γ-Al_2O_3纳米材料的制备及负载Ag-Cu双金属催化剂的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的不断提高,载体的性能对于整个催化剂的影响越来越受到人们的关注。因此制备具有特殊形貌、分散均匀、粒径小和适当孔分布等特点的γ-Al2O3材料对于工业生产具有重要意义,而负载IB族金属纳米复合催化剂的制备更成为世界科学研究的热点之一。
     本论文采用胶束溶液法在阴离子表面活性剂双2-乙基己基琥珀酸酯磺酸钠(AOT)体系中制备了直径小于5nm、比表面积为327.6m2/g的拟薄水铝石。分别用层状液晶模版法和微乳液法得到了六角环状氧化铝前躯体和直径小于10nm的纤维状氧化铝材料。同时研究了用微乳液法制备以γ-Al2O3为载体负载Ag、Cu纳米金属颗粒的复合双金属催化剂:发现在立体网状结构的γ-Al2O3载体上能够得到均匀分散的复合双金属催化剂,并对负载不同Ag、Cu摩尔比的系列材料进行表征。XPS分析显示催化剂中的Ag、Cu存在强烈的相互作用,这种相互作用使Ag和Cu更容易失去电子。以苯乙烯环氧化反应评价催化剂的性能,结果表明在Ag/Cu摩尔比为3/1时,环氧苯乙烷的选择性最高,达到76.6%;在Ag/Cu摩尔比为1/1时,苯乙烯的转化率最大,达到94.6%。推测反应的机理可能是:Ag吸附O2-,Cu提供更多的活性位吸附苯乙烯分子,Ag与Cu之间强烈的相互作用使O2-在二者表面传递,因此O2更加容易与苯乙烯反应。
As the improvement of industrial technology, the support quality is growing important for the performance of catalyst. Therefore, it is very important to prepare evenly dispersedγ-Al2O3 nanomaterial with special morphologies, small and appropriate pore size distribution through different methods in industry. In recent years, the preparation of nano-load IB group metal composite catalysts supported onγ-Al2O3 has attracted a great deal of attention from scientists.
     Herein, we prepared nanofibers (<5nm) of pseudo-boehmite (PB) with a high surface area (327.6m2/g) using AOT micelle solution template method. A hexagonal ring precursor of alumina and nanofibers ofγ-Al2O3 (the diameter is less than 10nm) were prepared by lamellar liquid crystal method and microemulsion template method respectively.Then, we selected microemulsion template method to prepare Ag-Cu/γ-Al2O3 complex catalysts. A series of Ag/Cu bimetallic nanoparticles at various molar ratios in reticulate-like y-Alumina were synthesized. XPS analysis showed that there was a strong interaction between Ag and Cu that made both Ag and Cu more likely to lose electrons. The catalytic performances of catalysts were tested by styrene epoxidation. The results showed that the styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6%) appeared at Ag/Cu molar ratio of 1/1. The possible mechanism of the reaction:the O2- adsorbed on the silver surface can migrate to the copper surface and react with the adsorbed styrene easily.
引文
[1]田莉,微乳液法和微乳水热法制备γ-氧化铝的研究[硕士论文].兰州:兰州大学.2008.
    [2]李翔,刘延东,拟薄水铝石的应用,铝镁通讯,2009,4:18-19.
    [3]赵继华,田莉,方建,沈伟国,一种微乳液制备立体网状活性氧化铝的方法,专利,中国200810093754.0.
    [4]王春明,王培,王晖等,大比表面积γ-Al2O3的制备及辅助剂蔗糖的用量对γ-A1203织构的影响,催化学报[J].2005,26(9):797-802.
    [5]余忠清,赵秦生,张启修,溶胶-凝胶法制备超细球形氧化铝粉末,无机材料学报[J].1994,9(4):475-479.
    [6]耿新玲,袁伟,纳米氧化铝的制备与应用进展,河北化工[J].2002,3:1-9.
    [7]章跃,丁红燕,陈志刚,陈彩凤,匀相沉淀法制备纳米A1203粉末,新技术新工艺[J].2001,6:43-45.
    [8]张永刚,闫裴,纳米氧化铝的制备及应用,无机盐工业[J].2001,33(3):19-22.
    [9]郑仕远,陈健,潘伟,氧化铝粉末的工业制备及国内发展现状,无机盐工业[J].2000,32(3):16-20.
    [10]冯丽娟,赵宇靖,陈诵英等,超细氧化铝的研究,石油学报(石油化工),1994,10(2):69-74.
    [11]陈肖虎,纳米氧化铝制取实验,现代机械[J].1999,4:58-60.
    [12]方佑龄,金春华,透明超微粒子氧化铝的制备,武汉大学学报(自然科学版)[J].1996,42(2):136-140.
    [13]蔡卫权,李会泉,张懿,郑诗礼,一种拟薄水铝石的制备方法,专利,中国,2005,CN200510002110.2.
    [14]杨清河,李大东,庄福成,康小洪,石亚华,朱立,NaAlO2-CO2法制备拟薄水铝石规律的研究Petrol Eum Processing and Petrochemicals,1999,30(4):59-63.
    [15]Yang Qinghe, Liu Bin, Li Dadong, Shi Yahua, Nie Hong, Kang Xiaohong, Preparation of Pseudo-boehmite and y-Al2O3 Support by Neutralization of NaAlO2 Solution with CO2, China Petroleum Processing and Petrochemical Technology,2003, (1):47-51.
    [16]郑淑琴,庞新梅,段长艳,索继栓,酸法合成拟薄水铝石的研究与表征,石油炼制与化工,2002,33:58-60.
    [17]李玉平,贺卫卫,陈智巧,王亚强,低堆密度拟薄水铝石纳米纤维粒子的制备与表征,石油炼制与化工,,2006,37:25-29.
    [18]潘成强,钱君律,伍艳辉,刘仲能,温度对硝酸法制备拟薄水铝石影响的研究,精细石油化工进展.2003,4:40-43.
    [19]Hoar T. P., Schulman J. H., Transparent Water-in-Oil Dispersions:the Oleopathic Hydro-Micelle, Nature,1943,152:102-103.
    [20]Shinoda K., Friberg S. Microemulsions:Colloidal aspects, Adv. Colloid Interface Sci.,1975, 4(4):281-300.
    [21]Schulman J. H., Stoeckenius W., Prince L. M. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy, J. Phys. Chem.,1959,63:1677-1680.
    [22]李干佐,郭荣等编著.微乳液理论及其应用,北京,石油工业出版社,1995.
    [23]Leung R., Hou M. J., Manohar C. in Macro- and Microemulsions, D. O. Shash, Ed., American Chemical Society, Washington, D. C.,1985.
    [24]金小平,微乳法制备Ag/SiO2催化剂及其过氧化氢分解性能研究[硕士论文],大连:中国科学院大连化学物理研究所.2005.
    [25]张骅,胡耿源编著.表面活性剂化学.杭州,浙江大学出版社,1996.
    [26]徐建锋,AOT微乳液体系中Co-Fe普鲁士蓝类配合物磁性纳米材料的制备及性质研究[硕士论文],兰州:兰州大学.2010.
    [27]Lindman B., Shinoda K., Olsson U. On the demonstration of bicontinuous structures in microemulsions, Colloids and Surfaces,1989,38:205-224.
    [28]陈磊,陈建敏,周惠娣.微乳化技术在无机纳米材料制备中的应用及发展,材料科学与工程学报,2004,122:138-141.
    [29]Boutonnet M., Kizling, J., Stenius, P., Maire, G. The preparation of monodisperse colloidal metal particles from microemulsions, Colloids Surf.,1982,5:209-225.
    [30]Foos E. E., Stroud R. M., Berry A. D., et al. Synthesis of Nanocrystalline Bismuth in Reverse Micelles, J. Am. Chem. Soc,2000,122:7114-7115.
    [31]Lisiecki I., Pileni M. P. Synthesis of copper metallic clusters using reverse micelles as microreactors, J. Am. Chem. Soc.,1993,115(10):3887-3896.
    [32]Lisiecki I., Pileni M. P. Copper Metallic Particles Synthesized "in Situ" in Reverse Micelles: Influence of Various Parameters, J. Phys. Chem.,1995,99(14):5077-5082.
    [33]Tanori J., Pileni, M. P. Control of the Shape of Copper Metallic Particles by Using a Colloidal System as Template, Langmuir,1997,13(4):639-646.
    [34]Qi L. M., Ma J. M., Shen J. L. Synthesis of Copper Nanoparticles in Nonionic Water-in-Oil Microemulsions, J. Colloid Interface Sci.,1997,186(2):498-500.
    [35]Rong M, Zhang M, Liu H, Synthesisof Silver Nanoparticles and their Self-organization Behavior in Epoxy Resin, J. Polymer,1999,40:6169-6178.
    [36]Chen J. P., Lee K. M., Sorensen C. M., et al. J., Hadjipanayis, G. C. Magnetic properties of microemulsion synthesized cobalt fine particles, J. Appl. Phys.,1994,75:5876-5878.
    [37]Germain V., Richardi J., Ingert D., et al. P. Mesostructures of Cobalt Nanocrystals.1. Experiment and Theory, J. Phys. Chem. B,2005,109(12):5541-5547.
    [38]Chen D. H., Wu S. H. Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions, Chem. Mater.,2000,12(5):1354-1360.
    [39]J. Esquena, Th. F. Tadros, K. Kostarelos, and C. Solans, Preparation of Narrow Size Distribution Silica Particles Using Microemulsions, Langmuir,1997,13 (24):6400-6406.
    [40]M.-L. Wu, D.-H. Chen, T.-C. Huang, Preparation of Au/Pt Bimetallic Nanoparticles in Water-in-Oil Microemulsions, Chem. Mater.,2001,13(2):599-606.
    [41]D.-H. Chen, C.-J. Chen, Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions, J. Mater. Chem.,2002,12:1557-1562.
    [42]Taeghwan Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Comm.,2003,8: 927-934.
    [43]Sun S. H., Murray C. B., Weller D., Folks L., Moser A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science.2000,287 (5460):1989-1992.
    [44]田莉,方建,贺进明,叶丙静,曹文训,赵继华,沈伟国,微乳水热法制备γ-氧化铝纳米纤维,兰州大学学报,2008,44(5):144-145.
    [45]Pang Y. X., Bao X. Aluminium oxide nanoparticles prepared by water-in-oil microemulsions, J. Mater. Chem.,2002,12:3699-3704.
    [46]He P., Shen X. H., Gao H. C., Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, J. Colloid Interface Sci.,2005,284(2):510-515.
    [47]Moran P. D., Bartlett J. R., Bowmaker G. A., et al. Formation of TiO2 sols, gels and nanopowders from hydrolysis of Ti((OPr)-Pr-i)4 in AOT reverse micelles, J. Sol-Gel Sci. Technol., 1999,15:251-262.
    [48]O'Connor C. J., Seip, C. T., Carpenter E. E., et al. Synthesis and reactivity of nanophase ferrites in reverse micellar solutions, Nanostruct. Mater.,1999,12:65-70.
    [49]Lee H. S., Lee W. C., Furubayashi T. A comparison of coprecipitation with microemulsion methods in the preparation of magnetite, J. Appl. Phys.,1999,85(8):5231-5233.
    [50]Lu F., Zhang Q. H., Wang Y., Wan H. L. Syntheses of silica-coated palladium nanoparticles using a water-in-oil microemulsion, Acta Chim. Sinica,2004,62:1713-1716.
    [51]Vestal C. R., Zhang Z. J. Synthesis of CoCrFe04 Nanoparticles Using Microemulsion Methods and Size-Dependent Studies of Their Magnetic Properties, Chem. Mater.,2002,14(9): 3817-3822.
    [52]Hayashi M., Uemura H., Shimanoe K., et al. Enhanced Electrocatalytic Activity for Oxygen Reduction over Carbon-Supported LaMnO3 Prepared by Reverse Micelle Method, Electrochem. Solid State Lett.,1998,1(6):268-270.
    [53]Kumar P., Pillai V., Bates S. R., Shah D. O., Preparation of YBa2Cu307-x superconductor by coprecipitation of nanosize oxalate precursor powder in microemulsions, Mater. Lett.,1993, 16:68-74.
    [54]Lu C. H., Wang H. C. Synthesis of nano-sized LiNi0.8Co0.2O2 via a reverse-microemulsion route, J. Mater. Chem.,2003,13:428-431.
    [55]Xu W. H., Shen Y. H., Xie A. J., et al. Study on Preparation and Formation Mechanisms of PbS Nanoparticles with Different Morphologies in W/O Microemulison, Wuji Huaxue Xuebao(Chin. J. Inorg. Chem.),2006,22(2):258-262.
    [56]Gan L. M., Liu B., Chew C. H., et al. Enhanced Photoluminescence and Characterization of Mn-Doped ZnS Nanocrystallites Synthesized in Microemulsion, Langmuir,1997,13(24): 6427-6431.
    [57]Yang H. M., Guo R., Wang H. Q. Lubrication of the mixed system of Triton X-100/n-C10H21OH/H2O lamellar liquid crystal and ZnS nanoparticles, Colloids and Surfaces A., 2001,180:243-251.
    [58]Zhang Q. M., Huang F. Z., Li Y., Cadmium sulfide nanorods formed in microemulsions, Colloids and Surfaces A.,2005,257-258:497-501.
    [59]Binnig G., Rohrer H., Gerber C., et al. Tunneling through a controllable vacuum gap, Appl. Phys. Lett.,1982,40:178-180.
    [60]Carpenter E. E. Ph.D. Thesis, University of New Orleans, New Orleans, LA,1999.
    [61]Janos H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev.,1907,87(5):877-899.
    [62]Rojas S, Eriksson S, Boutonnet M, Microemulsion:An Alternative Route to Preparing Supported Catalysts, Catal.,2004,17:258-292.
    [63]Boutonnet M, Kizling J, Touroude R, Maire G, Stenius P, Monodispersed colloidal metal particles from non-aqueous solutions:Catalytic behaviour for the hydrogenation of but-1-ene of platinum particles in solution, Appl. Catal.,1986,20:163-177.
    [64]Eriksson S, Nylen U, Rojas S, Boutonnet M, Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis, Appl. Catal., A:general,2004,265(2):207-219.
    [65]J. Rymes, G. Ehret, L. Hilaire, M. Boutonnet, Kveta Jiratova, Microemulsions in the preparation of highly active combustion catalysts, Catal. Today,2002,75(1-4):297-303.
    [66]Manuel Ojeda, Sergio Rojas, Magali Boutonnet, Francisco J. Perez-Alonso, F. Javier Garcia-Garcia, Jose Luis G. Fierro, Synthesis of Rh nano-particles by the microemulsion technology:Particle size effect on the CO+H2 reaction, Appl. Catal. A:General,2004,274(1-2): 33-41.
    [67]K. Kouachi, G. Lafaye, C. Especel, O. Cherifi, P. Marecot, Preparation of silica-supported cobalt catalysts from water-in-oil microemulsion for selective hydrogenation of citral, J. Mol. Catal. A:Chem.,2009,308(1-2):142-149.
    [68]Toshiaki Hanaoka, Hiroki Hayashi, Teruoki Tago, Masahiro Kishida, and Katsuhiko Wakabayashi, In Situ Immobilization of Ultrafine Particles Synthesized in a Water/Oil Microemulsion, J. Colloid Interface Sci.,2001,235(2):235-240.
    [69]W. A. Spieker, J. R. Regalbuto, A fundamental model of platinum impregnation onto alumina, Chem. Eng. Sci.,2001,56(11):3491-3504.
    [70]Xuejun Quan, Qinghua Zhao, Huaiqin Tan, Xuemei Sang, FupingWang, Ya Dai, Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol-gel process, Mater. Chem. Phys.,2009,114(1):90-98.
    [71]Junhua Liu, FangWang, Zhenggui Gu, Xianlun Xu, Styrene epoxidation over Ag-γ-ZrPcatalystpreparedbyion-exchange, Catal. Commun.,2009,10:868-871.
    [72]赵英娜,熔融-分相法制备纳米Ti02光催化材料的研究[硕士论文],唐山:河北理工学院.2004.
    [73]Krishnan Balakrishnan, Richard D. Gonzalez, Preparation of Bimetallic Pt-Sn/Alumina Catalysts by the Sol-Gel Method, Langmuir,1994,10(7):2487-2490.
    [74]王良御,廖松生,液晶化学[M],北京:科学出版社,1988.
    [75]田晓红,蒋青,谢明贵,溶致液晶的结构及应用研究进展,化学研究与应用,2002,14(2):119-120.
    [76]Timothy M. Dellinger, Paul V. Braun, Lyotropic Liquid Crystals as Nanoreactors for Nanoparticle Synthesis, Chem. Mater.,2004,16(11):2201-2207.
    [77]Julia H. Ding, Douglas L. Gin, Catalytic Pd Nanoparticles Synthesized Using a Lyotropic Liquid Crystal Polymer Template, Chem. Mater.,2000,12(1):22-24.
    [78]Chulsu Jo, Jae II Lee, Youngrok Jang, Electronic and Magnetic Properties of Ultrathin Fe-Co Alloy Nanowires. Chem. Mater.,2005,17(10):2667-2671.
    [79]Guangjun Zhou, Mengkai Lu, Zhongsen Yang, Research Article Aqueous Synthesis of Copper Nanocubes and Bimetallic Copper/Palladium Core-Shell Nanostructures, Langmuir,2006, 22(13):5900-5903.
    [80]T. Wei, D. Kumar, M. S. Chen, K. Luo, S. Axnanda, M. Lundwall, D. W. Goodman, Vinyl Acetate Synthesis over Model Pd-Sn Bimetallic Catalysts, J. Phys. Chem. C,2008,112(22): 8332-8337.
    [81]Faycal Ksar, Laurence Ramos, Bineta Keita, Louis Nadjo, Patricia Beaunier, Hynd Remita, Bimetallic Palladium-Gold Nanostructures:Application in Ethanol Oxidation, Chem. Mater., 2009,21(15):3677-3683.
    [82]Dong-Hwang Chen, Cheng-Jia Chen, Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions, J. Mater. Chem.,2002,12:1557-1562.
    [83]Guoping Li, Yunjun Luo, Preparation and Characterization of Dendrimer-Templated Ag-Cu Bimetallic Nanoclusters, Inorg. Chem.,2008,47:360-364.
    [84]Ivan Sondi, Branka Salopek-Sondi, Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci.2004,275(1):177-182.
    [85]Chu, C. S; McManus, A. T.; Pruitt, B. A.; Mason, A. D. Theraputic Effects of Silver Nylon Dressings with Weak Direct Current on Pseudomonas aeruginosa-Infected Burn Wounds, J. Trauma 1988,28(10):1488-1492.
    [86]Ivana Srnova-Sloufova, Blanka Vlckova, Zdenek Bastl, Thomas L. Hasslett, Bimetallic (Ag)Au Nanoparticles Prepared by the Seed Growth Method:Two-Dimensional Assembling, Characterization by Energy Dispersive X-ray Analysis, X-ray Photoelectron Spectroscopy, and Surface Enhanced Raman Spectroscopy, and Proposed Mechanism of Growth, Langmuir,2004, 20(8):3407-3415.
    [87]Anyuan Yin, Xiuying Guo, Wei-Lin Dai, Kangnian Fan, The Nature of Active Copper Species in Cu-HMS Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol:New Insights on the Synergetic Effect between Cu0 and Cu+, J. Phys. Chem. C,2009, 113(25):11003-11013.
    [88]Ken-ichi Shimizu, Masao Tsuzuki, Kazuo Kato, Shigeru Yokota, Kazu Okumura, Atsushi Satsuma, Reductive Activation of O2 with H2-Reduced Silver Clusters as a Key Step in the H2-Promoted Selective Catalytic Reduction of NO with C3H8 over Ag/Al2O3, J. Phys. Chem. C, 2007,111(2):950-959.
    [89]肖益鸿,罗海燕,郑起,詹瑛瑛,魏可镁,微乳法制备Au/A l2O3催化剂及其催化氧化cO性能的研究,合成化学2005,13(4):331-335.
    [90]Xiaoyan Liu, Aiqin Wang, Xiaodong Wang, Chung-Yuan Mou, Tao Zhang, Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation, Chem. Commun., 2008,3187-3189.
    [91]Xiaoyan Liu, Aiqin Wang, Xiaofeng Yang, Tao Zhang, Chung-Yuan Mou, Dang-ShengSu, Jun Li, Synthesis of Thermally Stable and Highly Active Bimetallic Au-Ag Nanoparticles on Inert Supports, Chem. Mater.,2009,21:410-418.
    [92]Lu Gang, B. G. Anderson, J. van Grondelle, R. A. van Santen, W. J. H. van Gennip, J. W. Niemantsverdriet, P. J. Kooyman, A. Knoester, H. H. Brongersma, Alumina-Supported Cu-Ag Catalysts for Ammonia Oxidation to Nitrogen at Low Temperature, J. Catal.,2002,206:60-70.
    [93]Jun-Hong Liu, Ai-Qin Wang, Yu-Shan Chi, Hong-Ping Lin, Chung-Yuan Mou, Synergistic Effect in an Au-Ag Alloy Nanocatalyst:CO Oxidation, J. Phys. Chem. B,2005,109(1):40-43.
    [94]Ai-Qin Wang, Jun-Hong Liu, S.D. Lin, Tien-Sung Lin, Chung-Yuan Mou, A novel efficient Au-Ag alloy catalyst system:preparation, activity, and characterization, J. Catal.,2005,233: 186-197.
    [95]Aiqin Wang, Ya-Ping Hsieh, Yong-Fan Chen, Chung-Yuan Mou, Au-Ag alloy nanoparticle as catalyst for CO oxidation:Effect of Si/Al ratio of mesoporous support, J. Catal.,2006,237: 197-206.
    [96]Suljo Linic, Jerome Jankowiak, Mark A. Barteau, Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles, J. Catal.,2004,224(2):489-493.
    [97]Jerome T. Jankowiak, Mark A. Barteau, Ethylene epoxidation over silver and copper-silver bimetallic catalysts:I. Kinetics and selectivity, J. Catal.,2005,236(2):366-378.
    [98]J.C. Dellamorte, J. Lauterbach, M.A. Barteau, Rhenium promotion of Ag and Cu-Ag bimetallic catalysts for ethylene epoxidation, Catal. Today,2007,120(2):182-185.
    [99]孙晓云,宫葵,关蓬莱,任飞,沈德芬,苯乙烯环氧化反应金属配合物催化剂研究进展,当代化工,2009,38(2):175-177.
    [100]贾玲玲,银催化剂表面修饰以及对乙烯环氧化反应影响的理论研究[博士论文],上海:复旦大学.2003.
    [101]Joseph C. Dellamorte, Jochen Lauterbach and Mark A. Barteau, Promoter-Induced Morphological Changes of Ag Catalysts for Ethylene Epoxidation, Ind. Eng. Chem. Res.,2009,48 (13):5943-5953.
    [102]Phillip Christopher, Suljo Linic, Engineering Selectivity in Heterogeneous Catalysis:Ag Nanowires as Selective Ethylene Epoxidation Catalysts, J. Am. Chem. Soc.,2008,130 (34): 11264-11265.
    [103]A.C. Lukaski, M.C.N. Enever, M.A. Barteau, et al. Structure and reaction of oxametallacycles derived from styrene oxide on Ag(110), Surface Science,2007,601:3372-3382.
    [104]M. Enever, S. Linic, K. Uffalussy, J. M. Vohs, M. A. Barteau, Synthesis, Structure, and Reactions of Stable Oxametallacycles from Styrene Oxide on Ag(111), J. Phys. Chem. B,2005,109 (6):2227-2233.
    [1]李玉平,贺卫卫,陈智巧,王亚强,低堆密度拟薄水铝石纳米纤维粒子的制备与表征,石油炼制与化工,2006,37(7):25-29.
    [2]李波,邵玲玲,氧化铝、氢氧化铝的XRD鉴定,无机盐工业,2008,40(2):54-57.
    [3]罗玉长,拟薄水铝石结构的演化,齐鲁石油化工,1998,30(2):3-5.
    [4]何余生,李忠,奚红霞,郭建光,夏启斌,气固吸附等温线的研究进展,离子交换与吸
    附,2004,20(4):376~384.
    [5]Sivarajan Ramesh, Elena Sominska, Baruch Cina, Rachman Chaim, Aharon Gedanken, Nanocrystalline g-Alumina Synthesized by Sonohydrolysis of Alkoxide Precursor in the Presence of Organic Acids:Structure and Morphological Properties, J. Am. Ceram. Soc.,2000,83(1): 89-94.
    [6]Ezzat A. El-Katatny, Samih A. Halawy, Mohamed A. Mohamed, Mohamed I. Zaki, A Novel Synthesis of High-Area Alumina via H2O2-Precipitated Boehmite from Sodium Aluminate Solutions, J. Chem. Technol. Biotechnol.1998,72:320-328.
    [1]沈明,郭荣,严鹏权,朱霞石,Triton X-100/C10H2,OH/H2O体系层状液晶中水溶性超微粒子材料Na2C2O4的制备,1996,3:350-354.
    [2]沈明,郭荣,严鹏权,于卫理,Triton X-100/C10H21OH/H2O体系层状液晶中超微粒子材料CdS的合成,1996,13(4):74-76.
    [3]何伟艳,化学沉淀法和层状液晶法制备纳米乳酸钙[硕士论文],呼和浩特:内蒙古工业大学.2007.
    [4]严鹏权,郭荣,刘正铭,朱霞石,沈明,Triton X-100/C10H21OH/H2O体系微乳液与溶致液晶,物理化学学报,1994,10:468-471.
    [5]田莉,微乳液法和微乳水热法制备Y-氧化铝的研究[硕士论文],兰州:兰州大学.2008.
    [6]郭荣,宋根萍,严鹏权,沈明,Triton X-100/C10H21OH/H2O体系层状液晶中超微粒子材料PbS的合成,1999,55:937-942.
    [1]Schwuger M J, Stichkdorn K. Microemulsions in Technical Processes, Chem Rev.,1995,95(4): 849-864.
    [2]田莉,微乳液法和微乳水热法制备γ-氧化铝的研究[硕士论文],兰州:兰州大学.2008.
    [3]邵庆辉,古国榜,章莉娟,微乳反胶团体系在纳米超微颗粒制备中的应用,化工进展[J].2002,21(2):136-139.
    [4]卓蓉晖,ZrO2超细粉制备过程中分体团聚的控制方法,江苏陶瓷,2002,35(3):32-33.
    [5]D. R. Riccardo, A. Silvia, B. Giovanni, M. Paolo, Ceramic pigments obtained by sol-gel techniques and by mechanochemical insertion of color centers in Al2O3 host matrix, J. Eur Ceram Soc.,2002,22:629-637.
    [6]甘礼华,岳天仪,李光明等,微乳液法制备γ-Al2O3超细粉及其表征[J],同济大学学报,1996,24:194-197.
    [7]Sivarajan R, Elena S, Baruch C, Rachman C, Aharon G, Preparation of N-Trisubstituted Borazines by Reduction of B-Trichloroborazines 1, J. Am Ceram Soc.,2000,82:89-92.
    [1]田莉,微乳液法和微乳水热法制备丫-氧化铝的研究[硕士论文],兰州:兰州大学.2008.
    [2]赵继华,田莉,方建,沈伟国,一种微乳液制备立体网状活性氧化铝的方法,专利,中国,2008,申请号200810093754.0.
    [3]Toshiaki Hanaoka, Hiroki Hayashi, Teruoki Tago, Masahiro Kishida, and Katsuhiko Wakabayashi, In Situ Immobilization of Ultrafine Particles Synthesized in a Water/Oil Microemulsion, J. Colloid Interface Sci.,2001,235(2):235-240.
    [4]R.J. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre, J.E. Sueiras, J.L.G Fierro, Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles, Applied Surface Science,2005,252(3):793-800.
    [5]Sivarajan Ramesh, Elena Sominka, Baruch China, Rachman Chaim, Aharon Gedanken, Nanocrystalline y-Alumina Synthesized by Sonohydrolysis of Alkoxide Precursor in the Presence of Organic Acids:Structure and Morphological Properties, J. Am. Ceram. Soc.,2000,83(1): 89-94.
    [6]伍昌维,新型锂离子可充电电池正极材料LiM (M=Ag (or) Re) Mn<2>O<,4>的制备和性能研究[硕士论文],贵阳:贵州大学.2006.
    [7]H.R.Castro Ricardo,V. Ushakov Sergey, Gengembre Leon, Surface Energy and Thermodynamic Stability of y-Alumina:Effect of Dopants and Water, Chem.Mater.,2006,18(7): 1867-1872.
    [1]Marzan, L.P., A., Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers, J. Phys. Chem.1995,99:15120-15128.
    [2]赵继华,田莉,方建,沈伟国,一种微乳液制备立体网状活性氧化铝的方法,专利,中国,2008,申请号200810093754.0.
    [3]Lu Gang, B. G. Anderson, J. van Grondelle, R. A. van Santen, W. J. H. van Gennip, J. W. Niemantsverdriet, P. J. Kooyman, A. Knoester, H. H. Brongersma, Alumina-Supported Cu-Ag Catalysts for Ammonia Oxidation to Nitrogen at Low Temperature, J. Catal.,2002,206:60-70.
    [4]Ai-Qin Wang, Jun-Hong Liu, S.D. Lin, Tien-Sung Lin, Chung-Yuan Mou, A novel efficient Au-Ag alloy catalyst system:preparation, activity, and characterization, J. Catal.,2005,233: 186-197.
    [5]H. R. Castro Ricardo, V. Ushakov Sergey, Gengembre Leon, Surface Energy and Thermodynamic Stability of y-Alumina:Effect of Dopants and Water, Chem.Mater.,2006, 18(7):1867-1872.
    [6]Petit C, Lixon P, Pileni M P., In situ synthesis of silver nanocluster in AOT reverse micelles, J. Phys. Chem.,1993,97(49):12974-12983.
    [7]B.E. Warren, Addison-Wesley, Reading, MA.1969, P.253.
    [8]Xiaoyan Liu, Aiqin Wang, Xiaodong Wang, Chung-Yuan Mou and Tao Zhang, Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation, Chem. Commun., 2008,3187-3189.
    [1]Junhua Liu, Fang Wang, Zhenggui Gu, Xianlun Xu, Styrene epoxidation over Ag-y-ZrPcatalystpreparedbyion-exchange, Catal. Commun.,2009,10:868-871.
    [2]Xiaoge Yang, Shuang Gao, Zuwei Xi, Reaction-Controlled Phase Transfer Catalysis for Styrene Epoxidation to Styrene Oxide with Aqueous Hydrogen Peroxide, Org. Process Res. Dev., 2005,9(3):294-296.
    [3]Violeta Purcar, Dan Donescu, Cristian Petcu, Rafael Luque, Duncan J. Macquarrie, Efficient preparation of silver nanoparticles supported on hybrid films and their activity in the oxidation of styrene under microwave irradiation, Appl. Catal. A:General,2009,363:122-128.
    [4]J.R. Monnier, G.W. Hartley, Comparison of Cu and Ag Catalysts for Epoxidation of Higher Olefins, J. Catal.,2001,203:253-256.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.