运动联合载药纳米粒靶向给药系统应用于肿瘤治疗的探索性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有关运动作为一种有益的辅助治疗肿瘤的手段,在维持或改善肿瘤患者生存质量方面的作用,正逐渐被人们所接受。越来越多的关于纳米粒药物递送系统的研究工作正广泛开展。运动和纳米粒药物递送系统各自在预防、辅助治疗和治疗肿瘤方面都起到了积极的作用。但是,运动联合纳米粒药物递送系统治疗肿瘤疗效的研究报道尚不多见。恶性肿瘤是威胁人类健康和生命的严重疾病,对于肿瘤的预防和治疗是医学界和学术界共同关注的一项重要课题。随着人们对肿瘤发病机制和生物学特性认识的深入、肿瘤早期诊断和辅助治疗技术的不断提高,肿瘤的全身性综合治疗日益受到重视。康复运动作为一种辅助的治疗手段结合常规治疗手段(手术治疗、放射疗法、化学疗法和传统中医治疗)应用于肿瘤治疗,正逐渐受到广大临床工作者和研究人员的共同关注。近年来,国内外学者进行了大量的相关研究,发现运动能改善因手术、放射疗法、化学疗法所引起的肿瘤患者的心肺功能和身体机能的低下状态,改善因肿瘤而引起的癌性疲劳,缓解患者沉重的心理负担,提高患者的生存质量。为了探讨运动在辅助治疗肿瘤中发挥作用及其可能作用机制,本文对近几年来国内外有关运动对肿瘤影响的临床和科研文献资料进行了归纳和总结,分析了运动对乳腺癌的辅助治疗作用,并且在此基础上针对运动作为辅助治疗手段应用于肿瘤治疗时,可能存在的机理做出了浅显的剖析。本研究在前人研究的基础上,通过药物结合运动对路易斯肺癌C57BL/6鼠动物模型进行实验,研究药物结合运动对肿瘤的影响,并探讨运动辅助肿瘤药物治疗的部分机制,为运动在辅助治疗肿瘤中的应用提供理论依据。
     实验方法:实验1,使用了高效液相色谱仪评价了纳米粒的药物包封率和载药量。使用激光散射分光光度计和透射电镜分析了纳米粒的粒径和结构。37℃时,在PH值为7.4的磷酸盐缓冲液中模拟了药物的释放过程。并验证通过不同制备方法制得的载药纳米粒对肺癌负荷小鼠的治疗效果,筛选出效果最为理想的纳米粒制备方法。实验2,使用激光共聚焦显微镜观察纳米粒在体外条件下聚集于路易斯肺癌细胞中的情况。将负荷路易斯肺癌细胞的雌性C57BL/6小鼠随机分为6个小组:(1)生理盐水组;(2)紫杉醇组;(3)运动组;(4)载紫杉醇纳米粒组;(5)紫杉醇联合运动组;(6)载紫杉醇纳米粒联合运动组。药物经腹腔注入小鼠体内,并给予相关组小鼠中等强度持续12天的运动负荷。每日测量肿瘤体积。在最后一天,使用流式细胞仪分析了小鼠腹腔巨噬细胞的吞噬能力,并用高效液相色谱仪对小鼠的血液和组织的乙腈抽提液进行了分析。
     实验结果:直接溶解法和透析法制备的纳米粒遇有相似的载药量和包封率。由于stereocomplexation效应,与仅由左旋聚乳酸/聚乙二醇或右旋聚乳酸/聚乙二醇构成的纳米粒相比,由上述两种共聚物构成的混合型纳米粒显示出了更高的药物包封率和载药量。和透析法相比,直接溶解法制备的纳米粒表现出了更快的释放速度。与目前临床中使用的剂型和透析法制备的纳米粒相比,用直接溶解法制备的载至善春纳米粒表现出了最强的抗癌效应。生物体内试验的数据表明:纳米粒递送系统提高了紫杉醇在小鼠体内的生物利用度;运动对巨噬细胞的吞噬能力产生了影响;将运动作为辅助手段,提高了载紫杉醇纳米粒的治疗效应。
     结论:直接溶解法制备的左旋和右旋聚乳酸/聚乙二醇混合纳米粒表现出了许多的优势,如易于制备,不使用有毒的有机溶剂,在作为疏水性药物的载体方面显示出了巨大的潜力。纳米粒药物递送系统提高了紫杉醇在生物体内的生物利用度。另一方面,运动作为一种辅助的干预手段,增强了载紫杉醇纳米粒的治疗效果。
Exercise is becoming readily accepted as a beneficial adjunct therapy to maintain or enhance quality of life in cancer patients. Nanoparticles have been widely investigated as drug delivery systems. Both of them can have beneficial effects on the treatment of tumors, but the data is limited, and there is no information on their combined effects. Prevention and treatment of malignant cancer have become an issue of growing concern in both research and clinical practice. With more understanding in pathologic features and biological characteristics of cancer and advances in the state-of-art techniques for early diagnoses and adjuvant therapy, new solutions for cancer focus more on multidisciplinary approach and combined therapy. During recent years, researchers at home and abroad have been investigating the effects of exercise on cancer patients undergoing operative, radio/chemo, and endocrine therapy. Encouraging evidence showed that aerobic exercise can strengthen both physical and psychological functions, fight fatigue, and improve overall quality of life for cancer patients. In this article, experimental evidences and reviews of exercise and cancer were gathered, and on that basis, all the benefits of aerobic exercise on cancer were summarized and possible mechanisms were analyzed. To investigate and prove the benefits and mechanism of exercise on cancer, an animal model with lewis lung cancer cells was set up, and treatment for the animal model included both paclitaxel-loaded nanoparticles and exercise. The experimental results suggested a positive effect of exercise as an adjunctive therapy and partly proved some mechanisms.
     Methods:Drug encapsulation efficiency (EE) and loading content (LC) of the nanoparticles were evaluated by high-performance liquid chromatography. Nanoparticles diameters and structures were determined by dynamic light scattering and transmission electron microscopy. In vitro release was performed in phosphate-buffered saline (pH 7.4) at 37°C, and in vivo experiments were realized in lung cancer-bearing mice. Nanoparticles localization and accumulation were observed by confocal microscopy in Lewis Lung Cancer cells. Female C57BL/6J mice were transplanted with LLC cells and randomly assigned to one of six groups: normal saline, paclitaxel, exercise, paclitaxel-loaded nanoparticles, paclitaxel combining with exercise or paclitaxel-loaded nanoparticles combining with exercise group. Mice were intraperitoneally administered with paclitaxel or paclitaxel-loaded nanoparticles, then exercise groups performed treadmill running for 12 days. The tumor volumes were measured everyday. At the final day, peritoneal macrophages of mice were harvested and analyzed by flow cytometer. The acetonitrile extracts of blood and tissues were analyzed by high-performance liquid chromatography (HPLC) system.
     Results: Similar EE and LC values were obtained for nanoparticles from direct dissolution method and those from dialysis. L- and D-PLA/PEG mixed nanoparticles present higher drug encapsulation ability than separate ones due to stereocomplexation. nanoparticles diameters are enlarged by drug-loading. Faster drug release was obtained for nanoparticles from direct dissolution than those by dialysis. Compared with current clinical formulation and nanoparticles from dialysis, paclitaxel-loaded nanoparticles from direct dissolution showed the highest antitumor ability. The data in vivo suggests the nanoparticles drug delivery system improves the bioavailability of paclitaxel in vivo. Exercise impacts the phagocytosis of macrophages. In addition as an adjuvant treatment, exercise increases curative effect of paclitaxel-loaded nanoparticles.
     Conclusion: The L- and D-PLA/PEG mixed nanoparticles from direct dissolution method present many advantages such as easy formulation and absence of toxic organic solvents, which shows great potential as carrier of hydrophobic drugs. The nanoparticles drug delivery system improves the bioavailability of paclitaxel in vivo. In addition as an adjuvant treatment, exercise increases curative effect of paclitaxel-loaded nanoparticles.
引文
1.strong,J.P.,Pathology,inRypins’MedicalLicensureExaminations,E.D.Frohlich,Editor[M]. J.B. Lippincott Company:Philadelphia.P.473-555(1985).
    2.Lodish,H.,et al.,Molecular Cell Biology[M].Third ed. New York:Scientific American Books,Inc(1997).
    3.Saiki,I.,et al.,Inhibition of the metastasis of murine malignant melanoma by synthetic polymeric peptides containing core sequences of cell-adhesive molecules.Cancer Research[J]. 49 (14):P.3815-3822(1989).
    4.Price JT,B.M.,Kohn EC,The biochemistry of cancer dissemination[J].Crit Rev Biochem Nol Biol. 32(3):P.175-253(1997).
    5.Saiki,I.,Cell Adhesion Molecules and Cancer Metastasis.Jpn[J].Pharmacol.,1997.75:P.215-242
    6.M.C. Wani, H.L. Taylor, M.E. Wall, P. Coggon, and A.T. Mcphail. Plant antitumor agents. VI. The isolation and structure of Taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93:2325-2327 (1971).
    7.P.B. Schiff, J. Fant, and S.B. Horwitz. Promotion of microtubule assembly in vitro by taxol. Nature. 277:665-667 (1979).
    8.C.M. Spencer, and D. Faulds. Paclitaxel-a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs. 48:794-847 (1994).
    9.E.M. Wall, and M.C. Wan. Camptothecin and Taxol: discovery to clinic. Cancer Res. 55:753-760 (1995).
    10.J.D. Ohnson, R. Arriagada, N. Barthelemy, J. Bonner, P. Bonomi, and B. Enami. Post-operative adjuvant therapy for non-small-cell lung cancer. Lung Cancer. 17:S23-S25 (1997).
    11.J.H. Kim, K. Emoto, M. Lijima, Y. Nagasaki, T. Aoyagi, T. Okano, Y. Sakurai, and K. Kataoka. Core-stabilized polymeric micelle as potential drug carrier: increased solubilization of Taxol. Polym. Adv. Technol. 10:647-654 (1999).
    12.S. Feng, and G. Huang. Effects of emulsifiers on the controlled release of paclitaxel (Taxol?) from nanospheres of biodegradable polymers. J. Control. Release. 71:53-69 (2001).
    13.L. Han, J. Guo, L. Zhang, Q. Wang, and X. Fang. Pharmacokinetics and biodistribution ofpolymeric micelles of paclitaxel with Pluronic P123. Acta Pharm. Sini. 27:747-753 (2006).
    14.J. Wang, D. Mongayt, and V.P. Torchilin. Polymeric micelles for delivery of poorly soluble drugs: Preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J. Drug Targ. 13:73-80 (2005).
    15.K.M. Huh, H.S. Min, S.C. Lee, H.J. Lee, S. Kim, and K. Park. A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel. J. Control. Release. 126:122-129 (2008).
    16.P. Kan, Z.B. Chen, C.J. Lee, and I.M. Chu. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J. Control. Release. 58:271-278 (1999).
    17.P. Crosasso, M. Ceruti, P. Brusa, S. Arpicco, F. Dosio, and L. Cattel. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J. Control. Release. 63:19-30 (2000).
    18.S. Li, B. Byrne, J. Welsh, and A.F. Palmer. Self-assembled poly (butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol. Prog. 2: 278-285 (2007).
    19.C. Fonseca, S. Simoes, and R. Gaspar. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release. 83:273-286 (2002).
    20.Y. Dong, and S.S. Feng. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 25:2843-2849 (2004).
    21.J. Xie, and C.H. Wang. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Pharm. Res. 22:2079-2090 (2005).
    22.P. Jie, S.S. Venkatraman, F. Min, B.Y.C. Freddy, and G.L. Huat. Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. J. Control. Release. 110:20-33 (2005).
    23.Z. Zhang, and S.S. Feng. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: Synthesis, formulation, characterization and in vitro drug release. Biomaterials. 27:262-270 (2006).
    24.Z. Zhang, and S.S. Feng. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycolsuccinate nanoparticles. Biomaterials. 27:4025-4033 (2006).
    25.R.T. Liggins, S. D’Amours, J.S. Demetrick, L.S. Machan, and H.M. Burt. Paclitaxel loaded poly(L-lactic acid) microspheres for the prevention of intraperitoneal carcinomatosis after a surgical repair and tumor cell spill. Biomaterials. 21:1959-1969 (2000).
    26.G.S. Das, G.H.R. Rao, R.F. Wilson, and T. Chandy. Controlled delivery of taxol from poly(ethylene glycol)-coated poly(lactic acid) microspheres. J. Biomed. Mater. Res. 55:96-103 (2001).
    27.S.Y. Kim, and Y.M. Lee. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers. Biomaterials. 22:1697-1704 (2001).
    28.S.Y. Kim, Y.M. Lee, D.J. Baik, and J.S. Kang. Toxic characteristics of methoxy poly(ethylene glycol)/poly(ε-caprolactone) nanospheres: in vitro and in vivo studies in the normal mice. Biomaterials. 24:55-63 (2003).
    29.G. Ruan, and S.S. Feng. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials. 24:5037-5044 (2003).
    30.E.K. Park, S.B. Lee, and Y.M. Lee. Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 26:1053-1061 (2005).
    31.H. Alkan-Onyuksel, S. Ramakrishnan, H.B. Chai, and J.M. Pezzuto. A mixed micellar formulation suitable for the parenteral administration of Taxol. Pharm. Res. 11:206-212 (1994).
    32.A. Miwa, A. Ishibe, M. Nakano, T. Yamahira, S. Itai, S. Jinno, and H. Kawahara. Development of novel chitosan derivatives as micellar carriers of Taxol. Pharm. Res. 15:1844-1850 (1998).
    33.R.T. Liggins, and H.M. Burt. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv. Drug Deliv. Rev. 54:191-202 (2002).
    34.O. Soga, C.F. van Nostrum, M. Fens, C.J.F. Rijcken, R.M. Schiffelers, G. Storm, and W.E. Hennink. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Release. 103:341-353 (2005).
    35.S. Cai, K. Vijayan, D. Cheng, E.M. Lima, and D.E. Discher. Micelles of different morphologies-advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm.Res. 24:2099-2109 (2007).
    36.T. Ooya, K.M. Huh, M. Saitoh, E. Tamiya, and K. Park. Self-assembly of cholesterol-hydrotropic dendrimer conjugates into micelle-like structure: Preparation and hydrotropic solubilization of paclitaxel. Sci. Technol. Adv. Mater. 6:452-456 (2005).
    37.Z. Xie, T. Lu, X. Chen, C. Lu, Y. Zheng, and X. Jing. Triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid)/paclitaxel conjugates: synthesis, micellization, and cytotoxicity. J. Appl. Polym. Sci. 105:2271-2279 (2007).
    38.Z. Xie, H. Guan, X. Chen, C. Lu, L. Chen, X. Hu, Q. Shi, and X. Jing. A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer. J. Control. Release. 117:210-216 (2007).
    39.X. Shuai, T. Merdan, A.K. Schaper, F. Xi, and T. Kissel. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjugate Chem. 15:441-448 (2004).
    40.T. Hamaguchi, Y. Matsumura, M. Suzuki, K. Shimizu, R. Goda, I. Nakamura, I. Nakatomi, M. Yokoyama, K. Kataoka, and T. Kakizoe. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduced the neurotoxicity of paclitaxel. Brit. J. Canc. 92:1240-1246 (2005).
    41.S.C. Kim, D.W. Kim, Y.H. Shim, J.S. Bang, H.S. Oh, S.W. Kim, and M.H. Seo. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Release. 72:191-202 (2001).
    42.M.Harvie,T.Mercer,R.Malik,et al.The effect of weight loss and weight gain on insulin-like growth factor (IGF)-I and IGF binding proteins in premenopausal women[J]. The Journal of Nutrition. 36:35-23(2004).
    43.Greten FR , Eckmann L , Greten TF ,et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer [J]. Cell. 118 (3):285-296(2004).
    44.Pikarsky E ,Porat RM ,Stein I ,et al. NF-kappa B functions as a tumour promoter in inflammation-associated cancer[J].Nature. 431(7007):461-466(2004).
    45.Engels EA, Cerhan JR, Linet MS,et al. Immune-related conditions and immune-modulating medications as risk factors for non-hodgkin’s Lymphoma: a case-control study[J]. American Journal of Epidemiology.162(12):1153-1161(2005).
    46.O’Shea J and Ortaldo JR.The biology of natural killer cells:insights into the molecular basis offunction[A].Lewis CE.The Natural Killer Cell[C].UK:Oxford University.1992.1–40.
    47.Na YM, Kim MY, Kim YK, et al. Exercise therapy effect on natural killer cell cytotoxic activity in stomach cancer patients after curative surgery [J]. Archives of Physical Medicine and Rehabilitation. 81(6):777—779(2000).
    48.Gleeson M. Immune function in sport and exercise[J]. Journal of Applied Physiology. 103(2):693-699(2007).
    49.Pedersen BK and Hoffman-Goetz L.Exercise and the immune system:regulation, integration,and adaptation[J].Physiological Reviews. 80(3):1055-1081(2000).
    50.Timmons BW.Exercise and Immune Function in Children[J].American Journal of Lifestyle Medicine. 1(1):59-66(2007).
    51. Ronsen O, Pedersen BK, Oritsland TR,et al. Leukocyte counts and lymphocyte responsiveness associated with repeated bouts of strenuous endurance exercise[J]. Journal of Applied Physiology. 91(1):425-434(2001).
    52. Li TL , Cheng PY. Alterations of immunoendocrine responses during the recovery period after acute prolonged cycling[J].European Journal of Applied Physiology. 101(5),539-546(2007).
    53.Ahmed RL,Thomas W,Yee D,et al.Randomized controlled trial of weight training and lymphedema in breast cancer survivors[J].Journal Clinical Oncology. 24(18): 2765-2772(2006).
    54.Cheema BSB and Gaul CA.Full-body exercise training improves fitness and quality of life in survivors of breast cancer[J].Journal Strength Conditioning Research. 20(1):14-21(2006).
    55.戴越刚.C反应蛋白金标快速定量测定在肿瘤患者中的应用[J].上海医学检验杂志. 17(3):184-185(2002).
    56.高建军.C-反应蛋白的研究现状和展望[J].医学检验与临床. 17(5):53-55(2006).詹美蓉,许榕仙.C反应蛋白与代谢综合征[J].现代预防医学.33(12):2334-2336(2006).
    57.戴越刚.C反应蛋白金标快速定量测定在肿瘤患者中的应用[J].上海医学检验杂志.17(3):184-185(2002).
    58.Adrian S. Fairey,Kerry S. Courneya, Catherine J. Field,et al.Effect of Exercise Training on C-reactive Protein in Postmenopausal Breast Cancer Survivors: A Randomized Controlled trial[J]. Brain, Behavior, and Immunity. 19(5):381-388(2005).
    59.吴国明,励为良.肿瘤细胞内pH调节机制的研究进展[J].中国癌症杂志. 9(2 ):145-147(1999).
    60.Courneya KS, Mackey JR,Bell GJ ,et al.Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: cardiopulmonary and quality of life Outcomes[J].Journal of Clinical Oncology. 21(9):1660-1668(2003).
    61.Clark MM, Novotny PJ, Patten CA,et al.Motivational readiness for physical activity and quality of life in long-term lung cancer survivors[J].Lung Cancer. 61(1): 117-122(2008).
    62.Stricker CT, Drake D, Hoyer KA, et al. Evidence-based practice for fatigue management in adults with cancer: exercise as an intervention[J].Oncology Nursing Forum. 31(5):963-974(2004).
    63.Somani SM, Gupta SK, Frank S, Corder CN. Effect of exercise on disposition and pharmacokinetics of drugs. Drug Develop Res 20:251–275(1990).
    64.Stacey Young-Mccaughan and Sonya M Arzola.Exercise intervention research for patients with cancer on treatment[J].Seminars in Oncology Nursing. 23(4): 264–274(2007).
    65.Jones LW, Eves ND, Haykowsky M, et al. Cardiorespiratory exercise testing in clinical oncology research:systematic review and practice recommendations[J]. Lancet Oncology. 9(8):757–765(2008).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.