L Bennett2,Thomas Decker1,* and Giulio Superti-Furga2,*. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. The EMBO Journal,2008,27:2135-2146
    15. Emma M. Creagh and Luke A.J. O'Neill. TLRs, NLRs and RLRs:a trinity of pathogen sensors that co-operate in innate immunity. TRENDS in Immunology,2006, 27:352-357
    16. Franca R, Belfiore A, Spadari S, Maga G. Human DEAD-box ATPase DDX3 shows a relaxed nucleoside substrate specificity. Proteins,2007,67:1128-1137
    17. Fuller-Pace FV. DExD/H box RNA helicases:multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res,2006,34:4206-15.
    18. Gerald Reiner*, Christina Fresen, Sebastian Bronnert, Hermann Willems. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection in wild boars. Veterinary Microbiology,2009,136:250-258
    19. Haifeng Wang, Seahee Kim, and Wang-Shick Ryu*. DDX3 DEAD-Box RNA Helicase Inhibits Hepatitis B Virus Reverse Transcription by Incorporation into Nucleocapsids. J Virol,2009,83:5815-5824
    20. Haifeng Wang, Wang-Shick Ryu*. Hepatitis B Virus Polymerase Blocks Pattern Recognition Receptor Signaling via Interaction with DDX3. Implications for Immune Evasion PLoS Pathogens,2010,6:1-11
    21. Hill H. Overview and history of mystery swine disease (swine infertility respiratory syndrome). In:Proc Mystery Swine Disease Committee Meeting,1990, Denver, Madison
    22. Himanshu Kumar, Taro Kawai, Shizuo Akira*. Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications,2009, 388:621-625
    23. Hiroyuki Oshiumi, Keisuke Sakai, Misako Matsumoto and Tsukasa Seya. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential. Eur. J. Immunol,2010,40:940-948
    24. Iris Delrue1, Hanne Van Gorp1, Jan Van Doorsselaere2, Peter L. Delputte1.* and Hans J. Nauwynck1,*,§. Susceptible cell lines for the production of porcine reproductive and respiratory syndrome virus by stable transfection of sialoadhesin and CD 163. BMC Biotechnology,2010,10:48
    25. Ishaq M, Hu J, Wu X, Fu Q, Yang Y, Liu Q, et al. Knockdown of cellular RNA helicase DDX3 by short hairpin RNAs suppresses HIV-1 viral replication without inducing apoptosis. Mol Biotechnol,2008,39:231-8
    26. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawai T, Takeuchi O, Akira S. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol,2006,7:40-48
    27. Kalverda AP, Thompson GS, Vogel A, Schr o der M, Bowie AG, Khan AR, et al. Poxvirus K7 protein adopts a Bcl-2 fold:biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol,2008
    28. Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity,2007,27:549-559
    29. Kim YS, Lee SG, Park SH, Song K. Gene structure of the human DDX3 and chromosome mapping of its related sequences. Mol Cells,2001,12:209-14
    30. Lahn BT, Page DC. Functional coherence of the human Y chromosome. Science, 1997,278:675-80
    31. Lai MC, Lee YH, Tarn WY. The DEAD-box RNA helicase DDX3 associates with export mRNPs as well as TAP and participates in translational control. Mol Biol Cell, 2008,2:2
    32. Lee CS, Dais AP, Jedrychowski M, Patel AH, Hsu JL, Reed R. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res,2008,15:15
    33. Lilan Xie1, Manli Liu1, Liurong Fang, Xiuchan Su, Kaimei Cai, DangWang, Huanchun Chen, Shaobo Xiao. Molecular cloning and functional characterization of porcine stimulator of interferon genes (STING). Developmental and Comparative Immunology,2010,34:847-854
    34. Linder P. Dead-box proteins:a family affair——active and passive players in RNP-remodeling. Nucleic Acids Res,2006,34:4168-4180
    35. Maga G, Falchi F, Garbelli A, Belfiore A, Witvrouw M, Manetti F, et al. Pharmacophore modeling and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication targeting the human cellular aspartic acid-glutamic acid-alanine-aspartic acid box polypeptide 3. J Med Chem,2008, 51:6635-8
    36. Mamiya N, Worman HJ. Hepatitis C virus core protein binds to a DEAD box RNA helicase. J Biol Chem,1999,274:15751-6
    37. Mardassi H, Massie B, Dea S. Intracellular synthesis, processing, and transport of proteins encoded by ORFs5 to 7 of porcine reproductive and rispiratory syndrome virus. Virology,1996,221:98-112
    38. Marsden S, NardelliM, Linder P, McCarthy JE. Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. J Mol Biol,2006, 361:327-35
    39. Martina Schr o der, Marcin Baran and Andrew G Bowie*. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKε-mediated IRF activation. The EMBO Journal,2008,27:2147-2157
    40. Medzhitov R, Janeway Jr CA. Innate immunity:the virtues of a nonclonal system of recognition. Cell,1997,91:295-298
    41. Merz C, Urlaub H, Will CL, Luhrmann R. Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA 2007,13:116-28
    42. Miller, L.C., Laegreid, W.W., Bono, J.L., Chitko-McKown, C.G., Fox, J.M. Interferon type I in porcine reproductive and respiratory syndrome virus-infected MARC-145 cells. Arch. Virol,2004,149:2453-2463
    43. Ming-Chih Lai, Yan-Hwa Wu Lee, and Woan-Yuh Tarn. The DEAD-Box RNA Helicase DDX3 Associates with Export Messenger Ribonucleoproteins as well as Tip-associated Protein and Participates in Translational Control. Molecular Biology of the Cell,2008,19:3847-3858
    44. Mohamed Abdelhaleem, Lois Maltais, and Hester Wain. The human DDX and DHX gene families of putative RN A helicases. Genomics,2003,81:618-622
    45. Murtaugh, M.P., Xiao, Z., Zuckermann, F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection. Viral Immunol,2002, 15:533-547
    46. Orla Mulhern and Andrew G. Bowie. Unexpected roles for DEAD-box protein 3 in viral RNA sensing pathways. Eur. J. Immunol,2010,40:933-935
    47. Owsianka AM, Patel AH. Hepatitis. C virus core protein interacts with a human DEAD box protein DDX3. Virology,1999,257:330-40
    48. Petrilli V, Dostert C, Muruve DA, Tschopp J. The inflammasome:a danger sensing complex triggering innate immunity. Curr Opin Immunol,2007,19:615-622
    49. Peyman Nakhaei1-2, John Hiscott1-2-3, and Rongtuan Lin1-3,*. STING-ing the Antiviral Pathway. Journal of Molecular Cell Biology,2010,2:110-112
    50. Pichlmair A, Reis ESC. Innate recognition of viruses. Immunity,2007,27:370-383
    51. Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA,2007,104:12884-12889
    52. Rashu B Seth1, Lijun Sun1, Zhijian J Chen1. Antiviral innate immunity pathways. Cell Research,2006,16:141-147
    53. Ray-Yuan Chuang, Paul L. Weaver, Zheng Liu, Tien-Hsien Chang*. Requirement of the DEAD-Box Protein Dedlp for Messenger RNA Translation. SCIENCE,1997, 275:1468-1471
    54. Rui Luo, Shaobo Xiao, Yunbo Jiang, Hui Jin, Dang Wang, Manli Liu, Huanchun Chen, Liurong Fang. Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-β production by interfering with the RIG-I signaling pathway. Molecular Immunology,2008,45:2839-2846
    55. Saito, T., Hirai, R., Loo, Y. M., Owen, D., Johnson, C. L., Sinha, S. C., Akira,S. et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA,2007,104:582-587
    56. Schroder M, Baran M, Bowie AG. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKvarepsilon-mediated IRF activation. EMBO J,2008,17:17
    57. Sekiguchi T, Iida H, Fukumura J, Nishimoto T. Human DDX3Y, the Y-encoded isoform of RNA helicase DDX3, rescues a hamster temperature-sensitive ET24 mutant cell line with a DDX3X mutation. Exp Cell Res,2004,300:213-22
    58. Shih JW, Tsai TY, Chao CH, Wu Lee YH. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene,2008,27:700-14
    59. Shuqi Xiao, Delin Mo, Qiwei Wang, Jianyu Jia, Limei Qin, Xiangchun Yu, Yuna Niu, Xiao Zhao, Xiaohong Liu, Yaosheng Chen. Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. BMC Genomics,2010,11:544
    60. Snijder E J, van tol H, Pedersen K W, Raamsman M J B, de Vries A A F. Identification of a novel structural protein of arteriviruses. Journal of Virology,1999, 73:6335-6345
    61. Sol M. Cancel-Tiradoa, Richard B. Evansb, Kyoung-Jin Yoona,b,*. Monoclonal antibody analysis of Porcine Reproductive and Respiratory Syndrome virus epitopes associated with antibody-dependent enhancement and neutralization of virus infection. Veterinary Immunology and Immunopathology,2004,102:249-262
    62. Soulat D, Burckstummer T, Westermayer S, Goncalves A, Bauch A, Stefanovic A, et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J,2008,26:26
    63. Sun M, Song L, Li Y, Zhou T, Jope RS. Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ,2008,15:1887-900
    64. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K, Ohba Y, Taniguchi T. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature,2007,448:501-505
    65. Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, Y. et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol,2007,178:6444-6455
    66. Wang H, Kim S, Ryu WS. DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J Virol,2009,83:5815-24
    67. Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, Tamura T, Takaoka A, Nishikura K, Taniguchi T. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci USA,2008, 105:5477-5482
    68. Wensvoort T. Lelystad virus and porcine epidemic abortion and respiratory syndrome. Veterinary Research,1993,24:117-124
    69. Yang Q, Jankowsky E. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat Struct Mol Biol,2006,13:981-6
    70. Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell,2004, 119:381-92
    71. Yedavalli VS, Zhang N, Cai H, Zhang P, Starost MF, Hosmane RS, et al. Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. J Med Chem,2008,51:5043-51
    72. Yoneyama M, Fujita T. Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem,2007,282:15315-15318
    73. Yoon K J, Wu L L, Zimmerman J J, Hill H T, Platt K B. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs. Viral Immunol,1996,9:51-63
    74. You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH, et al. Hepatitis C virus core protein interactswith cellular putative RNA helicase. J Virol,1999,73:2841-53
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.