低浓度烷化剂诱发的细胞应答反应的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单功能烷化剂N-甲基-N-硝基-N-亚硝基胍(MNNG)是一种在环境中广泛存在的化学诱变剂和致癌剂,它能和DNA及蛋白质等生物大分子形成加合物(adduct),其引起的与突变有关的主要DNA损伤类型是O~6-甲基鸟嘌呤,这种损伤与肿瘤尤其是胃癌的发生密切相关。但是DNA损伤并不是引起突变的必要条件,一个典型的例子就是发生在B淋巴细胞的免疫球蛋白(Ig)可变区基因上的“体细胞超突变(somatic hyermutation)”,是由表面抗原受体而不是DNA损伤驱动的主动突变。环境诱变剂引起的突变也可发生在非DNA损伤部位,我们称之为非定标性突变(nontargeted mutagenesis)。这种突变除了可能由DNA损伤途径触发外,也有可能通过非核起源的外遗传(epigenetic)途径,激活细胞信号转导通路,引起一系列基因表达的改变而最终导致突变的形成。同样地,环境诱变剂诱发的细胞应答反应也不只是单纯地由DNA损伤所触发的。自环境毒物接触细胞开始,细胞就发生了一系列广泛和复杂的应答反应以应对此不良环境。其中包括了即刻发生的并不依赖于核损伤信号的信号转导通路的激活和较迟发生的基因表达的改变。
     我们实验室曾用一特殊的突变检测系统,直接证明DNA损伤剂可在哺乳动物细胞诱发非定标性突变:首先用低浓度(0.2μM)的短寿烷化剂MNNG(半寿期为1.1hr)处理细胞2.5h后,继续培养24h,将重组有用作突变检测的靶基因supFtRNA基因的穿梭质粒pZ189转入细胞复制,发现在未受致癌物直接攻击的穿梭质粒中有较自发突变率高5倍以上的靶基因突变。这种突变并非在接受MNNG攻击以
    
    浙江大学博士学位论文 金静华
    后立刻出现,而是具有时相依存性,在致癌物攻击后其发生率逐渐升高,在 12h
    达最高峰,以后逐渐下降。且突变谱明显不同于由MNNG直接攻击引起的定标
    性突变,有其突变好发部位的序列特异性。
     进一步地,我们还证明了低浓度MNNG的作用下有广泛的细胞反应,尤其
    是在信号转导通路的激活和基因表达的改变的研究中取得了一些突破性的进展。
    例如细胞表面受体如表皮生长因子受体、肿瘤坏死因子受体发生聚簇,细胞信号
    转导通路CAMP}KAcgyB和JNK/SAPK被激活。更值得注意的是这些有关信
    号转导通路的激活并不依赖于细胞核中的DNA损伤,因为在除细胞核的细胞中
    这些细胞通路的激活仍可被诱发。我们还利用mRNA差异显示技术分离到了近
    30个在 MNNG处理后表达改变的表达序列标签(expressed sequence ag,EsT)。
    其中9号片段在MNNG处理后表达增高,其表达改变不受蛋白质合成抑制剂的
    影响。利用反义核酸技术构建含反向插入9号片段的真核细胞表达重组体并转染
    细胞,以获得反义RNA阻断vero细胞中相应基因的表达,发现MN’NG诱发的
    非定标性突变频率显著增高,提示被阻断的相关基因的表达产物可能参与抑制非
    定标性突变的发生。
     由此可见,信号转导通路的激活和基因表达的改变可能是环境诱变剂通过非
    DNA损伤途径诱发哺乳动物细胞非定标突变发生的关键所在。所以,从整体上
    研究烷化剂作用后细胞基因表达谱改变,对于了解化学致癌物诱发的哺乳动物细
    胞应激反应的全貌和揭示非定标性突变的发生机制具有非常重要的意义。虽然,
    利用mRNA差异显示技术和基因芯片技术可在转录水平高通量的筛选基因表达
    的差异,但是这些技术都不能提供转录后的尤其是蛋白质在翻译后修饰的信息,
    而蛋白质通常是细胞内的功能执行者。蛋白质组学的技术——一种能同时研究成千
    上万种蛋白质的技术一更适合于研究细胞对烷化剂的应答反应。因此,本研究中
    我们利用蛋白质组学的技术研究了低浓度MN’NG诱发的哺乳动物细胞蛋白质的
    表达差异;并且,利用双向凝胶电泳结合相应的ZD分析软件比较了反义阻断9
    号片段相关基因的vero巾M-amp”习-细胞和转染空载体的对照细胞vero巾M-amp”
    在MN’NG处理后细胞蛋白质组的表达差异,为阐明9号片段相关基因的作用机
    制提供线索。
     双向凝胶电泳方法的建立和低浓度MNNG诱发的人羊膜F’L细胞蛋白质的
     2
    
    浙江大学博士学位论文 金静华
    差异表达的初步分析:FL细胞用0二sgu的MNNG处理又5小时后继续培养12
    小时,对照组用溶剂二甲亚圃处理,然后提取细胞总蛋白,用双向凝胶电泳分离,
    电泳后的凝胶用银染进行染色,并用专门的计算机软件对电泳结果进行数据采集
    和图象分析,建立蛋白质组差异表达谱。结果:MNNG处理后的FL细胞中检测
    到IO个新出现的蛋白点,同时有5个蛋白点在MN’N G处理后消失:有30个点
    在表达量上有显著变化,其中16个点在MNNG处理后表达升高,另14个点则
    表达量降低。结论:在低浓度烷化剂攻击的FL细胞中有一系列蛋白质表达水平
    的改变,提示这些发生改变的蛋白质可能参与了哺乳类细胞非定标性突变的发
    生。
     低浓度MNNG诱发的人羊膜FL细胞差异表达蛋白的鉴定:为了能用质谱
    的方法鉴定MN-NG诱发的FL细胞的差异表达蛋白,我们采用了上样量更大,
    分离距?
Monofunctional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a widely spread environmental mutagen and carcinogen that targets DNA and proteins to generate adducts. Among the adducts, O6-alkyl guanine is the predominant mutagenic lesion because of its mispairing properties, which can eventually lead to chromosomal aberrations, point mutations, and cell death. This lesion also appears to be involved in tumor initiation, particularly in gastric carcinogenesis. However, DNA damage has been ruled out as the prerequisite for alkylating agents-induced mutagenesis. For example, somatic hypermutation, which occurred around the variable region in the immunoglobin gene of B cells, is driven by antigen activation not by DNA damage and is considered a kind of active mutation. Environmental mutagens can also induce mutations at undamaged sites and result in the so-called nontargeted mutation. This kind of mutation may be not only induced by DNA damage but also through the epigenetic pathway other than the nuclear origin including the activation of various signal transduction pathways and altered expressions of many genes. Similarly, the cellular response to the environmental mutagens is not always initiated by DNA damage. Exposure to genotoxic agents would trigger a series of comprehensive and complex responses in cells to counteract the abnormal conditions, which include the rapid activation of signal transduction pathways independent of the nuclear damage signal and late alteration of gene expression.
    In our laboratory, a unique mutation detection system using a shuttle vector
    
    
    
    plasmid has been established to demonstrate that a low concentration of MNNG (0.2 M) can induce nontargeted mutation in mammalian cells: the mammalian cells were exposed to 0.2M MNNG for 2.5h, then a shuttle plasmid pZ189 carrying supF tRNA gene was transfected into cells after 24h culture. We found a 5-fold higher mutation frequency of the plasmid replicated in pretreated cells than the spontaneous mutation frequency of the plasmid replicated in control cells. This kind of mutation did not occur immediately after MNNG exposure. Time-course analysis showed that the frequency of MNNG induced nontargeted mutation increased gradually, reached the peak at 12 h after MNNG treatment, and then declined. The specific nontargeted mutation spectrum is different from that of targeted mutation, whereas the mutation occurs at damaged DNA site.
    Furthermore, we have demonstrated that low concentration MNNG exposure induced comprehensive cellular responses. For example, we have found the clustering of EGFR (epidermic growth factor receptor) and TNFR (tumor necrosis factor receptor) and the activation of cAMP-PKA-CREB and JNK/SAPK pathways after MNNG treatment. It is even more interesting that the activation of these pathways seems to be independent of DNA damage, because these events can still occur in enucleated cells. In addition, more than 30 differential expressed sequence tags (EST) have been isolated by mRNA differential display. Among them, fragment 9 showed enhanced expression after MNNG exposure and protein synthesis inhibitor couldn't inhibit the alteration. An expression vector with fragment 9 in antisense orientation was constructed to block the expression of the relevant gene (fragment 9 related gene, FNR gene) in vero cells. Interestingly, we found that the nontargeted mutation frequency induced by MNNG was increased significantly, implicating that the product of the blocked gene may be involved in the inhibition of nontargeted mutation. Therefore, it is important to study the profiles of gene expression, which will help understand the global cellular stress responses to chemical carcinogens, and further elucidate the mechanisms of nontargeted mutagenesis.
    Currently there are many techniques available to screen the gene expression at the
    
    
    
    transcriptional levels, such as mKNA differential display and cDNA microarray. Although these methods can provide high-throughput information about the differential gene expressi
引文
1.印木泉.遗传毒理学.北京:科学出版社.2002.216-27
    2. Tang, M., Pham, P., Shen, X., Taylor, J.S., O'Donnell, M., Woodgate, R. and Goodman,M.F. (2000) Roles of E. coli DNA polymerases Ⅳ and Ⅴ in lesion-targeted and untargeted SOS mutagenesis. Nature, 404, 1014-8
    3. Jacobs, H. and Bross, L. (2001) Towards an understanding of somatic hypermutation. Curr Opin Immunol, 13, 208-18
    4. Grosovsky, A.J. (1999) Radiation-induced mutations in unirradiated DNA. Proc Natl Acad Sci U S A, 96, 5346-7
    5. Nagasawa, H. and Little, J.B. (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res, 52, 6394-6
    6. Wu, L.J., Randers-Pehrson, G., Xu, A., Waldren, C.A., Geard, C.R., Yu, Z. and Hei, T.K.(1999)Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci U S A, 96, 4959-64
    7.孙雪敏,余应年,张小山,陈星若(1996).MNNG所致哺乳类细胞非定标性突变的时相分析.中国药理学与毒理学杂志,10,77-78
    8. Zhang, X., Yu, Y. and Chen, X. (1994) Evidence for nontargeted mutagenesis in a monkey kidney cell line and analysis of its sequence specificity using a shuttle-vector plasmid. Mutat Res, 323, 105-12
    9. Zhang, X., Yu, Y. and Chen, X. (1995) The use of a shuttle plasmid to study nontargeted mutagenesis and its sequence specificity. Chin Med Sci J, 10, 20-4.
    10. Lowndes, N.F. and Murguia, J.R. (2000) Sensing and responding to DNA damage. Curr Opin Genet Dev, 10, 17-25
    11. Rouse, J. and Jackson, S.P. (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science, 297, 547-51
    12. Yang, J., Yu, Y. and Duerksen-Hughes, P.J. (2003) Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res, 543, 31-58
    13. Wang, L., Wu, Q., Qiu, P., Mirza, A., McGuirk, M., Kirschmeier, P., Greene, J.R.,Wang, Y., Pickett, C.B. and Liu, S.(2001) Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J Biol Chem, 276, 43604-10
    14. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T.,Taniguchi, T. and Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 288, 1053-8
    15. Laronga, C., Yang, H.Y., Neal, C. and Lee, M.H. (2000) Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem, 275, 23106-12
    
    
    16. Bender, K., Blattner, C., Knebel, A., lordanov, M., Herrlich, P. and Rahmsdorf, H.J.(1997) UV-induced signal transduction. J Photochem Photobiol B, 37, 1-17
    17. Devary, Y., Gottlieb, R.A., Smeal, T. and Karin, M. (1992)The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell, 71, 1081-91
    18. Devary, Y., Rosette, C., DiDonato, J.A. and Karin, M. (1993) NF-kappa B activation by ultraviolet light not dependent on a nuclear signal. Science, 261, 1442-5
    19. Rosette, C. and Karin, M. (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science, 274, 1194-7
    20. Wilhelm, D., Bender, K., Knebel, A. and Angel, P. (1997) The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents.Mol Cell Biol, 17, 4792-800
    21. Sachsenmaier, C., Radler-Pohl, A., Zinck, R., Nordheim, A., Herrlieh, P. and Rahmsdorf, H.J.(1994) Involvement of growth factor receptors in the mammalian UVC response. Cell, 78,963-72.
    22. Wang, G., Yu, Y., Chen, X. and Xie, H. (2001) Low concentration N-methyl-N'-nitro-N-nitrosoguanidine activates DNA polymerase-beta expression via cyclic-AMP-protein kinase A-cAMP response element binding protein pathway. Mutat Res,478, 177-84.
    23.鲁靖,余应年,谢海洋.N-甲基-N'-硝基-N-亚硝基胍诱发的Vero细胞JNK/SAPK通路的激活(2000).中国病理生理杂志,16,481
    24.王政,王谷亮,杨军,郭磊,余应年.Activation of protein kinase A and clustering of surface receptors induced by N-methyl-N'-nitro-N-nitrosoguanidine is independent of demonic DNA damage (2003). Mutat Res; (in press)
    25.朱峰,金彩霞,杨军,郭磊,余应年(2003). Response of human REV3 gene to gastric cancer inducing carcinogen N-methyl-N'-nitro-N-nitrosoguanidine and its role in mutagenesis. WJG,(in press)
    26. Hu W W, Yu Y N, Chen X R, Song T, Xie H Y. Isolating the cDNA fragment inhibiting nontargeted mutagenesis in vero cell by antisense technology. Chinese Science Bulletin, 1999, 44, 533-537
    27. Jelinsky, S.A. and Samson, L.D. (1999) Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A, 96, 1486-91
    28. Amundson, S.A., Bittner, M., Chen, Y., Trent, J., Meltzer, P. and Fornace, A.J., Jr. (1999) Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene, 18, 3666-72
    29. Abbott, A.(1999) A post-genomic challenge: learning to read patterns of protein synthesis.Nature, 402, 715-20
    30. Anderson, L. and Seilhamer, J. (1997)A comparison of selected mRNA and protein
    
    abundances in human liver. Electrophoresis, 18, 533-7
    31.Gygi, S.P., Rochon, Y., Franza, B.R. and Aebersold, R. (1999)Correlation between protein and mRNA abundance in yeast. Mol Cell Biol, 19, 1720-30
    32.Krishna, R.G and Wold, F. (1993) Post-translational modification of proteins. Adv Enzymol Relat Areas Mol Biol, 67, 265-98
    33.Pratt, J.M., Petty, J., Riba-Garcia, I., Robertson, D.H., Gaskell, S.J., Oliver, S.G. and Beynon,R.J. (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics, 1,579-91
    34.Boulton, S.J., Vincent, S. and Vidal, M. (2001) Use of protein-interaction maps to formulate\ biological questions. Curr Opin Chem Biol, 5, 57-62
    35.Legrain, P., Wojcik, J. and Gauthier, J.M. (2001) Protein--protein interaction maps: a lead towards cellular functions. Trends Genet, 17, 346-52
    36.Figeys, D. (2002) Functional proteomics: mapping protein-protein interactions and pathways. Curr Opin Mol Ther, 4, 210-5
    37.Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Appel, R.D., Humphery-Smith, I., Hochstrasser,D.F. and Williams, K.L. (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev, 13, 19-50
    38.Simpson, R.J. and Dorow, D.S. (2001) Cancer proteomics: from signaling networks to tumor markers. Trends Biotechnol, 19, S40-8
    39.Morrison, R.S., Kinoshita, Y., Johnson, M.D., Uo, T., Ho, J.T., McBee, J.K., Conrads, T.P.and Veenstra, T.D. (2002) Proteomic analysis in the neurosciences. Mol Cell Proteomics, 1,553-60
    40.Resing, K.A. (2002) Analysis of signaling pathways using functional proteornics. Ann N Y Acad Sci, 971,608-14
    41.Wu, W., Hu, W. and Kavanagh, J.J. (2002) Proteomics in cancer research. Int d Gynecol Cancer, 12, 409-23
    42.Macri, J. and Rapundalo, S.T (2001) Application of proteomics to the study of cardiovascular biology. Trends Cardiovasc Med, 11, 66-75
    43.O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins, J Biol Chera, 250, 4007-21
    44.Cells, J.E. and Gromov, P. (1999) 2D protein electrophoresis: can it be perfected? Curr Opin Biotechnol, 10, 16-21
    45.Moiler, A., Soldan, M., Volker, U. and Maser, E. (2001)Two-dimensional gel electrophoresis: a powerful method to elucidate cellular responses to toxic compounds.Toxicology, 160, 129-38
    46.Griffin, T.J. and Aebersold, R. (2001)Advances in proteome analysis by mass spectrometry.d Biol Chem, 276, 45497-500
    47.Bakhtiar, R. and Nelson, R.W. (2000) Electrospray ionization and matrix-assisted laser
    
    desorption ionization mass spectrometry. Emerging technologies in biomedical sciences.Biochem Pharmacol, 59, 891-905
    48.Chalmers, M.J. and Gaskell, S.J. (2000) Advances in mass spectrometry for proteome analysis. Curt Opin Biotechnol, 11, 384-90
    49.Nyman, T.A. (2001) The role of mass spectrometry in proteome studies. Biomol Eng, 18,221-7
    50.Gromov, P.S., Ostergaard, M., Gromova, I. and Celis, J.E. (2002) Human proteomic databases: a powerful resource for functional genomics in health and disease. Prog Biophys Mol Biol, 80, 3-22
    51.Fenyo, D. (2000) Identifying the proteome: software tools. Curt Opin Biotechnol, 11, 391-5
    52.Mann, M. and Pandey, A. (2001) Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends Biochem Sci, 26, 54-61
    53.Vihinen, M. (2001)Bioinformatics in proteomics. Biomol Eng, 18, 241-8
    54.Bradford, M.M. (1976)A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-54
    55.Swain, M. and Ross, N.W. (1995) A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfate-polyacrylamide gels.Electrophoresis, 16, 948-51
    56.Fernandez, J., Gharahdaghi, F. and Mische, S.M. (1998) Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis, 19, 1036-45
    57.Gharahdaghi, F., Weinberg, C.R., Meagher, D.A., lmai, B.S. and Mische, S.M. (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis, 20, 601-5
    58.Celis, J.E., Ostergaard, M., Jensen, N.A., Gromova, l., Rasmussen, H.H. and Gromov, P.(1998) Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett, 430, 64-72
    59.Banks, R.E., Dunn, M.J., Hochstrasser, D.F., Sanchez, J.C., Blackstock, W., Pappin, D.J.and Selby, P.J. (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet, 356,1749-56
    60.Naaby-Hansen, S., Waterfield, M.D. and Cramer, R. (2001) Proteomics--post-genomic cartography to understand gene function. Trends Pharmacol Sci, 22, 376-84
    61.Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature, 405,837-46
    62.Chen, S.T., Pan, T.L., Tsai, Y.C. and Huang, C.M. (2002) Proteomics reveals protein profile changes in doxorubicin--treated MCF-7 human breast cancer cells. Cancer Lett, 181, 95-107
    63.Chevalier, S., Macdonald, N., Tonge, R., Rayner, S., Rowlinson, R., Shaw, J., Young, J.,
    
    Davison, M. and Roberts, R.A. (2000) Proteomic analysis of differential protein expression in primary hepatocytes induced by EGF, tumour necrosis factor alpha or the peroxisome proliferator nafenopin. Eur JBioehem, 267, 4624-34
    64.Rabilloud, T., Heller, M., Gasnier, E, Luche, S., Rey, C., Aebersold, R., Benahmed, M.,Louisot, P. and Lunardi, J. (2002) Proteomics analysis of cellular response to oxidative stress.Evidence for in vivo overoxidation of peroxiredoxins at their active site. JBiol Chem, 277,19396-401
    65.Fey, S.J. and Larsen, P.M. (2001) 2D or not 2D. Two-dimensional gel electrophoresis. Curr Opin Chem Biol, 5, 26-33
    66.Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem, 68, 850-8
    67.Lamer, S. and Jungblut, P.R. (2001) Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures, d Chromatogr B Biomed Sci Appl, 752, 311-22
    68.Chaurand, P., Luetzenkirchen, F. and Spengler, B. (1999) Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. JAm Soc Mass Spectrom, 10, 91-103.
    69.Ciauser, K.R., Hall, S.C., Smith, D.M., Webb, J.W., Andrews, L.E., Tran, H.M., Epstein,L.B. and Burlingame, A.L. (1995) Rapid mass spectrometric peptide sequencing and mass matching for characterization of human melanoma proteins isolated by two-dimensional PAGE.Proc Natl Acad Sci U SA, 92, 5072-6
    70.Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley, C. and Watanabe, C. (1993)Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA, 90, 5011-5
    71.James, P., Quadroni, M., Carafoli, E. and Gonnet, G. (1993) Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun, 195, 58-64
    72.Primakoff, P. and Myles, D.G. (2000) The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet, 16, 83-7
    73.Schlondorff, J. and Blobel, C.P. (1999) Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. JCell Sci, 112 ( Pt 21), 3603-17
    74.Black, R.A., Rauch, C.T., Kozlosky, C.J., Peschon, J.J., Slack, J.L., Wolfson, M.F., Castner, B.J., Stocking, K.L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K.A., Gerhart, M., Davis, R., Fitzner, J.N., Johnson, R.S., Paxton, R.J., March, C.J. and Cerretti, D.P. (1997)A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature, 385,729-33
    75.Moss, M.L., Jin, S.L., Milla, M.E., Bickett, D,M., Burkhart, W., Carter, H.L., Chen, W.J.,
    
    Clay, W.C., Didsbury, J.R., Hassler, D., Hoffman, C.R., Kost, T.A., Lambert, M.H., Leesnitzer,M.A., McCauley, P., McGeehan, G, Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton,L.K., Schoenen, F., Seaton, T, Su, J.L., Becherer, J.D. and et al. (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature, 385, 733-6
    76.Black, R.A. (2002) Tumor necrosis factor-alpha converting enzyme. Int JBiochem Cell Biol,34, 1-5
    77.Moss, M.L., White, J.M., Lambert, M.H. and Andrews, R.C. (2001) TACE and other ADAM proteases as targets for drug discovery. Drug Discov Today, 6, 417-426
    78.Guo, L., Eisenman, J.R., Mahimkar, R.M., Peschon, J.J., Paxton, R.J., Black, R.A. and Johnson, R.S. (2002)A proteomic approach for the identification of cell-surface proteins shed by metalloproteases. Mol Cell Proteomics, 1, 30-6
    79.Diaz-Rodriguez, E., Montero, J.C., Esparis-Ogando, A., Yuste, L. and Pandiella, A. (2002) Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol Biol Cell, 13, 2031-44
    80.Montero, J.C., Yuste, L., Diaz-Rodriguez, E., Esparis-Ogando, A. and Pandiella, A. (2002) Mitogen-activated protein kinase-dependent and -independent routes control shedding of transmembrane growth factors through multiple secretases. Biochem J, 363, 211-21
    81.Zheng, Y., Schlondorff, J. and Blobel, C.P. (2002) Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPHI. or Biol Chem,277, 42463-70
    82.Nelson, K.K., Schlondorff, J. and Blobel, C.P. (1999) Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta. Biochem J, 343 Pt 3, 673-80
    83.Mizui, Y., Yamazaki, K., Sagane, K. and Tanaka, I. (1999)cDNA cloning of mouse tumor necrosis factor-alpha converting enzyme (TACE) and partial analysis of its promoter. Gene, 233,67-74
    84.Cerretti, D.P., Poindexter, K., Castner, B.J., Means, G., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Black, R.A. and Nelson, N. (1999) Characterization of the eDNA and gene for mouse tumour necrosis factor alpha converting enzyme (TACE/ADAM17)and its location to mouse chromosome 12 and human chromosome 2p25. Cytokine, 11, 541-51
    85.Hurtado, O., Cardenas, A., Lizasoain, l., Bosca, L., Leza, J.C., Lorenzo, P. and Moro, M.A. (2001) Up-regulation of TNF-alpha convertase(TACE/ADAM17)after oxygen-glucose deprivation in rat forebrain slices. Neuropharmacology, 40, 1094-102
    86.Madrigal, J.L., Hurtado, O., Moro, M.A., Lizasoain, I., Lorenzo, P., Castrillo, A., Bosca, L.and Leza, J.C. (2002) The increase in TNF-alpha levels is implicated in NF-kappaB activation and inducible nitric oxide synthase expression in brain cortex after immobilization stress.Neuropsychopharmacology, 26, 155-63
    
    
    87.Howard, L., Zheng, Y., Horrocks, M., Maciewicz, R.A. and Blobel, C. (2001) Catalytic activity of ADAM28. FEBS Lett, 498, 82-6
    88.Howard, L., Maciewicz, R.A. and Blobel, C.P. (2000) Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem J, 348 Pt 1, 21-7
    89.Roberts, C.M., Tani, P.H., Bridges, L.C., Laszik, Z. and Bowditch, R.D. (1999) MDC-L, a novel metalloprotease disintegrin cysteine-rich protein family member expressed by human lymphocytes, or Biol Chern, 274, 29251-9
    90.Haidl, I.D., Huber, G and Eichmann, K. (2002) An ADAM family member with expression in thymic epithelial cells and related tissues. Gene, 283, 163-70
    91.Jury, J.A., Perry, A.C. and Hall, L. (1999) Identification, sequence analysis and expression of transcripts encoding a putative metalloproteinase, eMDC Ⅱ, in human and macaque epididymis. Mol Hum Reprod 5, 1127-34
    92.Bridges, L.C., Tani, P.H., Hanson, K.R., Roberts, C.M., Judkins, M.B. and Bowditch, R.D.(2002) The lymphocyte metalloprotease MDC-L (ADAM 28) is a ligand for the integrin alpha4betal. J Biol Chem, 277, 3784-92
    93.Klug, A. and Schwabe, J.W. (1995) Protein motifs 5. Zinc fingers. Faseb J, 9, 597-604
    94.Hoovers, J.M., Mannens, M., John, R., Bliek, J., van Heyningen, V., Porteous, D.J., Leschot,N.J., Westerveld, A. and Little, P.F. (1992) High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics, 12, 254-63.
    95.Laity, J.H., Lee, B.M. and Wright, P.E. (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol, 11, 39-46
    96.Imanishi, M., Hori, Y., Nagaoka, M. and Sugiura, Y. (2001) Design of novel zinc finger proteins: towards artificial control of specific gene expression. Eur d Pharm Sci, 13, 91-7
    97.Medugno, L., Costanzo, P., Lupo, A., Monti, M., Florio, F., Pucci, P. and lzzo, P. (2003)A novel zinc finger transcriptional repressor, ZNF224, interacts with the negative regulatory element (AldA-NRE) and inhibits gene expression. FEBS Lett, 534, 93-100
    98.Yokoyama, M., Nakamura, M., Okubo, K., Matsubara, K., Nishi, Y., Matsumoto, T. and Fukushima, A. (1997)Isolation of a cDNA encoding a widely expressed novel zinc finger protein with the LeR and KRAB-A domains. Biochim Biophys Acta, 1353, 13-7
    99.Bell, A.C. and Felsenfeld, G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature, 405, 482-5
    100.Kanduri, C., Pant, V., Loukinov, D., Pugacheva, E., Qi, C.F., Wolffe, A., Oblsson, R. and Lobanenkov, V.V. (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol, 10, 853-6
    101.Szabo, P., Tang, S.H., Rentsendorj, A., Pfeifer, G.P. and Mann, J.R. (2000)Maternal-specific footprints at putative CTCF sites in the H 19 imprinting control region give evidence for insulator function. Curr Biol, 10, 607-10
    
    
    102.Qi, C.F, Martensson, A., Mattioli, M., Dalla-Favera, R., Lobanenkov, V.V. and Morse,H.C., 3rd(2003) CTCF functions as a critical regulator of cell-cycle arrest and death after ligation of the B cell receptor on immature B cells. Proc Natl Acad Sci USA, 100, 633-8
    103.Burke, L.J., Hollemann, T., Pieler, T. and Renkawitz, R. (2002) Molecular cloning and expression of the chromatin insulator protein CTCF in Xenopus laevis. Mech Dev, 113, 95-8
    104.Dang, D.T., Pevsner, J. and Yang, V.W. (2000) The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol, 32, 1103-21
    105.Agata, Y., Matsuda, E. and Shimizu, A. (1998) Rapid and efficient cloning of cDNAs encoding Kruppei-like zinc finger proteins by degenerate PCR. Gene, 213, 55-64
    106.Reiter, A., Sohal, J., Kulkarni, S., Chase, A., Macdonald, D.H., Aguiar, R.C., Goncalves,C., Hernandez, J.M., Jennings, B.A., Goldman, J.M. and Cross, N.C. (1998) Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. Blood, 92, 1735-42
    107.Xiao, S., McCarthy, J.G, Aster, J.C. and Fletcher, J.A. (2000)ZNF198-FGFR1 transforming activity depends on a novel proline-rich ZNF198 oligomerization domain. Blood,96, 699-704
    108.Baumann, H., Kunapuli, P., Tracy, E. and Cowell, J.K. (2003) The oncogenic fusion protein tyrosine kinase ZNF198/fibroblast growth factor receptor-1 has signaling function comparable to interleukin-6 cytokine receptors. J Biol Chem (in press)
    109.Voo, K.S., Carlone, D.L., Jacobsen, B.M., Flodin, A. and Skalnik, D.G. (2000) Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyI-CpG binding domain protein 1. Mol Cell Biol, 20, 2108-21
    110.Fujita, N., Takebayashi, S., Okumura, K., Kudo, S., Chiba, T., Saya, H. and Nakao, M.(1999) Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD 1 isoforms. Mol Cell Biol, 19, 6415-26
    111.Fujita, N., Shimotake, N., Ohki, I., Chiba, T., Saya, H., Shirakawa, M. and Nakao, M.(2000) Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1. Mol Cell Biol, 20, 5107-18
    112.Nakao, M., Matsui, S., Yamamoto, S., Okumura, K., Shirakawa, M. and Fujita, N. (2001) Regulation of transcription and chromatin by methyl-CpG binding protein MBDI. Brain Dev,23 Suppll, S174-6
    113.Yu, Z., Ford, B.N. and Glickman, B.W. (2000) Identification of genes responsive to BPDE treatment in HeLa cells using eDNA expression assays. Environ Mol Mutagen, 36, 201-5
    114. Guo, Y.L., Chang, H.C., Tsai, J.H., Huang, J.C., Li, C., Young, K.C., Wu, L.W., Lai, M.D.,Liu, H.S. and Huang, W. (2002)Two UVC-induced stress response pathways in HeLa cells identified by cDNA microarray. Environ Mol Mutagen, 40, 122-8
    115.Meyer, R.G., Kupper, J.H., Kandolf, R. and Rodemann, H.P. (2002) Early growth
    
    response-1 gene (Egr-1) promoter induction by ionizing radiation in U87 malignant glioma cells in vitro. EurJBiochem, 269, 33746
    116.高志华,金静华,杨军,郭磊,余应年.Identification of proteins responsive to Benzo[α]pyrene exposure in human FL cells by proteomic analysis (2003). Mutation Research (in submit)
    117.Nguyen, T.B., Manova, K., Capodieci, P., Lindon, C., Bottega, S., Wang, X.Y.,Refik-Rogers, J., Pines, J., Wolgemuth, D.J. and Koff, A. (2002) Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin. J Biol Chem, 277, 41960-9
    118.Parry, D.H. and O'Farrell, P.H. (2001) The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curt Biol, 11,671-83
    119.Ekholm, S.V. and Reed, S.I. (2000)Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol, 12, 676-84
    120.Jinno, S., Hung, S.C., Yamamoto, H., Lin, J., Nagata, A. and Okayama, H. (1999)Oncogenic stimulation recruits cyclin-dependent kinase in the cell cycle start in rat fibroblast.Proc Natl Acad Sci USA, 96, 13197-202
    121.Bumatowska-Hledin, M., Zhao, P., Capps, B., Poel, A., Parmelee, K., Mungall, C.,Sharangpani, A. and Listenberger, L. (2000)VACM-1, a cullin gene family member, regulates cellular signaling. Am J Physiol Cell Physiol, 279, C266-73
    122.llyin, G.P., Rialland, M., Glaise, D. and Guguen-Guillouzo, C. (1999) Identification of a novel Skp2-like mammalian protein containing F-box and leucine-rich repeats. FEBS Len, 459,75-9
    123.Cenciarelli, C., Chiaur, D.S., Guardavaccaro, D., Parks, W., Vidal, M. and Pagano, M.(1999)Identification of a family of human F-box proteins. Curr Biol, 9, 1177-9
    124.Wyrick, J.J. and Young, R.A. (2002) Deciphering gene expression regulatory networks.Curr Opin Genet Dev, 12, 130-6
    125.McGinnis, W. and Krumlauf, R. (1992)Homeobox genes and axial patterning. Cell, 68,283-302
    126.Ford, H.L.(1998) Homeobox genes: a link between development, cell cycle, and cancer?Cell Biol Int, 22, 397-400
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.