非线性误差增长理论与可预报性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对过去动力系统线性误差增长理论研究的不足,利用非线性动力系统的理论和方法引入了非线性误差增长理论;然后利用实际观测资料,结合大气的动力学特征,给出了利用非线性误差增长理论确定大气可预报期限的计算方法;最后分别研究了大气中不同变量场天气可预报性和气候可预报性的时空分布,天气可预报性的年代际变化,以及海温可预报性的时空分布等问题。主要结论如下:
     (1)、对非线性系统的误差发展方程不作线性化近似,直接用原始的误差发展方程来研究初始误差的发展,定义了非线性局部Lyapunov指数的概念,引入非线性误差增长理论。根据非线性混沌动力系统的性质和概率理论,证明了混沌系统误差增长的饱和值定理;根据这个定理,对于一个非线性混沌动力系统而言其平均相对误差增长到达饱和后系统的演变进入了随机运动状态,可预报性丧失,因此,非线性动力系统平均相对误差增长达到饱和的时间即为非线性系统可预报性时间。利用这个定理可以定量地确定混沌系统整体的可预报期限,也可以定量地确定混沌系统单个分量的可预报期限。此外,混沌系统可以通过系统局部平均的相对误差增长定量地确定出局部可预报期限的大小。
     (2)、一些简单混沌系统的可预报期限与初始误差的对数存在线性关系,线性系数与全局最大Lyapunov指数有关,最大Lyapunov指数越大,则可预报性期限随着初始误差对数的增大线性减少的速率也越大。
     (3)、初始误差和参数误差对非线性系统可预报性的影响所起的作用大小主要取决于初始误差和参数误差的相对大小,当初始误差远大于参数误差时,系统的可预报期限主要由初始误差决定;反过来,当参数误差远大于初始误差时,系统的可预报期限主要由参数误差决定;当初始误差和参数误差大小相当时,两者都对系统的可预报期限起重要作用。
     (4)、利用实际观测资料,结合大气的动力学特征,给出了利用大气的实际观测资料估计大气可预报期限的计算方法;利用NCEP/NCAR再分析资料,对大气高度场、温度场、纬向风场、经向风场以及垂直速度场等要素场的可预报性的时空分布进行了研究,结果表明对于不同的要素场,其可预报期限的大小以及时空分布规律都不一样;对于同一高度层而言,全球大部分地区高度场和温度场的可预报期限相对较大,纬向风场和经向风场次之,垂直速度场的可预报期限最小。
     (5)、在500 hPa高度场上,全年平均的月和季节尺度可预报期限的空间分布都存在明显的南北纬向性差异,其中在热带地区月和季节尺度可预报期限都为最大,而从热带地区到南北半球的中高纬度地区,月和季节尺度可预报期限迅速减少。
     (6)、在全球的大部分地区天气可预报性都存在着明显的年代际变化特征。具体来说,在对流层各层(850 hPa、500 hPa和200 hPa)的热带太平洋地区,天气可预报性在1980、90年代,与1950、60年代相比较明显增加,而在热带非洲和大西洋地区天气可预报性在1980、90年代,与1950、60年代相比较明显减小;此外,北半球中高纬度的大部分地区从1950年代至1990年代天气可预报性明显减小,南半球中高纬度的大部分地区天气可预报性明显增加。在平流层的下层(50 hPa),在整个热带地区(30oS~30oN)从1950年代至1990年代可预报期限都明显增加。
     (7)、从海温全年平均可预报期限的空间分布来看,可预报期限的最大值出现在热带中东太平洋地区即发生ENSO现象的区域,可预报期限基本上都在8个月以上,最大值达到了11个月以上。此外,在热带印度洋和热带大西洋的大部分地区,可预报期限也相对较高。北太平洋地区、北大西洋地区以及南半球中高纬度海区可预报期限较小。
     全球大部分海洋可预报期限都随季节有明显变化,在热带中东太平洋地区和热带东南印度洋地区,可以分别发现春季和冬季可预报性障碍对可预报性有很大的影响。
Because of the limitations of linear error dynamics, nonlinear error dynamics is introduced. By applying the nonlinear error dynamics to the predictability analysis of atmospheric and ocean observation data, some questions including the temporal-spatial distribution of the weather and climate predictability limit of different variables such as geopotential height, temperature etc., the decadal change of the predictability limit, and the temporal-spatial distribution of predictability limit of monthly sea surface temperature, are studied respectively. The major results and conclusions of this study are summarized as follows:
     (1) By applying nonlinear error growth equations of nonlinear dynamical systems instead of linear approximation equations to discuss the evolution of initial perturbations, a novel concept of nonlinear local Lyapunov exponent (NLLE) is proposed and nonlinear error dynamics is developed. According to the chaotic dynamical system theory and probability theory, the saturation theorem of mean relative growth of initial error (RGIE) derived by the mean NLLE is proved, that is, for a chaotic dynamic system, the mean RGIE will necessarily reach a saturation value in a finite time interval. Once the mean RGIE reaches the saturation, at the moment almost all predictability of chaotic dynamic systems is lost. Therefore, the predictability limit can be defined as the time at which the mean RGIE reaches its saturation level. By use of this theorem, the average predictability of whole system or its single variable may be obtained quantitatively. In addition, the local average predictability limit of a chaotic system could be quantitatively determined by examining the evolution of the local mean relative growth of initial error (LRGIE).
     (2) There exists a linear relationship between the predictability limit of some simple chaotic systems and the logarithm of initial error. Linear coefficient is relevant to the largest global Lyapunov exponent of chaotic system. Greater is the largest global Lyapunov exponent, faster decreases linearly the predictability limit as the logarithm of initial error becomes greater.
     (3) The influences of initial error and parameter error on the predictability of chaotic systems depend on their relative sizes. When the size of initial error is far greater than that of parameter error, the predictability limit of chaotic systems mainly depends on initial error. On the contrary, when the size of parameter error is far greater than that of initial error, the predictability limit of chaotic systems mainly depends on parameter error. When the size of initial error is close to that of parameter error, initial error and parameter error together contribute to the predictability limit of chaotic systems.
     (4) Based on the atmospheric dynamic features, a reasonable algorithm is provided to obtain the predictability limit of atmosphere by use of atmospheric observation data. By applying the NCEP/NCAR reanalysis data, the temporal-spatial distributions of predictability limit of different variables including geopotential height, temperature, zonal wind, meridional wind, and vertical velocity, are studied respectively. The results showed that for different variables, the temporal-spatial distribution characteristics of predictability limit are also different. For the same pressure level, the predictability limit of geopotential height and temperature is largest in the most regions, that of zonal wind and meridional wind second, and that of vertical velocity is smallest.
     (5) At the 500 hPa geopotential height field, the predictability limit of monthly and seasonal scales shows obvious differences between the tropics and middle-high latitudes of southern and northern hemispheres. The predictability limit of monthly and seasonal scales is largest in the tropics, and decreases quickly from the tropics to middle-high latitudes of southern and northern hemispheres.
     (6) There exists obvious decadal change for weather predictability in most of the globe. Specifically, at the several pressure levels of troposphere (850 hPa、500 hPa and 200 hPa) in the tropical Pacific, the predictability limit increases obviously in the 1980’s-90’s compared with that in the 1950’s-60’s; on the contrary, in the tropical Africa and tropical Atlantic, the predictability limit decreases obviously in the 1980’s-90’s compared with that in the 1950’s-60’s. In addition, the predictability limit decreases obviously from the 1950’s to the 1990’s in the most regions of northern middle-high latitudes, while opposite change occurs in the most regions of southern middle-high latitudes. In the tropical low stratosphere, predictability limit increases obviously from the 1950’s to the 1990’s.
     (7) The predictability limit of monthly sea surface temperature in the tropical central-eastern Pacific has very large value. The predictability limit there is beyond 8 months and the maximum value exceeds 11 months. In addition, the predictability limit in the most regions of tropical Indian and Atlantic oceans has also relatively large value. The predictability limit in the north Pacific, north Atlantic and the middle-high latitude oceans of southern hemisphere has minimum value.
     In the most regions of global oceans, the predictability limit varies obviously with season. In the tropical central-eastern Pacific and east-southern Indian Ocean, spring predictability barrier and winter predictability barrier can be found respectively.
引文
1. Anderson, J. L., and W. F. Stern, 1996, Evaluating the potential predictive utility of ensemble forecasts, J. Climate, 9, 260-269.
    2. Arpe, K., and E. Klinker, 1986, Systematic errors of the ECMWF operational forecasting model in mid-latitudes, Q. J. R. Meteor. Soc., 112, 181-202.
    3. Barnett, T. P., 1981, Statistical prediction of North American air temperatures from Pacific predictors, Mon. Wea. Rev., 109, 1021-1041.
    4. Brankovic, C., and T. N. Palmer, 2000, Seasonal skill and predictability of ECMWF PROVOST ensembles, Q. J. R. Meteorol. Soc., 126, 2035-2067.
    5. Charney, J. G. et al., 1966, The feasibility of a global observation and analysis experiment, Bull. Amer. Meteor. Soc., 47, 200-220.
    6. Chen, W. J., 1989, Estimate of dynamical predictability from NMC DERF experiments, Mon. Wea. Rev., 117, 1227-1236.
    7. Chou, J. F., 1986, Some general properties of the atmospheric model in H space, R space, point mapping, cell mapping, in: Proceedings of International Summer Colloquium on Nonlinear Dynamics of the Atmosphere (Edited by Zeng Qingcun), 10-20 Aug. Beijing: Science Press, 187-189.
    8. Chou, J. F., 1989, Predictability of the atmosphere, Adv. Atmos. Sci., 6(3), 335-346.
    9. Dalcher, A., and E. Kalnay, 1987, Error growth and predictability in operational ECMWF forecasts, Tellus A, 39, 474-491.
    10. Eckmann, J. P., and D. Ruelle, 1985, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617–656.
    11. Farrell, B. F., 1990, Small error dynamics and the predictability of atmospheric flows, J. Atmos. Sci., 1990, 47, 2409-2416.
    12. Fraedrich, K., 1986, Estimating the Dimensions of Weather and Climate Attractors, J. Atmos. Sci., 43, 419–432.
    13. Fraedrich, K., 1987, Estimating Weather and Climate Predictability on Attractors, J. Atmos. Sci., 44, 722–728.
    14. Fraedrich, K., 1988, El Ni?o/Southern Oscillation Predictability, Mon. Wea. Rev., 116, 1001–1012.
    15. Gao, X. Q. et al., 2003, On the predictability of chaotic systems with respect to maximally effective computation time, Acta Mechanica Sinica, 19, 134-139.
    16. Hayashi, Y., 1982, Confidence intervalues of a climate signal, J. Atmos. Sci., 39, 1895-1905.
    17. Houtekamer, P. L., 1991, Variation of the predictability in a low-order spectral model of the atmospheric circulation, Tellus A, 43(3), 177-190.
    18. Jastrow, R., and M. Halem, 1970, Simulation studies related to GARP, Bull. Amer. Meteor. Soc., 51, 490-513.
    19. Kalnay, E., and Z. Toth, 1995, The breeding method. Proceedings of a Seminar Held at ECMWF on Predictabilty (I), 69-82.
    20. Kazantsev, E., 1999, Local Lyapunov exponents of the quasi-geostrophic ocean dynamics, Applied Mathematics and Computation, 104, 217-257.
    21. Keppenne, C. L., and C. Nicolis, 1989, Global properties and local structure of the weather attractor over western Europe, J. Atmos. Sci., 46, 2356-2370.
    22. Kumar, A., and M. P. Hoerling, 1995, Prospects and limitations of seasonal atmospheric GCM predictions, Bull. Amer. Meteor. Soc., 76, 335-345.
    23. Legras, B., and M. Ghil, 1985, Persistent anomalies, blocking and variations in atmospheric predictability, J. Atmos. Sci., 42, 433-471.
    24. Leith, C.E., 1965, Numerical simulation of the Earth’s atmosphere, Methods in Computational Physics, Vol. 4, New York, Academic Press, 1-28.
    25. Leith, C. E., and R. H. Kraichnam, 1972, Predictability of turbulent flows, J. Atmos. Sci., 29, 1041-1058.
    26. Leith, C. E., 1973, The standard error of time2average estimates of climatic means, J . Appl . Meteor., 12, 1066-1069.
    27. Leith, C. E., 1983, Predictability in theory and practice, Large-Scale Dynamics Processes in the Atmosphere, Academic Press, 365-383.
    28. Li, J. P., Q. C. Zeng, and J. F. Chou,2000, Computational Uncertainty Principle in Nonlinear Ordinary Differential Equations I. Numerical Results, Science in China (E), 43(5), 449-460.
    29. Li, J. P., Q. C. Zeng, and J. F. Chou,2001, Computational Uncertainty Principle in NonlinearOrdinary Differential Equations II. Theoretical analysis, Science in China (E), 44(1), 55-74.
    30. Lorenz, E. N., 1963a, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141.
    31. Lorenz, E. N., 1963b: The predictability of hydrodynamic flow, Trans. New York Academy of Sciences, Ser. II, 25, 409-433.
    32. Lorenz, E. N., 1965, A study of the predictability of a 28 variable atmospheric model, Tellus, 17, 321-333.
    33. Lorenz, E. N., 1969a, Atmospheric predictability as revealed by naturally ocurring analogues, J. Atmos. Sci., 26, 636-646.
    34. Lorenz, E. N., 1969b, The predictability of a flow which possesses many scales of motion, Tellus, 21, 289-307.
    35. Lorenz, E. N., 1982, Atmospheric predictability experiments with a large numerical model, Tellus, 34, 505-513.
    36. Lorenz, E. N., 1993, The Essence of Chaos, University of Washington Press. 227pp(刘式达,刘式适,严中伟译,混沌的本质,北京:气象出版社,1997).
    37. Lorenz, E. N., 1995, Predictability: A problem partly solved. Proceedings of a Seminar Held at ECMWF on Predictability (I), 1-18.
    38. Madden, R. A., 1976, Estimates of the natural variability of time-averaged sea level pressure, Mon. Wea. Rev., 104, 942-952.
    39. Madden, R. A., and D. J. Shea, 1982, Potential long-range predictability of precipitation over North America, Proceedings of the Seventh Annual Climate Diagnostics Workshop, NCAR, U.S. Department Commerce, 423-426.
    40. Mintz, Y., 1964, Very long-term global integration of the primitive equations of atmospheric motion, WMO-IUGG Symposium on Research and Development Aspects of Long-Range Forecasting, WMO, Tech. Note, No. 66, 141-155.
    41. Miyakoda, K., et al., 1971, The effect of horizontal grid resolution in an atmospheric circulation model, J. Atmos. Sci., 28, 481-499.
    42. Molteni, F. et al., 1993, Predictability and finite time instability of the Northern winter circulation, Q. J. R. Meteorol. Soc., 119, 269-298.
    43. Mu, M., W. S. Duan, and J. C. Wang, 2002, The predictability problems in numerical weather and climate prediction, Adv. Atmos. Sci., 19, 191-204.
    44. Nese, J. M., 1989, Quantifying local predictability in phase space, Physica D, 35, 237-250.
    45. Palmer, T. N., 1995, Predictability of the atmosphere and oceans: From days to decades, Proceeding of a Semiar Held at ECMWF on Predictability (I), 83-141.
    46. Robinson, G. D., 1967, Some current projects for global meteorological observation and experiment, Q. J. R. Meteorol. Soc., 93, 409-418.
    47. Schubert, S. D., and M. Suarez, 1989, Dynamical predictability in a simple general circulation model: average error growth, J. Atmos. Sci., 46, 353-370.
    48. Shukla, J., and D. S. Gutzler, 1983, Interannual variability and predictability of 500mb geopotential heights over the northern hemisphere, Mon. Wea. Rev. , 111, 1273-1279.
    49. Shukla, J., 1981, Dynamical predictability of monthly means, J. Atmos. Sci., 38(12), 2547-2572.
    50. Simmons, A. J., R. Mureau, and T. Petroliagis, 1995, Error growth and estimates of predictability from the ECMWF forecasting system, Q. J. R. Meteorol. Soc., 121, 1739-1771.
    51. Smagorinsky, J., 1969, Problems and promises of deterministic extended range forecasting, Bull. Amer. Meteor. Soc., 50, 286-312.
    52. Stern, W. F., and K. Miyakoda, 1995, Feasibility of seasonal forecasts inferred from multiple GCM simulations, J. Climate, 8, 1071-1085.
    53. Thompson, P. D., 1957, Uncertainty of initial state as a factor in the predictability of large-scale atmospheric flow pattern, Tellus, 9, 275-295.
    54. Toth, Z., 1990, Estimation of atmospheric predictability by circulation analogs, Mon. Wea. Rev., 119, 65-72.
    55. Trenberth, K. E., 1984a, Potential predictability of geopotential heights over the southern hemisphere, Mon. Wea. Rev., 113, 54-64.
    56. Trenberth, K. E., 1984b, Some effects of finite sample size and persistence on meteorological statistics. Part Ⅰ: Autocorrelation, Mon. Wea. Rev., 112, 2359-2368.
    57. Trenberth, K. E., 1984c, Some effects of finite sample size and persistence on meteorological statistics. Part Ⅱ: Potential predictability, Mon. Wea. Rev. , 112, 2369-2379.
    58. Wolf, A. et al., 1985, Determining Lyapunov Exponents from a time series, Physica D, 16, 285-317.
    59. World Climate Research Programme (WCRP), 1998, CLIVAR Initial Implementation Plan. WCRP-103, WMO/TD 869, ICPO 14, Geneva, Switzerland, 314 pp.
    60. Yang, X. Q. et al., 1998, Reproducible forced modes in AGCM ensemble integration and potential predictability of atmospheric seasonal variations in the extratropics, J. Climate, 11, 2942-2959.
    61. Ziehmann, C. et al., 2000, Localized Lyapunov exponents and the prediction of predictability, Physics Letters A, 271, 237-251.
    62. Yoden, S., and M. Nomura, 1993, Finite-time Lyapunov stability analysis and its application to atmospheric predictability, J . Atmos. Sci ., 50, 1531-1543.
    63. 卞建春,杨培才,2003,关于大气过程可预报性问题的一些讨论,高原气象,22,315-323.
    64. 陈宝花,李建平,丁瑞强, 2006,非线性局部 Lyapunov 指数与大气可预报性研究,中国科学,36,1068-1076.
    65. 陈明行,纪立人,1989,数值天气预报中的误差增长及大气可预报性,气象学报,47,147-155.
    66. 丑纪范,1986,长期数值天气预报,北京:气象出版社,pp 329.
    67. 丑纪范,1990,大气动力学的新进展,兰州:兰州大学出版社,pp 214.
    68. 丑纪范,1997,大气科学中非线性与复杂性研究的进展,中国科学院院刊, 12(5),325-329.
    69. 丑纪范,2002, 大气科学中的非线性与复杂性,北京:气象出版社,pp 203.
    70. 范晓青,李维京,张培群,2003,模式大气月尺度可预报性的对比研究,应用气象学报,14,49-60.
    71. 范新岗,张红亮,丑纪范,1999,气候系统可预报性的全局研究,气象学报, 57,190-197.
    72. 封国林,戴新刚等,2001,混沌系统中可预报性的研究,物理学报,50,606-611.
    73. 郭秉荣,江剑民等,1996,气候系统的非线性特征及其预测理论,北京:气象出版社, pp 254.
    74. 郭艳君,倪允琪,1997,ENSO 引起的短期气候异常变化的潜在可预报性的数值研究,气象科学,17(2),103-114.
    75. 黄嘉佑,1988,赤道东太平洋地区海温对我国的影响,北京气象,4,1-9.
    76. 黄嘉佑,1992,长期天气过程的可预报性研究的进展,气象科技,3,30-37.
    77. 李崇银,1999,21 世纪的气候变化及其可预报性研究——国际 CLIVER 计划及科学大会介绍,应用气象学报,10,158-160.
    78. 李建平,丑纪范,1996,利用一维时间序列确定吸引子维数中存在的若干问题,气象学报,54(3),312-323.
    79. 李建平,1996,用一维时间序列确定吸引子维数中应注意的两个问题,高原气象,15(2),229-233.
    80. 李建平, 丁瑞强, 陈宝花, 2006, 大气可预报性研究的回顾与展望,21 世纪初大气科学前沿与展望,北京:气象出版社,pp96.
    81. 李志锦,纪立人,1995,混沌系统的局域特征与可预报性,气象学报,53,271-280.
    82. 刘式达,刘式适,1989,非线性动力学和复杂现象,北京:气象出版社,pp 249.
    83. 刘式达,1990:地球系统模拟和混沌时间序列,地球物理学报,33,144-153.
    84. 刘式适,刘式达,谭本馗,1996,非线性大气动力学,国防工业出版社,pp78.
    85. 罗哲贤,1994,热带气旋异常运动可预报性问题的理论研究,20(12),39-41.
    86. 罗哲贤,马镜娴,1994,台风运动内在随机性的研究,52,17-23.
    87. 穆穆,李建平,丑纪范等,2002,气候系统可预报性理论研究,气候与环境研究,7,
    227-235.
    88. 穆穆,段晚锁, 2003, ENSO 可预报性研究的一个新方法:条件非线性最优扰动,科学通报,
    48,747-749.
    89. 穆穆,段晚锁,2005,条件非线性最优扰动及其在天气和气候可预报性研究中的应用,科学通报,50,2695-2701.
    90. 王嘉,郭裕福,2004,北半球海冰强迫作用下大气可预报性研究,应用气象学报,15,291-305.
    91. 文彩虹,杨修群,2003,使用 ECMWF 集合预报数据集估计全球季节平均气候异常的潜在可预报性,气象科学,23,379-391.
    92. 新田尚,1988,天气的可预报性(赵其庚、胡圣昌译),北京:气象出版社,237pp.
    93. 杨培才,陈烈庭,1990,埃尔尼诺/南方涛动的可预报性,大气科学, 14(1),64-71.
    94. 赵彦, 郭裕福, 袁重光等,2000, 短期气候数值预测可预报性问题. 应用气象学报, 11(增刊),64-71.
    95. 郑祖光,刘式达,1992,用天气变量时间序列估计天气的可预报性,50,72-80.
    1. Dalcher, A., and E. Kalnay, 1987, Error growth and predictability in operational ECMWF forecasts, Tellus A, 39: 474-491.
    2. Devaney, R.L, 1989, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Redwood City.
    3. Ding, R. Q., and J. P. Li, 2007, Nonlinear finite-time Lyapunov exponent and predictability, Physics Letters A, 364, 396-400.
    4. Eckmann, J. P., and D. Ruelle, 1985, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656.
    5. Fraedrich, K., 1987, Estimating Weather and Climate Predictability on Attractors, J. Atmos. Sci., 44, 722-728.
    6. Fraedrich, K., 1988, El Ni?o/Southern Oscillation Predictability, Mon. Wea. Rev., 116, 1001-1012.
    7. Kalnay, E., 2003, Atmospheric modeling, data assimilation and predictability, Cambridge University Press (蒲朝霞,杨福全,邓北胜等译,2005,大气模式、资料同化和可预报性,气象出版社,pp175).
    8. Kazantsev, E., 1999, Local Lyapunov exponents of the quasi-geostrophic ocean dynamics, Applied Mathematics and Computation, 104, 217-257.
    9. Guckenheimer, J., and P. J. Holmes, 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.
    10. Lacarra, J. F., and O. Talagrand, 1988, Short-range evolution of small perturbations in a baratropic model, Tellus, 40A, 81-95.
    11. Li, Y. X., W. K. S. Tang, and G. R. Chen, 2005, Hyperchaos evolved from the generalized Lorenz equation, Int. J. Circ. Theor. Appl., 33, 235-251.
    12. Lorenz, E. N., 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141.
    13. Lorenz, E. N., 1965, A study of the predictability of a 28 variable atmospheric model, Tellus, 17, 321-333.
    14. Lorenz, E. N., 1995, Predictability: A problem partly solved. Proceedings of a Seminar Held at ECMWF on Predictability (I), 1-18.
    15. May, R. M., 1976, Simple mathematical models with very complicated dynamics, Nature, 261, 459-467.
    16. Mu, M., 2000, Nonlinear singular vectors and nonlinear singular values, Science in China (D), 43, 375-385.
    17. Nese, J. M., 1989, Quantifying local predictability in phase space, Physica D, 35, 237-250.
    18. Oseledec, V. I., 1968, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19, 197-231.
    19. Palmer, T. N., 1999, A nonlinear dynamical perspective on climate prediction, J. Climate, 12, 575-591.
    20. Wang, F. Q., and C. X. Liu, 2006, Synchronization of hyperchaotic Lorenz system based on passive control, Chinese Physics, 15(9), 1971-1975.
    21. Wolf, A. et al., 1985, Determining Lyapunov Exponents from a time series, Physica D, 16, 285-317.
    22. Yoden, S., and M. Nomura, 1993, Finite-time Lyapunov stability analysis and its application to atmospheric predictability, J . Atmos. Sci ., 50, 1531-1543.
    23. Ziehmann, C. et al., 2000, Localized Lyapunov exponents and the prediction of predictability, Physics Letters A, 271, 237-251.
    24. 段晚锁,穆穆,2006,用非线性最优化方法研究 El Ni?o 可预报性的进展与前瞻,大气科学, 30(5), 759-766.
    25. 李建平, 丁瑞强, 陈宝花, 2006, 大气可预报性研究的回顾与展望,21 世纪初大气科学前沿与展望,北京:气象出版社,pp96.
    1. Chen, W. Y., 1989, Estimate of dynamical predictability from NMC DERF experiments. Mon. Wea. Rev., 117, 1227-1236.
    2. Eckmann, J. P., and D. Ruelle, 1985, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617–656.
    3. Krishnamurthy, V., 1993, A predictability study of Lorenz’s 28-variable model as a dynamical system, J. Atmos. Sci., 50, 2215-2229.
    4. Lorenz, E. N., 1969, The predictability of a flow which possesses many scales of motion, Tellus, 21, 289-307.
    5. Lorenz, E. N., 1995, Predictability: A problem partly solved. Proceedings of a Seminar Held at ECMWF on Predictability (I), 1-18.
    6. Toth, Z., 1991, Estimation of atmospheric predictability by circulation analogs, Mon. Wea. Rev., 119, 65-72.
    7. Wolf, A. et al., 1985, Determining Lyapunov Exponents from a time series, Physica D, 16, 285-317.
    1. Charney, J. G. et al., 1966, The feasibility of a global observation and analysis experiment, Bull. Amer. Meteor. Soc., 47, 200-220.
    2. Chu, P. C., 1999, Two kinds of predictability in the Lorenz system, J. Atmos. Sci., 56, 1427-1432.
    3. Leith, C. E., 1965, Numerical simulation of the Earth’s atmosphere, Methods in Computational Physics, Vol. 4, New York, Academic Press, 1-28.
    4. Leith, C. E., 1983, Predictability in theory and practice, Large-Scale Dynamics Processes in the Atmosphere, Academic Press, 365-383.
    5. Lorenz, E. N., 1965, A study of the predictability of a 28 variable atmospheric model, Tellus, 17, 321-333.
    6. Lorenz, E. N., 1975, The physical bases of climate and climate modeling, Climate predictability, number 16 in GARP Publication Series, WMO, 132-136.
    7. Lorenz, E. N., 1982, Atmospheric predictability experiments with a large numerical model, Tellus, 34, 505-513.
    8. Mintz, Y., 1964, Very long-term global integration of the primitive equations of atmospheric motion, WMO-IUGG Symposium on Research and Development Aspects of Long-Range Forecasting, WMO, Tech. Note, No. 66, 141-155.
    9. Smagorinsky, J., 1969, Problems and promises of deterministic extended range forecasting, Bull. Amer. Meteor. Soc., 50, 286-312.
    10. 卞建春,杨培才,2003,关于大气过程可预报性问题的一些讨论,高原气象,22,315-323.
    1. Kalnay, E., 2003, Atmospheric modeling, data assimilation and predictability, Cambridge University Press (蒲朝霞,杨福全,邓北胜等译,2005,大气模式、资料同化和可预报性,气象出版社,pp216).
    2. 李建平, 丁瑞强, 陈宝花, 2006, 大气可预报性研究的回顾与展望,21 世纪初大气科学前沿与展望,北京:气象出版社,pp96.
    3. 张韧,吴王杰,1995,天气和气候的可预报性及其预报时效的估计,海洋预报,12,67-70.
    4. 郑祖光,刘式达,1992,用天气变量时间序列估计天气的可预报性,气象学报,50,72-80.
    1. Baldwin, M. P., and T. J. Dunkerton, 2001, Stratospheric harbingers of anomalous weather regimes, Science, 294, 581-584.
    2. Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, et al., 2003a, Stratospheric memory and skill of extended-range weather forecasts, Science, 301, 636-640.
    3. Baldwin, M. P., D. W. J. Thompson, E. F. Shuckburgh, et al., 2003b, Weather from the stratosphere? Science, 301, 317-318.
    4. Charney, J. G. et al., 1966, The feasibility of a global observation and analysis experiment, Bull. Amer. Meteor. Soc., 47, 200-220.
    5. Kumar, A., S. D. Schubert, and M. S. Suarez, 2003, Variability and predictability of 200-mb seasonal mean heights during summer and winter, J. Geophys. Res., 108, doi:10.1029/2002JD002728.
    6. Lorenz, E. N., 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141.
    7. Lorenz, E. N., 1969a, Atmospheric predictability as revealed by naturally ocurring analogues, J. Atmos. Sci., 26, 636-646.
    8. Lorenz, E. N., 1969b, The predictability of a flow which possesses many scales of motion, Tellus, 21, 289-307.
    9. Lorenz, E. N., 1993, The Essence of Chaos, University of Washington Press. 227pp(刘式达,刘式适,严中伟译,混沌的本质,北京:气象出版社,1997).
    10. Reichler, T., and J. O. Roads, 2004, Time-space distribution of Long-Range Atmospheric Predictability, J. Atmos. Sci., 2004, 61,249-263.
    11. Smagorinsky, J., 1969, Problems and promises of deterministic extended range forecasting, Bull. Amer. Meteor. Soc., 50, 286-312.
    12. 陈宝花,李建平,丁瑞强, 2006,非线性局部 Lyapunov 指数与大气可预报性研究,中国科学,36,1068-1076.
    13. 丑纪范,郜吉东,1995,长期数值天气预报,北京:气象出版社,pp52.
    1. Anderson, J. L., and J. Ploshay, 2000, Impact of initial conditions on seasonal simulations with an atmospheric general circulation model, Quart. J. Roy. Meteor. Soc., 126, 2241-2264.
    2. Bengtsson, L. et al., 1983, 大气中大尺度动力过程中期天气预报——欧洲中期天气预报中心的业务经验,孙照渤译,气象出版社.
    3. Bengtsson, L., 1991, Advances and prospects in numerical weather prediction, Q. J. R. Meteo. Soc., 117, 855-902.
    4. Chang, Y., S. D. Schubert, and M. Suarez, 2000, Boreal winter predictions with the GEOS-2: The role of boundary forcing initial conditions, Quart. J. Roy. Meteor. Soc., 126, 2293-2321.
    5. Fennessy, M. J., J. L. Kinter III, L. Marx, E. K. Schneider, P. J. Sellers, and J. Shukla, 1994, GCM simulations of the life cycles of the 1988 US drought and heat wave. COLA Rep. 6, Center for Ocean–Land–Atmosphere Studies, 68 pp.
    6. Fennessy, M. J., and J. Shukla, 1999, Impact of initial soil wetness on seasonal atmospheric prediction, J. Climate, 12, 3167-3180.
    7. Kumar, A., and M. P. Hoerling, 1995, Prospects and limitations of seasonal atmospheric GCM predictions, Bull. Amer. Meteor. Soc., 76, 335-345.
    8. Kumar, A., S. D. Schubert and M. S. Suarez, 2003, Variability and predictability of 200-mb seasonal mean heights during summer and winter, J. Geophys. Res., 108, doi: 10.1029/2002JD002728.
    9. Latif, M., et al., 1998, A review of the predictability and prediction of ENSO, J. Geophys. Res., 103, 14375-14394.
    10. Leith, C. H., 1978, Objective methods for weather prediction, Ann. Rev. Fluid. Mech., 10, 107-128.
    11. Lorenz, E. N., 1969, Atmospheric predictability as revealed by naturally occurring analogues, J. Atmos. Sci., 26, 636-646.
    12. Madden, R. A., 1976, Estimates of the natural variability of time-averaged sea level pressure. Mon. Wea. Rev., 104, 942-952.
    13. Rasmusson, E., and T. Carpenter, 1982, Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino, Mon. Wea. Rev., 110,354-384.
    14. Saha, S. et al., 1988, A measure of the practical limit of predictability, Mon. Wea. Rev., 116, 2522~2526.
    15. Schubert, S. D., M. J. Suarez, P. J. Pegion, M. A. Kistler, and A. Kumar, 2002, Predictability of zonal means during boreal summer, J. Climate, 15, 420-434.
    16. Sheng, J., 2002, GCM experiments on changes in atmospheric predictability associated with the PNA pattern and tropical SST anomalies, Tellus, 54(A), 317-329.
    17. Shukla, J., 1981, Dynamical predictability of monthly means, J. Atmos. Sci., 38, 2547-2572.
    18. Shukla, J., 1998, Predictability in the midst of chaos: A scientific basis for climate forecasting, Science, 282, 728-731.
    19. Shukla, J. et al., 2000, Dynamical seasonal prediction, Bull. Amer. Meteor. Soc., 81, 2593-2606.
    20. Trigo, R. M., et al., 2004, Winter blocking episodes in the European-Atlantic sector: climate impacts and associated physical mechanisms in the Reanalysis, Climate Dynamics, 23, 17-28.
    21. Wang, S. W., and J. H. Zhu, 2001, A review on seasonal climate prediction, Adv. Atmos. Sci., 18, 197-208.
    22. Wallace, J. M., and D. S. Gutzler, 1981, Teleconnections in the geopotential height field during the Northern Hemisphere winter, Mon. Wea. Rev., 109, 784-812.
    23. 丑纪范,郜吉东,1995, 长期数值天气预报,气象出版社,52-53.
    24. 李建平,丑纪范,2003, 非线性大气动力学的进展,大气科学,27,653-673.
    25. 李志锦,纪立人,1996,实际预报可预报性的时空依赖性分析,大气科学,20,290-297.
    1. Cavalieri, D. J., et al., 1997, Observed hemispheric asymmetry in global sea ice changes, Science, 278, 1104-1106.
    2. Chu, P. C., 1999, Two kinds of predictability in the Lorenz system, J. Atmos. Sci., 56, 1427-1432.
    3. Goswami, B. N., 2004, Interdecadal change in potential predictability of the Indian summer monsoon, Geophys. Res. Lett.,, 31, L16208, doi:10.1029/2004GL020337.
    4. Gu, D., and S. G. H. Philander, 1997, Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics, Science, 275, 805-807.
    5. Kang, I. S., et al., 2006, Secular increase of seasonal predictability for the 20th century, Geophys. Res. Lett., 33, L02703, doi:10.1029/2005GL024499.
    6. Kirtman, B. P., and P. S. Schopf, 1998, Decadal variability in ENSO predictability and prediction, J. Climate, 11, 2804-2822.
    7. Knutson, T. R., S. Manabe, and D. Gu, 1997, Simulated ENSO in a global coupled ocean-atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity, J. Climate, 10, 138-161.
    8. Intergovernmental Panel on Climate Change. Climate change 2001: impacts, adaptation and vulnerability: contribution of Working group II to the second assessment report of the IPCC. McCarthy J. J., Canziani O. F., Leary N. A., Dokken D. J., White K. S. (eds). Cambridge: Cambridge University Press, 2001.
    9. Latif, M., and T. P. Barnett, 1996, Decadal climate variability over the North Pacific and North America: Dynamics and predictability, J. Climate, 9, 2407-2423.
    10. Lorenz, E. N., 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20, 130-141.
    11. Lorenz, E. N., 1965, A study of the predictability of a 28-variable atmospheric model, Tellus, 3, 321-333.
    12. Nitta, T., and S. Yamada, 1989, Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation, J. Meteor. Soc. Japan, 67, 187-193.
    13. Reichler, T., and J. O. Roads, 2004, Time-space distribution of Long-Range Atmospheric Predictability, J. Atmos. Sci., 61, 249-263.
    14. Schar, C., et al., 2004, The role of increasing temperature variability for European summer heat waves, Nature, 427, 332-336.
    15. Trenberth, K. E., 1990, Recent observed interdecadal climate changes in the Northern hemisphere, Bull. Amer.Meteor. Soc., 71, 988-993.
    16. Trenberth, K. E., and J. W. Hurrell, 1994, Decadal atmospheric-ocean variations in the Pacific, Climate Dynamics, 9, 303-309.
    17. Wang, X. L., and C. F. Ropelewski, 1995, An assessment of ENSO-scale secular variability, J. Climate, 8, 1584-1599.
    18. 李崇银,朱锦红,孙照渤,年代际气候变化研究.气候与环境研究,2002,7, 209-219.
    1. Boulanger, J. P., et al., 2001, Role of non-linear oceanic processes in the response to westerly wind events: New mplications for the 1997 El Ni?o onset, Geophys. Res. Lett., 8, 1603-1606.
    2. Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986, Experimental forecasts of El Ni?o, Nature, 321, 827-832.
    3. Chen. D., S. E. Zebiak, A J. Busalacchi, and M. A Cane, 1995, An improved procedure for El Ni?o forecasting, Science, 269, 1699-1102.
    4. Collins, M., et al., 2002, How far ahead could we predict El Nino? Geophys. Res. Lett., 29, doi:10.1029/2001GL013919.
    5. Duan, W. S., M. Mu, and B. Wang, 2004, Conditional nonlinear optimal perturbations as the optimal precursors for El Ni?o-Southern Oscillation events, J. Geophys. Res., 109, doi: 10. 1029/2004JD004756.
    6. Fedorov, A. V., et al., 2003, How predictable is El Ni?o? Bull. Amer. Meteor. Soc., 84, 911-919.
    7. Goswami, B. N., and J. Shukla, 1991, Predictability of a coupled ocean-atmosphere model, J. Climate, 4, 3-22.
    8. Jin, F. F., J. D. Neelin, and M. Ghil, 1994, El Ni?o on the devil’s staircase—annual subharmonic steps to chaos, Science, 264, 70-72.
    9. Latif, M., et al., 1998, A review of the predictability and prediction of ENSO, J. Geophys. Res., 103, 14375-14394
    10. Luo, J. J., S. Masson, S. Behera, and T. Yamagata, 2006, Experimental forecasts of Indian Ocean dipole using a coupled AOGCM, J. Climate (in press).
    11. Moore, A. M., and R. Kleeman, 1999, Stochastic forcing of ENSO by the intraseasonal oscillation, J. Climate, 12, 1199-1220.
    12. Mu, M. and W. S. Duan, 2003, A new approach to studying ENSO predictability: conditional nonlinear optimal perturbation, Chinese Sci. Bull., 48, 1045-1047.
    13. Mu, M., W. S. Duan and B. Wang, 2003, Conditional nonlinear optimal perturbation and its applications, Nonlinear Process in Geophysics, 10, 493-475.
    14. Perigaud, C. M., and C. Cassou, 2000, Importance of oceanic decadal trends and westerly wind bursts for forecasting El Ni?o, Geophys. Res. Lett., 27, 389-92.
    15. Saiji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999, A dipole in the tropical Indian Ocean, Nature, 401, 360-363.
    16. Thompson, C. J., and D. S. Battisti, 2000, A linear stochastic dynamical model of ENSO. Part I: Model development, J. Climate, 13, 2818-2832.
    17. Tziperman, E., et al., 1994, El Nino chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator, Science, 264, 72-74.
    18. Wajsowicz, R. C., 2005, Potential predictability of tropical Indian Ocean SST anomalies, Geophys. Res. Lett., 32, doi:10.1029/2005GL024169.
    19. Webster, P. J., and S. Yang, 1992, Monsoon and ENSO: Selectively interactive systems, Q. J. R. MeteoroL. Soc., 118, 877-925.
    20. Webster, P. J., 1995, The annual cycle and the predictability of the tropical coupled ocean-atmosphere system, Meteorol. Atmos. Phys., 56, 33-55.
    21. Xue, Y., M. A. Cane, and S. E. Zebiak, 1997, Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles, Mon. Wea. Rev., 125, 2043-2056.
    22. Zebiak, S. E., and M. A. Cane, 1987, A model El Ni?o-Southern Oscillation, Mon.Wea. Rev., 115, 2262-2278.
    23. 李崇银和穆明权,1999,厄尔尼诺的发生与赤道西太平洋暖池次表层海温异常,大气科学,22,513-521.
    24. 翟盘茂,李晓燕,任福民,2003,全球变化热门话题丛书—厄尔尼诺,气象出版社.
    25. 张人禾,1999,El Ni?o 盛期印度夏季风水汽输送在我国华北地区夏季降水异常中的作用,高原气象,28,567-574.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.