蛋白质分子印迹核—壳微球的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Protein Imprinted Molecularly Core-Shell Microspheres
  • 作者:闫长领
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2007
  • 导师:卢雁
  • 学科代码:070304
  • 学位授予单位:兰州大学
  • 论文提交日期:2007-10-01
摘要
分子识别是生命过程的一种重要活动,分子印迹技术就是模拟天然分子的识别功能制备具有特异选择性聚合物的人工方法。经过人们的不懈努力,这方面的工作已取得了重大进步,特别是在小分子印迹方面,实验所需的各种方法和手段日臻完善,印迹聚合物的制备技术渐趋成熟,相关的许多应用研究正在逐步展开。但是对于生物大分子比如蛋白质分子,目前所采用的方法不理想,实验结果重现性差,水环境下的识别机理还不清楚,生物大分子在聚合物中扩散慢。因此,有必要对生物大分子印迹技术进行进一步的研究,这对大分子印迹材料在催化领域、物质分离、生物制药、分析化学和生物传感等应用方面具有重要意义。
     本论文首先对分子印迹技术的基本原理、应用和研究现状进行了论述。分子印迹技术来源于免疫学。1993年,Mosbach等在《Nature》上发表了有关茶碱分子印迹物的研究报道之后,分子印迹技术才得到了蓬勃发展。该技术的基本原理为:在制备分子印迹聚合物时,功能单体与模板分子通过一定的作用力结合在一起,引发聚合后模板分子被包埋在聚合物内部。当模板分子从聚合内部洗脱之后,聚合物中留下一些位点,这些位点能够记忆模板分子的功能和形状。分子印迹分为两种基本类型:预组织法(共价法)和自组织法(非共价法)。分子印迹聚合物在色谱分离、仿生催化、药物分析及分析传感等方面展现出良好的应用。分子印迹技术研究正从以小分子为模板向生物大分子为模板发展。目前用于印迹的蛋白质种类多种多样,较为常用的有牛血清蛋白(BSA)、牛血红蛋白、核糖核酸酶和溶菌酶等。对蛋白质印迹目前常采用的单体有丙烯酸、甲基丙烯酸、丙烯酰胺、N,N′-乙烯基二丙烯酰胺,N,N′-亚甲基二丙烯酰胺等。蛋白质分子印迹聚合物的物理形式可大致分为三维块体和二维薄膜两种。
     本论文的主要研究内容是制备聚苯乙烯微球,在水溶液环境条件下制备核-壳结构的蛋白分子印迹微球。通过再结合实验考察所制备的印迹微球的特异结合能力和分子识别性能等,并对蛋白质分子的印迹和识别原理进行了分析。
     首先,从各种制备微球的方法中,探索出了用悬浮聚合法制备聚苯乙烯微米级球体技术,考察了聚合温度、搅拌速率、引发剂用量、单体用量、表面活性剂浓度等条件对微球形貌的影响,并利用扫描电镜对微球的表观形貌、粒径及粒径大小分布进行了表征。实验结果表明,在适当条件下,悬浮聚合法可以制备出粒径在50-60微米的球体。该方法制备的聚苯乙烯微球大小较均匀、表面清洁,所需反应时间短、操作方便、产品易于分离。
     其次,在水溶液中于聚苯乙烯微球表面通过化学氧化法嫁接一层聚间氨基苯硼酸薄膜,形成核-壳结构微球。在此实验部分主要研究了乙酸溶液和磷酸缓冲溶液对嫁接的聚间氨基苯硼酸薄膜稳定性的影响。并用透射电镜、拉曼光谱、X-射线光电子能谱和氮气吸附,脱附实验对核-壳结构微球进行了表征。实验证明,聚间氨基苯硼酸通过苯环上的电子成对作用较牢固地结合在聚苯乙烯微球表面;核-壳微球在乙酸溶液和磷酸缓冲溶液中有很高的稳定性。
     再次,在制备核-壳微球的基础上,当蛋白分子参与嫁接过程时实现了蛋白质分子印迹。为了验证方法的可行性,我们首先以溶茵酶作为模板分子进行印迹。先将一定浓度的间氨基苯硼酸溶液和溶茵酶溶液相混合,使蛋白分子与功能单体相互作用,然后加入一定量的聚苯乙烯微球和一定浓度的过硫酸铵溶液,在22-24℃下进行聚合反应。反应完成后将印迹的微球从溶液中分离出来,并用去离子水洗涤。干燥一定时间后,用乙酸溶液洗涤除去模板分子,再于室温下进行干燥。用干燥的微球进行间歇式吸附实验,考察印迹微球达到吸收平衡的时间。结果表明该印迹微球可以在60min内达到吸收平衡,证明该微球对生物大分子具有较好的质量传输性能;印迹微球对模板分子的特异吸附性能实验表明,当实验达到吸收平衡时印迹微球比非印迹微球有较大的吸附能力;分子识别性能实验显示,印迹微球对模板分子有较强的结合能力。另外还考察了这种印迹微球的稳定性,实验表明其稳定性在两个月内没有明显变化。
     最后,利用这种原理分别制备了其它蛋白质(牛血红蛋白、牛血清蛋白、胰蛋白酶和木瓜蛋白酶等)的印迹微球,用多种方法对样品进行了表征,并考察了印迹微球的特异吸附能力和识别性能及质量传输性能和稳定性等。
     总之,实验表明我们制备的蛋白质印迹核-壳结构微球有较快的质量传输性能,对模板分子有高的吸附能力和良好的选择性识别性能。该分子印迹技术方法简便、反应条件温和,可以在水溶液环境中实现蛋白分子的印迹和识别,并具有一定的普适性。
Molecular recognition is an important activity in life process. Molecular imprinting technique is an artifical method of synthesizing polymer with special selectivity by simulating recognition function of natural molecular. In this work, great advance has been made by effort. In specially, for small molecules, the various techniques have been perfect and applied to many aspects. For bio-macromolecules such as protein, however, the existed methods are not ideal. Experimental results have not good reproducibility. Recognition mechanism has not been completely understood under water environment and bio-macromolecules imprinted polymers have poor mass transport. Thus it is necessary to further study bio-macromolecules technique. This has a great significance for the application of bio-macromolecules imprinted materials in the domains of catalysis, separation, bio-pharmacy, analytical chemistry, sensor, and so on.
     In this paper, general principle, application and actuality of molecular imprinting technique were reviewed. Molecular imprinting technique originated from immunology. After the theophylline imprinted polymer was reported in Nature (1993), molecular imprinting technique has made breakthrough. The general principle of technique is polymerization process. Functional monomers form a complex with the template molecule. After the functional monomers are polymerized with the cross-linker, a polymeric network is formed around the template. The polymer liberates complementary binding sites by removing the template, and these sites can memorize the template. Molecular imprinting technique can be divided into tow distinct approaches: covalent (preorganization) and noncovalent (self-assembly). Molecularly imprinted polymers exhibit good behavior in the applications of chromatography separation, bio-mimetic catalysis, drug analysis and analytical sensor. The studies of molecular imprinting are transforming from small molecules to bio-macromolecules. At present, various proteins were used for molecular imprinting such as bovine serum albumin, bovine hemoglobin, ribonuclease and lysozyme etc. For protein molecular imprinting, the monomers commonly used are acrylic acid, methacrylic acid, acrylamide, N, N'-ethylenebis (acrylamide), N, N'-methylenebisacrylamide. The physical forms of protein molecular imprinting can conveniently be subdivided into either 3D (bulk) or 2D (thin film).
     The experiment mainly includes the preparation of polystyrene microspheres, the preparation of imprinted core-shell microspheres in aqueous solutions for proteins, and the studies of the specific binding ability and the recognition of the imprinted microspheres. The mechanisms of imprinting and recognition for protein were analyzed.
     Firstly, suspension polymerization was selected for the preparation of polystyrene microspheres from the approaches to synthesize microspheres. The effects of temperature, stirring speed, initial amounts of initiator and monomer, and surfactant concentration on morphology of polystyrene microspheres were investigated. The morphology, size and size distribution of the microspheres were characterized using scanning electron microscope (SEM). The experimental results indicate that polystyrene microspheres with the diameter of 50-60μm can be prepared by the method under appropriate conditions. The microspheres have uniform size and clean surfaces. The advantages of the method are that the speed of reaction is rapid, manipulation is convenient and product is easily separated.
     Secondly, the thin films of poly-3-amonophenylboronic acid in aqueous environment were grafted on polystyrene microspheres by oxidation for forming core-shell microspheres. The effects of acetic acid solution and sodium phosphate buffers on stability of grafted thin films were valued. The samples were characterized using transmission electron microscope (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption/desorption methods. The results show that poly-3-amonophenylboronic acid can be grafted upon surfaces of the polystyrene microspheres by aromatic ring electron-pairing interaction, and the surfaces of core-shell microspheres have high stability in acetic acid solution and sodium phosphate buffers.
     Thirdly, based on the core-shell microspheres, protein molecular imprinting was implemented when protein was presented during grafting. For examining the feasibility of the strategy, lysozyme imprinted core-shell microspheres were first prepared. The 3-amonophenylboronic acid and lysozyme solutions of definite concentration were mixed for them interacting. Then definite polystyrene microspheres and the ammonium persulfate solution of definite concentration were added. After the polymerization was carried out at 22-24℃, the imprinted microbeads were separated from the solution and washed repeatedly with deioned water and dried for definite time. Finally, they were washed repeatedly with the acetic acid solution for removing template molecules and dried at room temperature. The batchwise adsorption experiments were carried out for detecting the time to reach equilibrium of adsorption, the abilities of specific adsorption for the template protein, and selective recognition for the template protein and the stability for the imprinted core-shell microspheres. The imprinted microspheres can reach equilibrium of adsorption in 60 min, and this proves the imprinted microspheres have good mass transport. The imprinted microspheres have higher specific adsorption than the nonimprinted microspheres when adsorption reaches equilibrium. The imprinted microspheres have higher adsorption ability for the template protein than non-template proteins. In additionally, the adsorption ability of imprinted microspheres didn't obviously decrease for template protein over two months, and this shows that the imprinted microspheres possess high stability.
     Finally, the imprinted microspheres for various proteins such as bovine hemoglobin, bovine serum albumin, trypsin and papain were prepared using the strategy and batchwise adsorption experiments were carried out for detecting the abilities of specific adsorption for the template protein, and selective recognition for the template protein, mass transport and the stability for the imprinted core-shell microspheres.
     In collusion, the protein imprinted core-shell microspheres prepared by us possess good mass transport, high ability of adsorption and good recognition for template proteins. The molecularly imprinted technique can be used in aqueous solution for protein imprinting under the mild conditions. The technique is convenient and has a certain extent generality.
引文
1. Ramstrom O.; Ansell R. J. Molecular imprinting technology: challenges and prospects for the future. Chirality, 1998, 10: 195-209.
    2. Vallano P. T.; Remcho V.T. Highly selective separations by capillary electrochromato-graphy: electrochromatography: molecular imprint polymer sorbents. J. Chromatogr. A, 2000, 887: 125-135
    3. Khasawneh M. A.; Vallano P. T.; Remcho V. T. Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents Ⅱ. Covalent imprinted polymers. J. Chromatogr. A, 2001, 922: 87-97.
    4. Haupt K. Imprinted polymers: the next generation. Anal. Chem. 2003, 376A-383A.
    5. Yoshida M.; Uezu K.; Goto M.; Furusakl S. Surface imprinted polymer recognition amino acid chirality. J. Appl. Polym. Sci., 2000, 78: 695-703.
    6. Pauling L. A theory of the structure and process of formation of antibodies. J. Am. Chem. Sco. 1940, 62: 2643-2657.
    7. Burnet F. M. The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge 1959.
    8. Dickey F. H. The preparation of specific adsorbents. Proc. Natl. Acad. Sci. USA 1949, 35(5): 227-229.
    9. Wuff G.; Sarhan A. The use of polymers with enzyme-analogous structure for the recognition of racemates. Angew. Chem. Int. Ed. 1972,11(4):341.
    10. Vlatakis G.; Andersson L.I.; Muller R.; Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361:645-647.
    
    11. 姜忠义;吴 洪.盆子印迹技术.北京:化学工业出版社 2003.
    
    12. Wuff G.; Vitemeiers J. Synthesis of macroporous copolymers from amino acid based vinyl compounds. Makromol. Chem. 1989, 190:1717-1721.
    
    13. Andersson L.I.; Sellergren B.; Mosbach K. Imprinting of amino acid derive-actives in macroporous polymers. Tetrahedron lett. 1984,25: 5211-5218.
    
    14. Arshady R.; Mosbach K.; Synthesis of substrate-selective polymer by host-guest polymerization. Makromol. Chem. 1981,182:687-692.
    
    15. Dicket F. L.; Besenbook H.; Tortschanoff G. Molecular imprinting through vander waals interactions: fluorescence detection of PAHS in water. Adv. Mater. 1998, 10:149-153.
    
    16. Andersson L.I.; Shanessy D.J.O.; Mosbach K. Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acid amides. J. Chromator. 1990, 513:313-322.
    
    17. Shea K.J.; Spirak D.A.; Sellergren B. Polymer complements to nucleotide bases selective binding of adenine derivatives to imprinted polymers. J. Am. Chem. Sco.1993,115:3368-3369.
    
    18. Dunkin I.R.; Lenfeld J.; Sherrington D.C. Molecular imprinting of flat poly-condensed aromatic molecular in macroporous polymers. Polymer 1993, 34:77-82.
    
    19. Andersson L.I.; Sellergren B.; Mosbach K. Studies on guest selective molecular recognition on an octaclecyl silyated silicon surface using ellipsometry. Tetrahedron Lett. 1988,29:5437-5441.
    
    20. Whitcomb M.J.; Rodriguez M.E.; Villar P.; Vulfson E.N. J. Am. Chem. Soc.; 1995;117(27): 7105-7111.
    
    21. Whitcomb M.J.; Alexander C; Vulfson E. . Smart polymers for the food industry.Trends Food Sci. Technol. 1997, (8): 140-145.
    
    22. Haupt K.; Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000,100: 2495-2504.
    
    23. Kriz D.; Mosbach K. Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer. Anal. Chim. Acta 1995, 300:71-75.
    
    24. Andersson L.I.; Ekberg B.; Mosbach K. Bioseparation and catalysis in molecularly imprinted polymers. In: Molecular interactions in bioseparations. New York: Plenum Press 1993: 383-395.
    
    25. Fischer L.; Mueller R.; Ekberg B.; Mosbach K. Direct enantioseparation of beta.-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting J. Am. Chem. Soc. 1991,113(24): 9358-9360.
    
    26. Cormack P.A.G.; Elorza A.Z. Molecularly imprinted polymers: synthesis and characterization. J. Chromatogr. B 2004, 804: 173-182.
    
    27. Perez-Moral N.; Mayes, A.G Noncovalent imprinting in the shell of core-shell nanoparticles. Langmuir 2004,20(9): 3775-3779.
    
    28. Perez N.; Whitcombe M.J.; Vulfson, E.N. Surface imprinting of cholesterol on submicrometer core-shell emulsion particles. Macromolecules 2001, 34(4):830-836.
    
    29. Rachkov A.; Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. BBA-Protein Struct. M. 2001, 1544:255-266.
    
    30. Peng H.; Zhang Y.; Zhang J.; Xie Q.; Nie L.; Yao S. Development of a thickness shear mode acoustic sensor based on an electrosynthesized molecularly imprinted polymer using an underivatized amino acid as the template. Analyst 2001,126:189-194
    
    31. Sergeyeva T.A.; Brovko O.O.; Piletska E.V.; Piletsky S.A.; Goncharova L.A.;Karabanova L.V.; Sergeyeva L.M.; El'skaya A.V. Porous molecularly imprinted polymer membranes and polymeric particles. Anal. Chim. Acta 2007, 582: 311 -319.
    
    32. Piletsky S.A.; Karim K.; Piletska E.V.; Day C.J.; Freebairn K.W.; Legge C; Tuener A.P.F. Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. Analyst 2001, 126: 1826-1830.
    33. Hart B.R.; Shea K.J. Synthetic peptide receptors: molecularlyimprinted polymers for the recognition of peptides using peptide-metal interactions. J. Am. Chem. Soc.(Communication) 2001,123(9): 2072-2073.
    
    34. Kochkodan V.; Weigel W.; Ulbricht M. Thin layer molecularly imprinted microfiltration membranes by photofunctionalization using a coated a-cleavage photoinitiator. Analyst 2001,126: 803-809.
    
    35. Wei X.; Li X.; Husson S.M. Surface molecular imprinting by atom transfer radical polymerization. Biomacromolecules. 2005, 6(2): 1113-1121.
    
    36. Aherne A.; Alexander C; Payne M.J.; Perez N.; Vulfson E.N. Bacteria-mediated lithography of polymer surfaces J. Am. Chem. Soc. (Communication) 1996, 118(36):8771-8772.
    
    37. Khasawneh M.A.; Vallano P.T.; Affinity screening by packed capillary high performance liquid chromatography using molecularly imprinted sorbent. J.Chromatogr.A 2001,7:125-131.
    
    38. Percival C.J.; Stanley S. Molecularly imprinted polymer coated QCM for the detection of nandrolone. Analyst 2002,127(8): 1024-1026.
    
    39. Kobayashi T.; Murawaki Y.; Reddy P.S.; Abe M.; Fujii N. Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance. Anal. Chim. Acta 2001,435:141-149.
    
    40. Matsui J.; Kato T.; Takeuchi T.; Suzuki M.; Yokoyama K.; Tamiya E.; Karube I.Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Anal. Chem. 1993, 65(17): 2223-2224.
    
    41. Levi R.; McNiven S.; Piletsky S.A.; Cheong S.-H.; Yano K.; Karube I. Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers. Anal. Chem.1997, 69(11): 2017-2021.
    
    42. Zou H.-F.; Huang X.-D.; Ye M.-L.; Luo Q.-Z. Monolithic stationary phases for liquid chromatography and capillary electrochromatography. J. Chromatogr. A 2002,954: 5-32.
    
    43. Matsui J.; Okada M.; Tsuruoka M.; Takeuchi T. Solid-phase extraction of a triazine herbicide using a molecularly imprinted synthetic receptor Anal. Comm. 1997, 34(3): 85-87.
    
    44. Lai J.-P.; Lu X.-Y.; Lu C.-Y.; Ju H.-F.; He X.-W. Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase. Analytica Chimica Acta 2001,442: 105-111.
    
    45. Mayes A.G; Mosbach K. Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem.1996,68(21): 3769-3774.
    
    46. Ansell R.J.; Mosbach K. Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent. J. Chromatogr. A 1997,787: 55-66.
    
    47. Hosoya K.; Yoshizako K.; Tanaka N.; Kimata K.; Araki T.; Haginaka J.Uniform-size macroporous polymer-based stationary phase for HPLC prepared through molecular imprinting technique. Chem. Lett. 1994,23(8): 1437-1438.
    
    48. Haginaka J.; Sanbe H. Uniform-sized molecularly imprinted polymers for 2-arylpropionic acid derivatives selectively modified with hydrophilic external layer and their applications to direct serum injection analysis. Anal. Chem. 2000, 72(21):5206-5210.
    
    49. Haupt K.; Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000,100(7): 2495-2504.
    
    50. Ye L.; Weiss R.; Mosbach, K. Synthesis and characterization of molecularly imprinted microspheres. Macromolecules 2000,33 (22): 8239-8245.
    
    51. Ye L.; Cormack A.G; Mosbach K. Molecular imprinted monodisperse microspheres Anal. Commun. 1999, 36:35-38.
    
    52. Surugiu I.; Ye L.; Yilmaz E.; Dzgoev A.; Danielsson B.; Mosbach K.; Haupt K. An enzyme-linked molecularly imprinted sorbent assay. Analyst 2000, 125:13-16.
    
    53. Huang X.; Zou H.; Chen X.; Luo Q.; Kong L. Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of enantiomers and diastereomers. J. Chromatogr. A 2003, 984: 273-282.
    
    54. Matsui J.; Nicholls I.A.; Takeuchi T. Molecular recognition in cinchona alkaloid molecular imprinted polymer rods. Anal. Chim. Acta 1998, 365: 89-93.
    
    55. Panasyuk T.L.; Mirsky V.M.; Piletsky S.A.; Wolfbeis, O.S. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors.Anal. Chem. 1999, 71(20): 4609-4613.
    
    56. Malitesta C; Losito I.; Zambonin P.G Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal. Chem. 1999, 71(7):1366-1370.
    
    57. Peng H.; Liang C; Zhou A.; Zhang Y.; Xie Q.; Yao S. Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with 0-phenylenediamine. Anal. Chim. Acta 2000,423:221-228.
    
    58. Deore B.; Chen Z.; Nagaoka, T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal. Chem. 2000, 72(17):3989-3994.
    
    59. Piletsky S.A.; Piletska E.V.; Chen B.; Karim K.; Weston D.; Barrett G; Lowe P.;Turner A.P.F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem. 2000,72(18): 4381-4385.
    
    60. Piletsky S.A.; Matuschewski H.; Schedler U.; Wilpert A.; Piletska E.V.; Thiele T.A.;Ulbricht M. Surface functionalization of porous polypropylene membranes withmolecularly imprinted polymers by photograft popolymerization in water.Macromolecules 2000, 33(8): 3092-3098.
    
    61. Cormack P.A.G.; Elorza A.Z. Molecularly imprinted polymers: synthesis and characterisation. J. Chromatogr. B 2004, 804:173-182.
    
    62. Kempe M.; Mosbach K.; Binding studies on substrate and enantioselective molecularly imprinted polymers. Anal. Lett. 1991, 24: 1137-1145.
    
    63. Andersson L.I. Application of Molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol. Anal. Chem. 1996, 68(1): 111-117.
    
    64. Ansell R.J.; Ramstrom O.; Mosbach K. Towards artificial antibodies by the molecular imprinting. Clin. Chem. 1996, 42: 1506-1512.
    65. Kempe M.; Mosbach K. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral phase. J. Chromatogr. A 1994, 664(2):276-279.
    66. Sellergren B.; Shea K. Ability of imprinted network polymers to resolve enantiomers. J Chromatogr. A 1993, 654: 17-28.
    67.周杰,何锡文,杨万龙,史慧明 利凡诺分子模板聚合物的吸附与识别特性研究.高等学校化学学报1998,19(9):1388-1392.
    68. Matsui J.; Miyoshi Y.; Doblhoff-Dier O.; Takeuchi T. Amolecularly imprinted synthetic polymer receptor selective for atrazine. Anal. Chem. 1995, 67: 4404-4408.
    69. Sellergren B. Direct drug determination by selective sample enrichment on an imprinted polymer. Anal. Chem. 1994, 66(9): 1578-1582.
    70. Markowitz M. A.; Kust P. R.; Klaehn J.; Deng G.; Gaber B. P. Surface-imprinted silica particles: the effects of added organosilanes on catalytic activity. Anal. Chim. Acta 2001, 435: 177-185.
    71. Idziak I.; Gravel D.; Zhu X. X. Polymer-catalyzed aminolysis of covalently imprinted cholic acid derivative. Tetrahedron Lett. 1999, 40: 9167-9170.
    72.刘志航,浣石,蒋国平,宦双燕,沈国励,俞汝勤 分子印迹聚合物应用研究进展.科技导报2006,24(1):51-54.
    73.陈建新,吴洪,姜忠义 分子印迹技术在化学反应中的应用.化工进展2003,22(12):1296-1303.
    74.王锦,雷孝,何文礼,王超丽 分子印迹技术的应用进展.化学与生物工程 2006,23(4):4-6.
    75.李萍,胡濬喆,林保平,戎非,袁春伟以混旋邻氯扁桃酸为模板的分子印迹聚合物的制备及拆分性能研究.化学学报2003,61(11):18852-1889.
    76.赖家平,卢春阳,何锡文 水溶液悬浮聚合法制备酸药物吲哚美辛分子印迹微球及其色谱表征.高等学校化学学报2003,24(7):11752-1179.
    77.李志伟,杨更亮,王德先,周胜利,刘二东,陈义国际网:化学学报分子烙印固定相用于分离氨基安替吡啉及其结构类似物.2003,5(6):46-48.
    78. Martin P.; Wilson I. D.; Morgan D. E.; Jones G. R.; Jones K. Evaluation of a molecular-imprinted polymer for use in the solid, phase extraction of propranolol from biological fluids. Anal. Commun. 1997, 34: 45-47.
    79.胡树国,王善韦,何锡文扑热息痛分子印迹聚合物应用于固相萃取的研究化学学报2004,62(9):864-868.
    80. Bhim B.P.; Shouri B. Preparation, characterization and performance of a silica gel bonded molecularly imprinted polymer for selective recognition and enrichment of β-lactam antibiotics. React. Funct. Polym. 2003, 55 (11): 159-169.
    81.张立永,成国祥,陆书来,傅聪,尹玉姬悬浮聚合法制备西咪替丁印迹聚合物微球的分子选择性能.分析化学研究报告2003,31(6):655-658.
    82. Haginaka J.; Sanbe H. Uniformly sized molecularly irn2printed polymer for (S)-naproxen retention and molecular recognition properties in aqueous mobile phase. J. Chromatogr. A 2001, 913: 141-146.
    83. Haginaka J.; Takehira H.; Hosoya K.; Tanaka N. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer. J. Chromatogr. A 1999, 849:331-339.
    84.郭洪声,何锡文,邓昌辉,李一峻 药物扑热息痛分子模板聚合物的选择性富集与识别特性研究。高等学校化学学报2000,21(3):363-367.
    85.郭洪声,何锡文药物头孢氨苄分子模板聚合物水中结合性质的研究.分析化学2000,28(10):1214-1219.
    86.郭洪声,何锡文,周杰,梁宏药物氟哌酸分子模板聚合物分子识别特性的研究.分析化学2001,29(2):128-132.
    87.董襄朝,孙慧,吕宪禹,韩建仿,韩冰邻羟基苯甲酸分子印迹聚合物对于异构体的识别及色谱行为研究.化学学报2002,60(11):2035~2042.
    88.孙慧,董襄朝,吕宪禹,王海波,韩建仿以分子印迹聚合物为固定相分离和测定氟喹诺酮类药物.色谱2003,21(3):233-238.
    89.卢春阳,何海成,马向霞,张佳,何锡文除草剂青莠定分子印迹聚合物的合成及结合性能研究.化学学报2004,62(8):799-803.
    90.王宁,董襄朝,张学炜,吕宪禹,侯剑峰,范志金单嘧磺隆除草剂分子印迹聚合物的识别特性研究.分析测试学报2004,23(4):13-17.
    91. Masque N.; Marce R.M.; Borrull F.; Cormack P.A.G.; Sherrington D.C. Synthesis and evaluation of a molecularly imprinted polymer for selective on-line solid-phase extraction of 4-nitrophenol from environmental water. Anal. Chem 2000, 72(17): 4122-4126.
    92. Kriz D.; Ramstrom O.; Mosbach K. Molecular imprinting-new possibilities for sensor technology. Anal. Chem. 1997, 69: 345A-349A.
    93.陆书来,成国祥,蔡志江,庞兴收蛋白质模板印迹法制备纳米“孔穴”结构特异性生物材料.中国医学科学院学报2003,25(5):640-644.
    94.朱庆枝,李顺华,许金钩仿生荧光免疫分析卵清白蛋白.福州大学学报(自然科学版)1999,27(9):116-117.
    95. Karsten H. Molecularly imprinted polymers in analytical chemistry. Analyst 2001, 126: 747-756.
    96. Tabushi I.; Kurihara K.; Naka K.; Yamamura K.; Hatakeyama H. Supramolecular sensor based on SnO_2 electrode modified withoctadecylsilyl monolayer having molecular binding sites. Tetrahedron Lett. 1987, 28: 4299-4302.
    97. Kriz D.; Kempe M.; Mosbach K. Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors. Sens. Actuators B: Chem. 1996, 33: 178-181.
    98. Piletsky S.A.; Piletskaya E. V.; Sergeyeva T.A.; Panasyuk T.L.; El'skaya A.V. Molecularly imprinted self-assembled films with specificity to cholesterol. Sens. Actuators B: Chem. 1999, 60: 216-220.
    99. Dickert F. L.; Tortschanoff M.; Fischerauer G.; Bulst, W. E. Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water Anal. Chem. 1999, 71 (20): 4559-4563.
    100. Kriz D.; Ramstroem O.; Svensson A. Mosbach K. A biomimetic sensor based on a molecularly imprinted polymer as a recognition element combined with fiber-optic detection. Anal. Chem. 1995, 67(13): 2142-2144.
    101. Turkewitsch P.; Wandelt B.; Darling G. D.; Powell W. S. Fluorescent functional recognition sites through molecular Imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP. Anal. Chem. 1998, 70(10): 2025-2030.
    102. Feng L.; Liu Y.; Hu, J. Molecularly imprinted TiO_2 thin film by liquid phase deposition for the determination of L-glutamic Acid. Langmuir 2004, 20(5):1786-1790.
    
    103. Perchyonok V.T.; Schiesser C.H. On the use of 9-borabicyclo[3.3.1]nonane as an initiator for low-temperature free-radical reductions. Tetrahedron Lett. 1998, 39:5437-5438.
    
    104. Dickert F.L.; Forth P.; Lieberzeit P.; Tortschanoff M. Molecular imprinting in chemical sensing detection of aromatic and halogenated hydrocarbons as well as polar solvent vapors. Fresenius J. Anal. Chem. 1998,360: 759-762.
    
    105. Jakusch M.; Janotta M; Mizaikoff B.; Mosbach K.; Haupt, K. Molecularly imprinted polymers and infrared evanescent wave spectroscopy. A chemical sensors approach.Anal. Chem. 1999, 77(20): 4786-4791.
    
    106. Liang C; Peng H.; Zhou A.; Nie L.; Yao S. Molecular imprinting polymer coated BAW bio-mimic sensor for direct determination of epinephrine. Anal. Chim.Acta 2000,415,135-141.
    
    107. Lai E.P.C.; Fafara A.; VanderNoot V.A.; Kono M.; Polsky B. Sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine and xanthine. Can. J. Chem. 1998,76(3): 265-273.
    
    108. Sreenivasan K. Application of molecularly imprinted polymer as a drug retaining matrix. Ang. Makromol. Chem. 1997,246: 65-69.
    
    109. Yoshida M.; Hatate Y; Uezu K.; Goto M.; Furusaki S. Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography. J.Polym. Sci. Part A: Polym. Chem. 2000, 38: 689-696.
    
    110. Fang G.-Z.; Tan J.; Yan X.-P. An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol-gel process for selective solid-phase extraction of cadmium (II). Anal. Chem. 2005, 77(6):1734-1739.
    
    111. Lu Y.-K.; Yan X.-P. An imprinted organic-inorganic hybrid sorbent for selective separation of cadmium from aqueous solution. Anal. Chem. 2004, 76(2): 453-457.
    
    112. Lubke M.; Whitcombe M.J.; Vulfson E.N. A novel approach to the molecular imprinting of polychlorinated aromatic compounds. J. Am. Chem. Soc. 1998, 120(51): 13342-13348.
    113. Sibrian-Vazquez M.; Spivak D.A. Molecular Imprinting Made Easy. J. Am. Chem. Soc. 2004, 126(25): 7827-7833.
    114. Kim T. H.; Ki C.D.; Cho H.; Chang T.; Chang J.Y. Facile preparation of core-shell type molecularly imprinted particles: Molecular imprinting into aromatic polyimide coated on silica spheres. Macromolecules 2005, 38(15): 6423-6428.
    115. Yang H.-H.; Zhang S.-Q.; Yang W.; Chen X.-L.; Zhuang Z.-X.; Xu J.-G; Wang X.-R. Molecularly imprinted sol-gel nanotubes membrane for biochemical separations. J. Am. Chem. Soc. (Communication) 2004, 126(13): 4054-4055.
    116. Quaglia M.; Chenon K.; Hall A.J.; De Lorenzi E.; Sellergren B. Target analogue imprinted polymers with affinity for folic acid and related compounds. J. Am. Chem. Soc. 2001, 123(10): 2146-2154.
    117. Yang H.-H.; Zhang S.-Q.; Tan F.; Zhuang Z.-X.; Wang X.-R. Surface molecularly imprinted nanowires for bioreeognition. J. Am. Chem. Soc. (Communication) 2005, 127(5): 1378-1379.
    118. Chianella I.; Lotierzo M.; Piletsky S. A.; Tothill I. E.; Chen B.; Karim K.; Turner A.P.F. Rational design of a polymer specific for microcystin-LR using a computational approach. Anal. Chem. 2002, 74(6): 1288-1293.
    119. Chen Y.; Kele M.; Sajonz P.; Sellergren B.; Guiochon G Influence of thermal annealing on the thermodynamic and mass-transfer kinetic properties of D- and L-phenylalanine anilide on imprinted polymeric stationary phases. Anal. Chem. 1999, 71(5): 928-938.
    120.王虹,孙彦 分子印迹聚合物研究:从小分子到生物大分子.高分子通报 2005,(2):86-93.
    121. Dhal P.K.; Arnold F.H. Template-mediated synthesis of metal-complexing polymers for molecular recognition. J. Am. Chem. Soc. 1991, 113(19): 7417-7418.
    122. Dhal P.K.; Arnold F.H. Metal-coordination interactions in the template-mediated synthesis of substrate-selective polymers: recognition of bis(imidazole) substrates by copper(Ⅱ) iminodiacetate containing polymers. Macromolecule 1992, 25(25): 7051-7059.
    123. Liao J. L.; Wang Y.; Hjerten S. Novel support with artificially created recognition for the selective removal of proteins and for affinity chromatography.Chromatographia 1996,42: 259-262.
    
    124. Hjerten S.; Liao J.L.; Nakazato K.; Wang Y.; Zamaratskaia G.; Zhang H.X.Chromatographia Gels mimicking antibodies in their selective recognition of proteins. 1997,44 (6): 227-235.
    
    125. Shi, H.; Tsai, W.B.; Garrison, M.D.; Ferrari, S.; Ratner, B.D. Template-imprinted nanostructured surfaces for protein recognition. Nature 1999, 398, 593-597.
    
    126. Vaidya A.A.; Lele B.S.; Kulkarni M.G.; Mashelkar R.A. Creating a macromolecular receptor by affinity imprinting. J. Appl. Polym. Sci. 2001, 81: 1075-1083.
    
    127. Hjerten S.; Liao J.L.; Nakazato K.; Wang Y.; Zamaratskaia G.; Zhang H. X. Gels mimicking antibodies in their selective recognition of proteins. Chromatographia 1997,44: 227-234.
    
    128. Tong D.; Hetenyi C; Bikadi Z.; Gao J.P.; Hjerten S. Some studies of the chromatographic properties of gels ('artificial antibodies/receptors') for selective adsorption of proteins. Chromatographia 2001, 54: 7-14.
    
    129. Pang X.; Cheng G.; Lu S.; Tang E. Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin.Anal. Bioanal. Chem. 2006, 384: 225-230.
    
    130. Guo T.Y.; Xia Y.Q.; Hao G.J.; Song M.D.; Zhang B.H. Adsorptive seperation of hemoglobin by molecularly imprinted polymers. Biomaterials 2004, 25: 5905-5912.
    
    131. Guo T.Y.; Xia Y.Q.; Wang J.; Song M.D.; Zhang B.H. Chitosan beads as molecularly imprinted polymer matrix for selective seperiation of proteins.Biomaterials 2005,26: 5737-5745.
    
    132. Huang J.; Zhang J.; Zhang J.; Zheng S. Template imprinting amphoteric polymer for the recognition of proteins. J. Appl. Polym. Sci. 2005, 95: 358-361.
    
    133. Ou S.H.; Wu M.C.; Chou T.C.; Liu C.C. Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Anal. Chim. Acta 2004,504: 163-166.
    
    134. Conrad II P.G.; Shea K.J. Use of metal co-ordination for controlling imprinted polymers. In Molecularly Imprinted Materials: Science and Technology. Yan M.;Ramstrom O. Eds., Dekker: New York, 2005, p:123-180.
    
    135. Dhal P.K.; Kulkarni M.G.; Mashelkar R.A. Bio-imprinting: polymeric receptors with and for biological macromolecules. In Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Applications in Analytical Chemistry. Sellergren B.Ed., Elsevier: New York 2001, p 23.
    
    136. Karmalkar R.N.; Kulkarni M.G.; Mashelkar R.A. Molecularly imprinted hydrogels exhibit chymotrypsin-like activity. Macromolecules 1996,29: 1366-1368.
    
    137. Parmpi P.; Kofinas P. Biomimetic glucose recognition using molecularly imprinted polymer hydrogels. Biomaterials 2004,25: 1969-1973.
    
    138. Wizeman W.J.; Kofinas P. Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding. Biomaterials 2001,22: 1485-1491.
    
    139. Watanabe M.; Akahoshi T.; Tabata Y.; Nakayama D. Molecular specific swelling change of hydrogels in accordance with the concentration of guest molecules. J. Am.Chem. Soc. 1998,120: 5577-5578.
    
    140. Reddy S. Hydrogels for molecular imprinting of proteins.http://www.survey.ac.uk/SBMS/ACADEMICS_homepage/reddy_sub/mips.html (accessed July 9,2006).
    
    141. Peppas N.A.; Huang Y.; Torres-Lugo M.; Ward J.H.; Zhang J. Physiocochemical foundations and structural design of hydrogels in medicine and biology. Annu. ReV.Biomed. Eng. 2000,2: 9-29.
    
    142. Peppas N.A. Intelligent biomaterials in protein delivery, molecular imprinting and micropatterning. Proc. Controlled Release Soc. 2002,29: 162-163.
    
    143.Gill I.; Ballesteros A. Bioencapsulation within synthetic polymers (Part 2): Non sol-gel protein-polymer biocomposites. Trends Biotechnol. 2000,18: 469-479.
    144. Gill I.; Ballesteros A. Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulation biologicals. Trends Biotechnol. 2000,18: 282-296.
    145.Venton D.L.; Gudipati E. Influence of protein on polysiloxane polymer formation-evidence for induction of complementary protein-polymer interactions.Biochim. Biophys. Acta 1995,1250: 126-136.
    146. Venton D.L.; Gudipati E. Entrapment of enzymes using organofunctionalized polysiloxane copolymers. Biochim. Biophys. Acta 1995,1250: 117-125.
    
    147. Umeno D.; Kawasaki M.; Maeda M. Imprinting of proteins on polymer-coated DNA for affinity seperation with enhanced selectivity. In molecular and ionic recognition with imprinted Polymers. Bartsch R.A., Maeda M. Eds., ACS Symposium Series 703;American Chemical Society: Washington DC, 1998, p 202-216.
    
    148. Nicholls I.A.; Rosengren J.P. Molecular imprinting of surfaces. Bioseperations 2002,10: 301-305.
    
    149. Glad M.; Norrlow O.; Sellergren B.; Siegbahn N.; Mosbach K. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J. Chromatogr. A 1985, 347: 11-23.
    
    150. Shiomi T.; Matsui M.; Mizukami F.; Sakaguchi K. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 2005, 26:5564-5571.
    
    151. Kempe M.; Glad M.; Mosbach K. An approach towards surface imprinting using the enzyme ribonuclease A. J. Mol. Recognit 1995, 8: 35-39.
    
    152. Burow M.; Minoura N. Molecular imprinting: Synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase. Biochem. Biophys. Res.Commun. 1996,227: 419-422.
    
    153. Hirayama K.; Burow M.; Morikawa Y.; Minoura N. Synthesis of polymer-coated silica particles with specific recognition sites for glucose oxidase by the molecular imprinting technique. Chem. Lett. 1998, (8): 731-732.
    
    154. Rachkov A.; Hu M.J.; Bulgarevich E.; Matsumoto T.; Minoura N. Molecularly imprinted polymers prepared in aqueous solution selective for Sar(1), Ala(8) angiotensin II. Anal. Chim. Acta 2004, 504: 191-197.
    
    155. Rachkov A.; Minoura N. Recognition of oxytocin and oxytocinrelated peptides in aqueous media using a molecularly imprintedpolymer synthesized by the epitope approach. J. Chromatogr. A 2000, 889: 111-118.
    
    156. Ramanaviciene A.; Ramanavicius A. Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens. Bioelectron. 2004,20: 1076-1082.
    
    157. Bossi A.; Piletsky S.A.; Piletska E.V.; Righetti P.G; Turner A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73:5281-5286.
    
    158. Rick J.; Chou T.C. Enthalpy changes associated with protein binding to thin films.Biosens. Bioelectron. 2005,20: 1878-1883.
    
    159. Rick J.; Chou T.C. Imprinting unique motifs formed from protein-protein associations. Anal. Chim. Acta 2005, 542,26-31.
    
    160. Chou, J.; Rick, J.; Chou, T. C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal. Chim. Acta 2005, 542:20-25.
    
    161. Shi H.Q.; Ratner B.D. Template recognition of protein-imprinted polymer surfaces. J.Biomed. Mater. Res. 2000,49: 1-11.
    
    162. Ratner B.D. The engineering of biomaterials exhibiting recognition and specificity. J.Mol. Recognit. 1996,9: 617-625.
    
    163. Ratner B.D.; Shi H.Q. Recognition templates for biomaterials with engineered bioreactivity. Curr. Opin. Solid State Mater. Sci. 1999,4,395-402.
    
    164. Du X.; Hlady V.; Britt D.W. Langmuir monolayer approaches to molecular recognition through molecular imprinting. Biosens. Bioelectron. 2005, 20:2053-2060.
    
    165. Britt D.W.; Mobius D.; Hlady V. Ferritin adsorption to multicomponent monolayers:Influence of lipid charge density, miscibility and fluidity. Phys. Chem. Chem. Phys.2000, 20: 4594-4599.
    
    166. Pack D.; Arnold F.H. Langmuir monolayer characterization of metal-chelating lipids for protein targeting to membranes. Chem. Phys. Lipids 1997, 86: 135-152.
    
    167. Bondurant B.; Last J.A.; Waggoner T.A.; Slade A.; Sasaki D.Y. Optical and scanning probe analysis of glycolipid reorganization upon concanavalin A binding to mannose-coated lipid bilayers. Langmuir 2003,19: 1829-1837.
    
    168. May S.; Harries D.; Ben-Shaul A. Lipid demixing and proteinprotein interactions in the adsorption of charged proteins on mixed membranes. Biophys. J. 2000, 79: 1747-1760.
    
    169. Litvin A.L.; Samuelson L.A.; Charych D.H.; Spevak W.; Kaplan D.L. Influence of supramolecular template organisation on mineralisation. J. Phys. Chem. 1995,99(32): 12065-112068.
    
    170. Gidalevitz D.; Weissbuch I.; Kjaer K.; Alsneilsen J.; Leiserowitz L. Design of two dimensional crystals as models for probing the structure of solid-liquid interface. J.Am. Chem. Soc. 1994,116: 3271-3278.
    
    171. Turner N.W.; Jeans C.W.; Brain K.R.; Allender C.J.; Hlady V.; Britt D. W. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog. 2006, 22:1474-1489.
    1. Turner N.W.; Jeans C.W.; Brain K.R.; Allender C.J.; Hlady V.; Britt D.W. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog. 2006, 22: 1474-1489.
    2. Bossi A.; Bonini F.; Turner A.P.F.; Piletsky S.A. Molecularly imprinted polymers for the recognition of proteins: The state of the art A. Available online at www.sciencedirect.com.
    3. Rachkov A.; Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. BBA-Protein Struct. M. 2001, 1544: 255-266.
    4. Dhruv H.; Pepalla R.; Taveras M.; Britt D.W. Protein insertion and patterning of PEG bearing langmuir monolayers. Biotechnol. Prog. 2006,22: 150-155.
    
    5. Bossi A.; Piletsky S.A.; Piletska E.V.; Righetti P.G; Turner A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73:5281-5286.
    
    6. Sergey A. Piletsky; Piletska E.V.; Chen B.; Karim K.; Weston D.; Barrett G; Lowe P.;Turner A.P.F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem. 2000,72: 4381-4385.
    
    7. Rick J.; Chou T.C. Imprinting unique motifs formed from protein-protein associations.Anal. Chim. Acta 2005, 542,26-31.
    
    8. Rick J.; Chou T.C. Enthalpy changes associated with protein binding to thin films. Biosens. Bioelectron. 2005, 20: 1878-1883.
    
    9. Piletsky S.A.; Piletska E.V.; Bossi A.; Karim K.; Lowe P.; Turner A.P.F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 2001,16: 701-707.
    
    10. Hansen F.K.; Ugelstad J. Particle nucleation in emulsion polymerization. II.Nucleation in emulsifier-free systems investigated by seed polymerization. J. Polym.Sci.: Part A Polym. Chem. 1979,17: 3033-3045.
    
    11. Chen S.-A.; Chang H.-S. Kinetics and mechanism of emulsifier-free emulsion polymerization: styrene/surface ionic comonomer system. 1985,23(10): 2615-2630.
    
    12. Goodall A.R.; Wilkinson M.C.; Hearn J. Mechanism of emulsion polymerization of styrene in soap-free systems. J. Polym. Sci.: Part A Polym. Chem. Ed. 1977, 15:2193-2218.
    
    13. Candau F. Leong Y.S.; Fitch R.M. Kinetic study of the polymerization of acrylamide in inverse microemulsion. J. Polym. Sci.:Polym. Chem. Ed. 1985, 23: 193-214.
    
    14. Ruckenstein E.; Kim K.J. Effect of electrolye on concentrated emulsion. J. Appl.Polym. Sci. 1988, 36: 907-923.
    
    15. Ruckenstein E.; Kim K.J. A new concentrated emulsion polymerization pathway. J.Appl. Polym. Sci. 1992, 46: 1271-1277.
    16. Tseng C.M.; Lu Y.Y.; El-Aasser M.S.; Vanderhoff J.W. Uniform polymer particles by dispersion polymerization in alcohol. J. Polym. Sci. Part A: Polym. Chem. Ed. 1986,24: 2995-3007.
    
    17. Paine A. J. Dispersion polymerization of styrene in polar solvents. IV. Solvency control of particle size from hydroxypropyl cellulose stabilized polymerization. J. Polym. Sci.: Part A: Polym. Chem. 1990,28: 2485-2500.
    
    18. Thomson B.; Rudin A.; Laioie GJ. Dispersion copolymerization of styrene and divinylbenzene: synthesis of monodisperse, uniformly crosslinked particles. J. Polym.Sci.: Part A: Polym. Chem. 1995, 33: 345-357.
    
    19. Nemeth S.; Thyrion F.C. Study of the runaway characteristics of suspension polymerisation of styrene. Chem. Eng. Technol. 1995,18: 315.
    
    20. Stranix B.R.; Gao J.P.; Barghi R.; Salha J. Functional polymers from (vinyl) polystyrene short routes to binding functional groups to polystyrene resin through a dimethylene spacer: bromine, sulfur, phosphorus, silicon, hydrogen, boron, and oxygen. J. Org. Chem. 1997, 62: 8987-8993.
    
    21. Matsumoto T; Ochi A. Polymerization of styrene in aqueous solution. Kobunshi Kagaku. 1965,22 (244): 481-487.
    
    22. Kotera A.; Furusawa K.; Takeda Y. Colloid chemical studies of polymer latex polymerized without any surface active agent. II. Coagulation into second minimum.Kolloid Z. Z. Polym. 1970,239: 677-685.
    
    23. Kotera A.; Furusawa K.; Kudo K. Colloid chemical studies of polystyrene latices polymerized without any surface-active agents. Kolloid-Z. Z. Polym. 1970, 240(1-2):837.
    
    24. Goodwin J.W.; Hearn J.; Ho C.C.; Ottewill R.H. The preparation and characterisation of polymer lattices formed in the absence of surface active agents. Brit. Polym. J.1973, 5: 347-362.
    
    25. Goodall A.R.; Wilkinson M.C.; Hearn J. Formation of anomalous particles during the emulsifier-free polymerization of styrene. J. Colloid Interface Sci. 1975, 53:327-331.
    
    26. Cox R.A.; Creasey J.M.; Wilkinson M.C. Anomalies in particle shape during seeded growth of polystyrene lattices. Nature 1974, 252: 468-469.
    27. Goodwin J.W.; Hearn J.; Ho C.C.; Ottewill R.H. Studies on the preparation and characterization of monodisperse polystyrene latices: Ⅲ. Preparation without added surface active agents. Colloid Polym. Sci. 1974, 252: 464-471.
    28.朱世雄,杜金环,金喜高,陈柳生 无乳化剂乳液法合成单分散大粒径高分子微球的研究。高分子学报1998,(1):118-123.
    29. Fitch, R.M.; Prenosil, M.B.; Sprick, K.J. The mechanism of particle formation in. polymer hydrosois. I. Kinetics of aqueous polymerization of methyl methacrylate. J. Polym. Sci. Part C. 1969, 27: 95-118.
    30. Hansen F.K.; Ugelstad J. Particle nucleation in emulsion polymerization. (Ⅰ). A theory for homogeneous nucleation. Polym. Sci. Polym. Chem. Ed. 1978, 16: 1953-1979.
    31. Aslamazova T.R. Emulsifier-free latexes and polymers on their base. Progr. Organ. Coating 1995, 25(2): 109-167.
    32.周洪,黄光速,何和阳,江璐霞交联聚苯乙烯单分散微球的制备。化学研究与应用2005,17(2):107-109.
    33.张凯,雷毅,王宇光,江璐霞微米级单分散共聚物微球的制备。高分子学报2002,(3):341-344.
    34.张凯,雷毅,王宇光,江璐霞单分散聚苯乙烯微球的制备及影响因素研究。功能高分子学报2002,(2):189-193.
    35.成国祥,张立永,付聪 种子溶胀悬浮聚合法制备分子印迹聚合物微球。色谱2002.20(2):102-107.
    36. Xu H.; Cui L.; Tong N.; Gu H. Development of high magnetization Fe304/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J. Am. Chem. Soc. 2006, 128:15582-15583.
    37. Chen J.-P.; Su D.-R. Latex particles with thermo-flocculation and magnetic properties for immobilization of r-chymotrypsin. Biotechnol. Prog. 2001, 17:369-375.
    1.周洪,黄光速,何和阳,江璐霞 交联聚苯乙烯单分散微球的制备.化学研究与应用2005,17(2):107-109.
    2.张凯,雷毅,王宇光,江璐霞微米级单分散共聚物微球的制备.高分子学报2002,(3):341-344.
    3.张凯,雷毅,王宇光,江璐霞单分散聚苯乙烯微球的制备及影响因素研究.功能高分子学报2002,15(2):189-193.
    4.夏茹,章于川,易佑民,杨瀛海,尹守春,王嘎,董亮伟 悬浮聚合条件对 高分子微球粒径及其光学性能的影响.安徽大学学报(自然科学版)2001,25(1):73-78.
    5. Lindsley C.W.; Hodges John C.; Filzen G.F.; Watson B.M.; Geyer A.G. Rasta Silanes: New silyl resins with novel macromoleeular architecture via living free radical polymerization. J. Comb. Chem. 2000, 2: 550-559.
    6. Jun J.-B.; Uhm S.-Y.; Cho S.-H.; Suh K.-D. Bidisperse electrorheological fluids using hydrolyzed styrene-acrylonitrile copolymer particles: synergistic effect of mixed particle size. Langrnuir 2004, 20: 2429-2434.
    7. Roice M.; Kumar K.S.; Pillai V. N. R. Synthesis, characterization and application of butanediol dimethacrylate cross-linked polystyrene: A flexible support for gel phase peptide synthesis. Macromolecules 1999, 32: 8807-8815.
    8.顾强 乳液——悬浮原位聚合反应制备透明聚苯乙烯复合材料的研究.吉林大学博士学位论文2005.
    9. Bouchemal K.; Briancon S.; Fessi H.; Chevalier Y.; Bonnet I.; Perrier E. Simultaneous emulsification and interracial polycondensation for the preparation of colloidal suspensions of nanocapsules. Mater. Sci. Engin. C 2006, 26: 472-480.
    10. Thomson B.; Rudin A.; Laioie G. J. Dispersion copolymerization of styrene and divinylbenzene: synthesis of monodisperse, uniformly crosslinked particles. J. Polym. Sci.: Part A: Polym. Chem. 1995, 33: 345-357.
    11. Tseng C.M.; Lu Y.Y.; El-Aasser M. S.; Vanderhoff J.W. Uniform polymer particles by dispersion polymerization in alcohol. J. Polym. Sci. Part A: Polym. Chem. Ed. 1986, 24: 2995-3007.
    1. Sun H.; Hu N. F. Electroactive layer-by-layer films of heme protein-coated polystyrene latex beads with poly(styrene sulfonate) Analyst 2005, 130: 76-84.
    2.张凯,傅强,黄渝鸿,周德惠聚苯乙烯微球表面接枝丙烯腈的研究.物理化学学报2005,21(6):673-676
    3. Bousalem S.; Benabderrahmane S.; Sang Y.Y.C.; Mangeney C.; Chehimi M.M. Covalent immobilization of human serum albumin onto reactive polypyrrole-coated polystyrene latex particles. J. Mater. Chem. 2005, 15:3109-3116.
    4. Wittemann A.; Ballauff M. Secondary structure analysis of proteins embedded in spherical polyelectrolyte brushes by FT-IR spectroscopy. Anal. Chem. 2004, 76: 2813-2819.
    5.王新平,陈志方,倪华钢,沈之荃 端羟基化聚苯乙烯的表面性质.高等学校化学学报 2005,26(9):1752-1756.
    6. Pˇribyl J; Skladal P. Quartz crystal biosensor for detection of sugars and glycated hemoglobin Anal.Chim. Acta 2005, 530: 75-84.
    7. Pˇribyl J.; Skladal P. Development of a combined setup for simultaneous detection of total and glycated haemoglobin content in blood samples. Biosens. Bioelectron. 2006, 21:1952-1959
    8. Camli S.T.; Senel S; Tuncel A. Nucleotide isolation by boronic acid functionalized hydrophilic supports. Colloid Surface A: 2002, 207: 127-137.
    9. Lee J.H.; Kim Y.; Ha M. Y.; Lee E. K.; Choo J. Immobilization of aminophenylboronic acid on magneticbeads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom 2005, 16: 1456-1460.
    10. Liu S.; Miller B.; Chen A. Phenylboronic acid self-assembled layer on glassy carbon electrode for recognition of glycoprotein peroxidase. Electrochem. Commun. 2005, 7: 1232-1236.
    11. Hoare T.; Pelton R. Engineering glucose swelling responses in Poly(N-isopropylacrylamide)-Based Microgels. Macromolecules 2007, 40: 670-678.
    12. Bossi, A.; Castelletti, L.; Piletsky, S.A.; Turner, A. P. F.; Righetti, P.G. Properties of poly-aminophenylboronate coatings in capillary electrophoresis for the selective separation of diastereoisomers and glycoproteins. J. Chromatogr. A 2004, 1023: 297-303.
    13. Rick J.; Chou T.C. Imprinting unique motifs formed from protein-protein associations. Anal. Chim. Acta 2005, 542, 26-31.
    14. Piletsky S.A.; Piletska E.V.; Bossi A.; Karim K.; Lowe P.; Turner A.P.F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 2001,16: 701-707.
    
    15. Rick J.; Chou T.C. Enthalpy changes associated with protein binding to thin films.Biosens. Bioelectron. 2005,20: 1878-1883.
    
    16. Tan S.; Laforgue A.; Belanger D. Characterization of a cation-exchange/polyaniline composite membrane. Langmuir 2003,19: 744-751.
    
    17. Tan S.; Belanger D. Characterization and transport properties of nafion/polyaniline composite membranes. J. Phys. Chem. B 2005,109: 23480-23490.
    
    18. Tunc I.; Demirok U.K.; Suzer S. Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS. J. Phys. Chem. B 2005,109: 24182-24184.
    
    19. Miyabe K.; Guiochon G. A study of mass transfer kinetics in an enantiomeric separation system using a polymeric imprinted stationary phase. Biotechnol. Prog.2000,16: 617-629.
    
    20. Qiu L.; Liu F.; Zhao L.; Yang W.; Yao J. Evidence of a unique electron donor-acceptor property for platinum nanoparticles as studied by XPS. Langmuir 2006,22:4480-4482.
    
    21. Bossi A.; Piletsky S.A.; Piletska E.V.; Righetti P.G.; Turner A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73:5281-5286.
    
    22. Venton D.L.; Gudipati E. Influence of protein on polysiloxane polymer formation: evidence for induction of complementary protein-polymer interactions.Biochim. Biophys. Acta 1995,1250: 126-136.
    
    23. Burow M.; Minoura N. Molecular imprinting: synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase. Biochem. Biophys. Res.Commun. 1996,227: 419-422.
    
    24. Xia Y.-Q.; Guo T.-Y.; Song M.-D.; Zhang B.-H.; Zhang B.-L. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules 2005, 6(5): 2601-2606.
    1. Anderson W.F.; Grutter M.G; Remington S.J.; Matthews B.W. Crystallographic determination of the mode of binding of oligosaccharides to bacteriophage-T4 lysozyme - implications for the mechanism of catalysis J. Mol. Biol. 1981, 147:523-543.
    
    2. Cheetham J.C.; Artymiuk P.J.; Phillips D.C. Refinement of an enzymecomplex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75A resolution. J. Mol. Biol. 1992,224: 613-628.
    
    3. Kelly J.A.; Sielecki A.R.; Sykes B.D.; James M.N.G.; Phillips D.C. X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature 1979,282: 875-878.
    
    4. Kuroki R.; Weaver L.H.; Matthews B.W. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science 1993, 262: 2030-2033.
    
    5. Phillips D.C. The three-dimensional structure of an enzyme molecule. Sci. Amer.1986,215(5): 78-90.
    
    6. Porstmann B.; Jung K.; Schmechta H.; Evers U.; Pergande M.; Porstmann T.; Kramm H.-J.; Krause H. Measurement of lysozyme in human body fluids: Comparison of various enzyme immunoassay techniques and their diagnostic application. Clin.Biochem. 1989,22: 349-355.
    
    7. Horpacsy G; Zinsmeyer J.; Schroder K.; Mebel M. Changes in serum and urine lysozyme activity after kidney transplantation: influence of graft function and therapy with azathioprine Clin. Chem. 1978,24: 74-79.
    
    8. Pascual R.; Gee J.; Finch S. Usefulness of serum lysozyme, measurement in diagnosis and evaluation of sarcoidosis. N. Engl. J. Med. 1973,289: 1074-1076.
    
    9. Huang J.; Zhang J.; Zhang J.; Zheng S. Template imprinting amphoteric polymer for the recognition of proteins. J. Appl. Polym. Sci. 2005, 95: 358-361.
    
    10. Ou S.H.; Wu M.C.; Chou T.C.; Liu C.C. Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Anal. Chim. Acta 2004,504: 163-166.
    11. Hirayama K.; Kameoka K. Synthesis of polymer particles with specific binding sites for lysozyme by a molecular imprinting technique and its application to a quartz crystal microbalance sensor. Bunseki Kagaku 2000,49: 29-33.
    
    12. Hirayama, K.; Sakai, Y.; Kameoka, K. Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique. J. Appl. Polym. Sci.2001,81:3378-3387.
    
    13. Rick J.; Chou T.C. Imprinting unique motifs formed from protein-protein associations.Anal. Chim. Acta 2005, 542,26-31.
    
    14. Rick J.; Chou T.C. Enthalpy changes associated with protein binding to thin films.Biosens. Bioelectron. 2005,20: 1878-1883.
    
    15. Bossi A.; Piletsky S.A.; Piletska E.V.; Righetti P.G.; Turner A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73:5281-5286.
    
    16. Piletsky S.A.; Piletska E.V.; Chen B.; Karim K.; Weston D.; Barrett G; Lowe P.;Turner A.P.F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem. 2000,72(18): 4381-4385.
    
    17. Bossi, A.; Castelletti, L.; Piletsky, S.A.; Turner, A.P.F.; Righetti, P.G. Properties of poly-aminophenylboronate coatings in capillary electrophoresis for the selective separation of diastereoisomers and glycoproteins. J. Chromatogr. A 2004, 1023:297-303.
    
    18. Piletsky S.A.; Piletska E.V.; Bossi A.; Karim K.; Lowe P.; Turner A.P.F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 2001,16: 701-707.
    
    19. Tan S.; Belanger D. Characterization and transport properties of nafion/polyaniline composite membranes. J. Phys. Chem. B 2005,109: 23480-23490.
    
    20. Tan S.; Laforgue A.; Belanger D. Characterization of a cation-exchange/polyaniline composite membrane. Langmuir 2003,19: 744-751.
    
    21. Li L.; Chan C.-M.; Liu S.; An L.; Ng K.-M. Surface studies of polymers with a well-defined segmental length by ToF-SIMS and XPS. relationship between the surface chemical composition and segmental length. Macromolecules 2000, 33:8002-8005.
    
    22. Noh J.; Ito E.; Nakajima K.; Kim J.; Lee H.; Hara M. High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au(111). J. Phys. Chem. B 2002,106:7139-7141.
    
    23. Tune I.; Demirok U.K.; Suzer S.; Correa-Duatre M.A.; Liz-Marzan L.M.Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS. J.Phys. Chem. B 2005,109: 24182-24184.
    
    24. Zhou D.J.; Wang X.; Birch L.; Rayment T.; Abell C. AFM study on protein immobilization on charged surfaces at the nanoscale: toward the fabrication of three-dimensional protein nanostructures. Langmuir 2003,19(25): 10557-10562.
    
    25. Miyabe K.; Guiochon G A study of mass transfer kinetics in an enantiomeric separation system using apolymeric imprinted stationary phase. Biotechnol. Prog.2000; 16(4): 617-629.
    
    26. Ki C.D.; Oh C; Oh S.-G; Chang J.Y. The use of a thermally reversible bond for molecular imprinting of silica spheres. J. Am. Chem. Soc. 2002, 124(50):14838-14839.
    
    27. Lubke M.; Whitcombe M.J.; Vulfson E.N. A novel approach to the molecular imprinting of polychlorinated aromatic compounds J. Am. Chem. Soc. 1998,120(51):13342-13348.
    
    28. Whitcombe M.J.; Rodriguez M.E.; Villar P.; Vulfson E.N. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol J. Am.Chem. Soc; 1995,117(27): 7105-7111.
    
    29. Dirion B.; Cobb Z.; Schillinger E.; Andersson L.I.; Sellergren B. Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design J. Am. Chem. Soc. 2003,125(49): 15101-15109.
    
    30. Ye L.; Cormack P.AG.; Mosbach K. Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal. Commun. 1999, 36: 1359-7337.
    
    31. Yoshida M.; Uezu K.; Goto M.; Furusakl S. Surface imprinted polymer recognition amino acid chirality. J. Appl. Polym. Sci., 2000,78: 695-703.
    
    32. Joshi V.P.; Kulkarni M.G.; Mashelkar R.A. Molecularly imprinted adsorbents for positional isomer separation. J. Chromatogr. A 1999,489: 319-330
    
    33. Yoshida M; Hatate Y.; Uezu K.; Goto M.; Firusaki S.J. Polym. Sci. Part A: Polym.Chem. 2000, 38: 689-696.
    
    34. Chou J.; Rick J.; Chou T.C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal. Chim. Acta 2005, 542: 20-25.
    
    35. Shi H.; Tsai W.B.; Garrison M.D.; Ferrari S.; Ratner B.D. Template-imprinted nanostructured surfaces for protein recognition. Nature 1999, 398, 593-597.
    
    36. Senel S.; Kassab A.; Anca Y; Say R.; Denizli A. Comparison of adsorption performances of metal-chelated polyamide hollow fibre membranes in lysozyme separation. Colloids Surf. B 2002,24: 265-275.
    
    37. Turner N.W.; Jeans C.W.; Brain K.R.; Allender C.J.; Hlady V.; Britt D. W. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog. 2006, 22:1474-1489.
    1. Arifin D.R.; Palmer A.F. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering. Biotechnol. Prog. 2003, 19: 1798-1811.
    2. Eike J.H.; Palmer A.F. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes. Biotechnol. Prog. 2004, 20: 1543-1549.
    3. Zheng C.; MaG.; Su Z. The role of pH and its control on effective conjugation of bovine hemoglobin and human serum albumin. Process Biochem. 2007,42: 303-309.
    4. Toussaint-Hacquarda M.; Devauxb Y.; Longroisb D.; Faivre-Fiorinaa B.; Mullerc S.; Stoltzc J.F.; Vignerona C.; Menu P. Biological response of human aortic endothelial cells exposed to acellular hemoglobin solutions developed as potential blood substitutes. Life Sci. 2003, 72:1143-1157.
    5. Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew Chem. Int. Edit. Eng. 1995, 34: 1812-1832.
    6. Xia Y.; Guo T.; Song M.; Zhang B.; Zhang B. -L. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan biomacromolecules. 2005, 6: 2601-2606.
    7. Hawkins D.M.; Stevenson D.; Reddya S.M. Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers(HydroMIPs) Anal. Chim. Acta 2005, 542: 61-65.
    8. Shiomi T.; Matsui M.; Mizukami F.; Sakaguchi K. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 2005, 26: 5564-5571.
    9. Li Y.; Yang H.-H.; You Q.-H.; Zhuang Z.-X.; Wang X.-R. Protein recognition via surface molecularly imprinted polymer nanowires. Anal. Chem. 2006,78: 317-320.
    
    10. Rick J.; Chou T.C. Imprinting unique motifs formed from protein-protein associations.Anal. Chim. Acta 2005, 542,26-31.
    
    11. Rick J.; Chou T.C. Enthalpy changes associated with protein binding to thin films.Biosens. Bioelectron. 2005,20: 1878-1883.
    
    12. Bossi A.; Piletsky S.A.; Piletska E.V.; Righetti P.G.; Turner A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73:5281-5286.
    
    13. Piletsky S.A.; Piletska E.V.; Chen B.; Karim K.; Weston D.; Barrett G; Lowe P.;Turner A.P.F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem. 2000, 72(18): 4381-4385.
    
    14. Piletsky S.A.; Piletska E.V.; Bossi A.; Karim K.; Lowe P.; Turner A.P.F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 2001, 16: 701-707.
    
    15. Bossi, A.; Castelletti, L.; Piletsky, S. A.; Turner, A. P. F.; Righetti, P. G Properties of poly-aminophenylboronate coatings in capillary electrophoresis for the selective separation of diastereoisomers and glycoproteins. J. Chromatogr. A 2004, 1023:297-303.
    
    16. Tan S.; Belanger D. Characterization and transport properties of nafion/polyaniline composite membranes. J. Phys. Chem. B 2005,109: 23480-23490.
    
    17. Tan S.; Laforgue A.; Belanger D. Characterization of a cation-exchange/polyaniline composite membrane. Langmuir 2003,19: 744-751.
    
    18. Li L.; Chan C.-M.; Liu S.; An L.; Ng K.-M. Surface studies of polymers with a well-defined segmental length by ToF-SIMS and XPS. Relationship between the surface chemical composition and segmental length. Macromolecules 2000, 33:8002-8005.
    
    19. Noh J.; Ito E.; Nakajima K.; Kim J.; Lee H.; Hara M. High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au(111). J. Phys. Chem. B 2002, 106:7139-7141.
    
    20. Tunc I.; Demirok U.K.; Suzer S.; Correa-Duatre M.A.; Liz-Marzan L.M.Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS. J.Phys. Chem. B 2005,109: 24182-24184.
    
    21. Miyabe K.; Guiochon G A study of mass transfer kinetics in an enantiomeric separation system using a polymeric imprinted stationary phase. Biotechnol. Prog.2000; 16(4): 617-629.
    
    22. Sajonz P.; Kele M; Zhong G.; Sellergrenc B.; Guiochona G. Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase. J. Chromatogr. A 1998, 810: 1-17.
    
    23. Chou, J.; Rick, J.; Chou, T.C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal. Chim. Acta 2005, 542: 20-25.
    
    24. Shi, H.; Tsai, W.B.; Garrison, M.D.; Ferrari, S.; Ratner, B.D. Template-imprinted nanostructured surfaces for protein recognition. Nature 1999, 398, 593-597.
    
    25. Senel S.; Kassab A.; Anca Y.; Say R.; Denizli A. Comparison of adsorption performances of metal-chelated polyamide hollow fibre membranes in lysozyme separation. Colloids Surf. B 2002,24: 265-275.
    
    26. Turner N.W.; Jeans C.W.; Brain K.R.; Allender C.J.; Hlady V.; Britt D.W. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog. 2006, 22:1474-1489.
    1. Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew Chem. Int. Edit. Eng. 1995, 34:1812-1832.
    
    2. Vlatakis G.; Andersson L. I.; Muller R.; Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361:645-647.
    
    3. Liu, J.-Q.; Wulff, G Functional mimicry of the active site of carboxypeptidase A by a molecular imprinting strategy: Cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity. J. Am. Chem.Soc.(Communication) 2004,126(24): 7452-7453.
    
    4. Plunkett S.D.; Arnold F.H. Molecularly imprinted polymers on silica: selective supports for high-performance ligand-exchange chromatography. J. Chromatogr.A 1995, 708: 19-29.
    
    5. Haupt K.; Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000,100: 2495-2504.
    
    6. Ansell R.J.; Ramstrom O.; Mosbach K. Towards artificial antibodies by the molecular imprinting. Clin. Chem. 1996,42: 1506-1512.
    
    7. Venton D.L.; Gudipati E. Influence of protein on polysiloxane polymer formation:evidence for induction of complementary protein-polymer interactions. Biochim. Biophys. Acta 1995,1250: 126-136
    
    8. Pang X.; Chang G; Lu S.; Tang E. Synthesis of polyacylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin.Anal. Bioanal. Chem. 2006, 384(1): 225-230.
    
    9. Chou, J.; Rick, J.; Chou, T.C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal. Chim. Acta 2005, 542:20-25.
    
    10. Rick J.; Chou T.C. Enthalpy changes associated with protein binding to thin films.Biosens. Bioelectron. 2005, 20: 1878-1883.
    
    11. Bossi A.; Piletsky S.A.; Piletska E.V.; Righetti P.G.; Turner A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73:5281-5286.
    
    12. Rachkov A.; Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. BBA-Protein Struct. M. 2001, 1544:255-266.
    
    13. Turner N.W.; Jeans C.W.; Brain K.R.; Allender C.J.; Hlady V.; Britt D.W. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog. 2006, 22:1474-1489.
    
    14. Lau O.-W.; Shao B.; Lee M.T.W. Affinity mass sensors: determination of fructose.Anal. Chim. Acta 2000,403:49-56.
    
    15. Jesus Pereira de D.; Neves C. A.; do Lago C. L. Determination of boron by using a quartz crystal resonator coated with N-methyl-D-glucamine-modified poly(epichlorohydrin). Anal. Chem. 2002, 74(14): 3274-3280.
    
    16. Lee M.; Kim T.-L; Kim K.-H.; Kim J.-H.; Choi M.-S.; Choi H.-J.; Koh K. Formation of a self-assembled phenylboronic acid monolayer and its application toward developing a surface plasmon resonance-based monosaccharide sensor. Anal.Biochem.2002, 310: 163-170.
    
    17. Springsteen G; Ballard C. E.; Gao S.; Wang W.; Wang B. The development of photometric sensors for boronic acids. Bioorg. Chem. 2001,29: 259-270.
    
    18. Yang W; Yan J.; Springsteen G; Deeter S.; Wang B. A novel type of fluorescent boronic acid that shows large fluorescence intensity changes upon binding with a carbohydrate in aqueous solution at physiological pH. Bioorg. Med.Chem.Lett. 2003,13: 1019-1022.
    
    19. Arimori S.; Consiglio G.A.; Phillips M.D.; James T.D. Tuning saccharide selectivity in modular fluorescent sensors. Tetrahedron Lett. 2003,44: 4789-4792.
    
    20. Arimori S.; Philips M.D.; James T.D. Probing disaccharide selectivity with modular fluorescent sensors. Tetrahedron Lett. 2004,45: 1539-1542.
    
    21. Arimori S.; Bosch L.I.; Ward C.J.; James T.D. Fluorescent internal charge transfer (ICT) saccharide sensor. Tetrahedron Letters, 2001, 42: 4553-4555.
    
    22. Patterson S.; Smith B.D. and Taylor R.E. Fluorescence sensing of a ribonucleoside 5'-Triphosphate. Tetrahedron Letters, 1997, 38: 6323-6326.
    
    23. Nicolas M.; Fabre B.; Simonet J. Electrochemical sensing of fluoride and sugars with a boronic acid-substituted bipyridine Fe(II) complex in solution and attached onto an electrode surface. Electrochim. Acta 2001,46: 1179-1190.
    
    24. Kanayama, N.; Kitano, H. Interfacial recognition of sugars by boronic acid-carrying self-assembled monolayer. Langmuir 2000, 16(2): 577-583.
    
    25. Gardiner S.J.; Smith B.D.; Duggan P.J.; Karpa M.J.; Griffin GJ. Selective fructose transport through supported liquid membranes containing diboronic acid or conjugated monoboronic acid-quaternary ammonium carriers. Tetrahedron 1999, 55:2857-2864.
    
    26. Karpa M.J.; Duggan P.J.; Griffin G.J.; Freudigmann S.J. Competitive transport of reducing sugars through a lipophilic membrane facilitated by aryl boron acids. Tetrahedron 1997, 53: 3669-3678.
    
    27. Riggs J. A.; Hossler K. A.; Smith B. D.; Karpa M.J., Griffin G; Duggan P.J. Nucleotide carrier mixture with transport selectivity for ribonucleoside-5'-phosphates.Tetrahedron Lett. 1996, 37: 6303-6306.
    
    28. Piletsky S.A.; Piletska E.V.; Bossi A.; Karim K.; Lowe P.; Turner A.P.F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 2001, 16: 701-707.
    
    29. Parmpi P.; Kofmas P. Biomimetic glucose recognition using molecularly imprinted polymer hydrogels. Biomaterials 2004,25: 1969-1973.
    
    30. Gao S.; Wang W.; Wang B. Building fluorescent sensors for carbohydrates using template-directed polymerizations. Bioorg. Chem. 2001, 29: 308-320.
    
    31. Alexander C; Davidson L.; Hayes W. Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron 2003,59: 2025-2057.
    
    32. Piletsky S.A.; Piletska E.V.; Chen B.; Karim K.; Weston D.; Barrett G; Lowe P.;Turner A.P.F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem. 2000, 72(18): 4381-4385.
    33. Rick J.; Chou T.C. Imprinting unique motifs formed from protein-protein associations.Anal. Chim. Acta 2005, 542,26-31.
    
    34. Bossi, A.; Castelletti, L.; Piletsky, S. A.; Turner, A. P. F.; Righetti, P. G Properties of poly-aminophenylboronate coatings in capillary electrophoresis for the selective separation of diastereoisomers and glycoproteins. J. Chromatogr. A 2004, 1023:297-303.
    
    35. Tan S.; Belanger D. Characterization and transport properties of nafion/polyaniline composite membranes. J. Phys. Chem. B 2005,109: 23480-23490.
    
    36. Tan S.; Laforgue A.; Belanger D. Characterization of a cation-exchange/polyaniline composite membrane. Langmuir 2003,19: 744-751.
    
    37. Li L.; Chan C.-M; Liu S.; An L.; Ng K.-M. Surface studies of polymers with a well-defined segmental length by ToF-SIMS and XPS. Relationship between the surface chemical composition and segmental length. Macromolecules 2000, 33:8002-8005.
    
    38. Noh J.; Ito E.; Nakajima K.; Kim J.; Lee H.; Hara M. High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au (111). J. Phys. Chem. B 2002,106: 7139-7141. J. Phys. Chem. B 2005,109: 24182-24184.
    
    39. Tunc I.; Demirok U.K.; Suzer S.; Correa-Duatre M.A.; Liz-Marzan L.M.Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS. J.Phys.
    
    40. Pan B.; Cui D.; Xu P.; Li Q.; Huang T.; He R.; Gao F. Study on interaction between gold nanorod and bovine serum albumin. Colloid. Surface. A 2007,295: 217-222.
    
    41. Shahid F.; Gomez J. E.; Birnbaum E. R. The lanthanide-induced N→F transition and acid expansion of serum albumin. J. Biol. Chem., 1982,257(10): 5618-5622.
    1. Szabo A.; Kotorman M.; Laczko I.; Simon L.M. Spectroscopic studies of stability of papain in aqueous organic solvents. J. Mol. Catal. B-Enzym. 2006, 41: 43-48.
    2. Khaparde S.S.; Singhal R.S. Chemically modified papain for applications in detergent formulations. Bioresour. Technol. 2001, 78: 1-4.
    3. Lei H.; Wang W.; ChenL.-L.; Li X.-C.; Yi B.; Deng L. The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres. Enzyme Microb. Technol. 2004, 35: 15-21.
    
    4. Shukor Y.; Baharom N.A.; Rahman F.A.; Abdullah M.P.; Shamaan N.A.; Syed M.A.Development of a heavy metals enzymatic-based assay using papain. Anal. Chim.Acta 2006, 566: 283-289.
    
    5. K. Sangeetha T.; Abraham E. Chemical modification of papain for use in alkaline medium. J. Mol. Catal. B-Enzym. 2006, 38: 171-177.
    
    6. Stehle P.; Bahsitta H.-P.; Monter B.; Furst P. Papain-catalysed synthesis of dipeptides:A novel approach using free amino acids as nucleophiles. Enzyme Microb.Technol. 1990,12:56-60
    
    7. Stevenson D.E.; Storer A.C. Papain in organic solvents: determination of conditions suitable for biocatalysis and the effect, on substrate specificity and inhibition.Biotechnol. Bioeng. 1991, 37: 519-527.
    
    8. Finley J.W; Stanley W.L; Watters G.G. Chill proofing beer with papain immobilized on chitin. Proc. Biochem. 1979, 7:12-3.
    
    9. Sangeetha K; Abraham T.E. Chemical modification of papain for use in alkaline medium. J. Mol. Catal. B- Enzym 2006, 38:171-7.
    
    10. Atkinson B.; Mavituna F. Biochemical engineering and biotechnology handbook.Hong Kong, China: The Natural. Press: 1985.
    
    11. Hayashi T.; Hyon S.H.; Cha W.I.; Ikada Y. Immobilization of thiol proteases onto porous poly (vinyl alcohol) beads. Polym. J. 1993,25:489-97.
    
    12. Riccardo A.A; Muzzarelli M.T.; Pierluca I. Depolymerization of chitosan with the aid of papain. Enzyme Microb. Technol. 1994, 16:110-4.
    
    13. Lin H.; Wang H.; Xue C; Ye M. Preparation of chitosan oligomers by immobilized papain Enzyme and Microbial Technology. 2002, 31: 588-592.
    
    14. Kumara A.B.V.; Varadarajb M.C.; Lalithac R.G.; Tharanathana R.N. Low molecular weight chitosans: preparation with the aid of papain and characterization Biochim.Biophys. Acta 2004, 1670: 137- 146.
    
    15. Bossi A.; Piletsky S.A.; Piletska E.V.; Righetti P.G.; Turner A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73: 5281-5286.
    
    16. Piletsky S.A.; Piletska E.V.; Chen B.; Karim K.; Weston D.; Barrett G; Lowe P.;Turner A.P.F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem. 2000, 72(18): 4381-4385.
    
    17. Rick J.; Chou T.C. Imprinting unique motifs formed from protein-protein associations.Anal. Chim. Acta 2005, 542,26-31.
    
    18. Rick J.; Chou T.C. Enthalpy changes associated with protein binding to thin films.Biosens. Bioelectron. 2005, 20: 1878-1883.
    
    19. Piletsky S.A.; Piletska E.V.; Bossi A.; Karim K.; Lowe P.; Turner A.P.F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 2001,16: 701-707.
    
    20. Bossi A.; Castelletti L.; Piletsky S. A.; Turner A. P. F.; Righetti P.G Properties of poly-aminophenylboronate coatings in capillary electrophoresis for the selective separation of diastereoisomers and glycoproteins. J. Chromatogr. A 2004, 1023:297-303.
    
    21. Tan S.; Belanger D. Characterization and transport properties of nafion/polyaniline composite membranes. J. Phys. Chem. B 2005,109: 23480-23490.
    
    22. Noh J.; Ito E.; Nakajima K.; Kim J.; Lee H.; Hara M. High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au (111). J. Phys. Chem. B 2002,106:7139-7141.
    
    23. Tune I.; Demirok U. K.; Suzer S.; Correa-Duatre M.A.; Liz-Marzan L.M.Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS. J.Phys. Chem. B 2005,109: 24182-24184.
    
    24. Miyabe K.; Guiochon G. A study of mass transfer kinetics in an enantiomeric separation system using apolymeric imprinted stationary phase. Biotechnol. Prog.2000; 16(4): 617-629.
    
    25. Sajonz P.; Kele M.; Zhong G.; Sellergrenc B.; Guiochona G. Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase. J. Chromatogr. A 1998, 810: 1-17.
    26. Chou, J.; Rick, J.; Chou, T. C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal. Chim. Acta 2005, 542: 20-25.
    27. Shi, H.; Tsai, W.B.; Garrison, M.D.; Ferrari, S.; Ratner, B.D. Template-imprinted nanostructured surfaces for protein recognition. Nature 1999, 398, 593-597.
    28. Senel S.; Kassab A.; Arica Y.; Say R.; Denizli A. Comparison of adsorption performances of metal-chelated polyamide hollow fibre membranes in lysozyme separation. Colloids Surf. B 2002, 24: 265-275.
    1. Tong D.; Hetenyi C.; Bikadi Z.; Gao J.P.; Hjerten S. Some studies of the chromatographic properties of gels ('artificial antibodies/receptors') for selective adsorption of proteins. Chromatogr. 2001, 54: 7-14.
    2. Tu A. T. Spectroscopy of biological System. New York: John Wiley & Sons 1986, p: 47-112.
    3. Siepen J. A.; Keevil E.-J.; Knight D.; Hubbard S.J. Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. J. Proteome Res. 2007, 6:399-408.
    
    4. Vaidya A.A.; Lele B.S.; Kulkarni M.G.; Mashelkar R.A. Creating a macromolecular receptor by imprinting. J. Appl. Polym. Sci. 2001, 81: 1075-1083.
    
    5. Hayden O.; Dickert F.L. Selective microorganism detection with cell Surface imprinted polymers. Adv. Mater. 2001,13: 1480-1483.
    
    6. Dickert F.L.; Hayden O. Bioimprinting of polymers and sol-gel phases selective detection of yeasts with imprinted polymers. Anal. Chem. 2002,74: 1302-1306.
    
    7. Hayden O.; Haderspock C; Krassnig S.; Chen X.-H.; Dickert F.L. Surface imprinting strategies for the detection of trypsin. Analyst 2006,131: 1044-1050.
    
    8. Bossi A.; Piletsky S.A.; Piletska E.V.; Righetti P.G.; Turner A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73:5281-5286.
    
    9. Piletsky S.A.; Piletska E.V.; Chen B.; Karim K.; Weston D.; Barrett G; Lowe P.;Turner A.P.F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem. 2000, 72(18): 4381-4385.
    
    10. Rick J.; Chou T.C. Imprinting unique motifs formed from protein-protein associations.Anal. Chim. Acta 2005, 542, 26-31.
    
    11. Rick J.; Chou T.C. Enthalpy changes associated with protein binding to thin films.Biosens. Bioelectron. 2005,20: 1878-1883.
    
    12. Piletsky S.A.; Piletska E.V.; Bossi A.; Karim K.; Lowe P.; Turner A.P.F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 2001,16: 701-707.
    
    13. Bossi, A.; Castelletti, L.; Piletsky, S. A.; Turner, A. P. F.; Righetti, P. G Properties of poly-aminophenylboronate coatings in capillary electrophoresis for the selective separation of diastereoisomers and glycoproteins. J. Chromatogr. A 2004, 1023:297-303.
    
    14. Tan S.; Belanger D. Characterization and transport properties of nafion/polyaniline composite membranes. J. Phys. Chem. B 2005,109: 23480-23490.
    15. Noh J.; Ito E.; Nakajima K.; Kim J.; Lee H.; Hara M. High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au (111). J. Phys. Chem. B 2002,106:7139-7141.
    
    16. Tune I.; Demirok U. K.; Suzer S.; Correa-Duatre M.A.; Liz-Marzan L.M.Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS. J.Phys. Chem. B 2005,109: 24182-24184.
    
    17. Miyabe K.; Guiochon G A study of mass transfer kinetics in an enantiomeric separation system using apolymeric imprinted stationary phase. Biotechnol. Prog.2000; 16(4): 617-629.
    
    18. Sajonz P.; Kele M.; Zhong G.; Sellergrenc B.; Guiochona G. Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase. J. Chromatogr. A 1998, 810: 1-17.
    
    19. Chou, J.; Rick, J.; Chou, T.C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal. Chim. Acta 2005, 542: 20-25.
    
    20. Shi, H.; Tsai, W.B.; Garrison, M.D.; Ferrari, S.; Ratner, B.D. Template-imprinted nanostructured surfaces for protein recognition. Nature 1999, 398, 593-597.
    
    21. Senel S.; Kassab A.; Anca Y; Say R.; Denizli A. Comparison of adsorption performances of metal-chelated polyamide hollow fibre membranes in lysozyme separation. Colloids Surf. B 2002, 24: 265-275.
    
    22. Turner N.W.; Jeans C.W.; Brain K.R.; Allender C.J.; Hlady V.; Britt D. W. From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol. Prog. 2006, 22:1474-1489.
    
    23. Szabo A.; Kotorman M.; Laczko I.; Simon L.M. Spectroscopic studies of stability of papain in aqueous organic solvents. J. Mol. Catal. B-Enzym. 2006, 41: 43-48.
    
    24. Khaparde S.S.; Singhal R.S. Chemically modified papain for applications in detergent formulations. Bioresour. Technol. 2001, 78: 1-4.
    
    25. Lei H.; Wang W.; ChenL.-L.; Li X.-C; Yi B.; Deng L. The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres. Enzyme Microb. Technol. 2004, 35: 15-21.
    
    26. Dreuth, J., Jansonius, J., Koekoek, R., Swen, H., and Wolters, B. Structure of papain Nature 1968, 218:929.
    
    27. Smith D.; Maggio E.; Kenyon G Simple alkanethiol groups for temporary blocking of sulfhydryl groups of enzymes. Biochem. 1975, 14: 766.
    
    28. Shipton M.; Kierstan M.; Malthouse J.; Stuchbury T.; Brocklehurst K. The case for assigning a value of approximately 4 to pKal of essential histidine-cysteine interactive systems of papain, bromelain and ficin. FEBS Lett. 1975, 50: 365.
    
    29. Wolthers B.; Dreuth J.; Jansonius J.; Koekoek R.; Swen H. The three dimensional structure of papain: Structure-function relationships of proteolytic enzymes. P.Desnuelle; Neurath H.; Ottesen M. Academic Press: N.Y. 1970, p272.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.