环磷酸腺苷反应元件结合蛋白对IFN-γ转录分泌的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     结核病仍然是世界所面临的主要卫生问题,全球约有二十亿人感染了结核分枝杆菌。我国的结核病疫情在全球属高流行地区,根据2000年全国结核病流行病学抽样调查显示,我国结核病疫情主要有以下特点:1)患病率高,活动性肺结核患病率为367/10万,涂阳患病率为122/10万;2)耐药率高,初始耐药率为18.6%,获得性耐药率为46.5%;3)全人口感染率高,为44.5%,我国约有5.5亿人感染了结核杆菌。结核病的治疗和预防面临严峻的考验。因此,研究新的、有效的防治策略控制结核病迫在眉睫。
     结核分枝杆菌是典型的胞内寄生菌,结核分枝杆菌感染巨噬细胞后,可在宿主细胞内繁殖,裂解细胞或处于潜伏状态。IFN-γ是机体抵抗细胞内致病菌关键的细胞因子,由CD4+和CD8+的T淋巴细胞及NK细胞产生。IFN-γ是一种重要的巨噬细胞启动因子,IFN-γ活化巨噬细胞,启动巨噬细胞的氧依赖性和氧非依赖性杀菌系统,使巨噬细胞获得杀灭细胞内寄生菌的能力,同时其抗原递呈能力进一步加强,使机体扩大抗结核的免疫效能。
     IFN-γ基因的转录由IFN-γ近端启动子区(-73 bp ~ -48 bp)调控,特异的蛋白与启动子区结合将调节启动子的活性和IFN-γ的分泌。环磷酸腺苷反应元件结合蛋白(CREB),是一种真核细胞转录因子,与IFN-γ近端启动子区结合,调节IFN-γ基因的转录。CREB蛋白的磷酸化会促进这种结合。
     目前,针对IFN-γ转录调控机制的研究刚刚起步,尚不清楚CREB蛋白在IFN-γ转录分泌调节中的作用,CREB蛋白在机体对结核菌的保护性免疫中的作用有待进一步阐明。对CREB蛋白在IFN-γ的转录、分泌调节中作用的研究,将为利用CREB蛋白防治结核病提供实验依据。
     研究目的:
     通过CREB蛋白与IFN-γ近端启动子区结合的研究,探讨CREB蛋白对IFN-γ转录的调节作用;比较结核病患者和PPD阳性健康对照人群血液中CREB蛋白及磷酸化的CREB蛋白表达水平的差异,探讨CREB蛋白在结核病免疫调节中的作用,明确CREB蛋白作为新药开发和疫苗研制分子靶位的可行性。
     研究方法:
     第一部分:选取25例初治涂阳肺结核患者和18例PPD阳性健康人作为研究对象,留取静脉血,分离外周血单个核细胞(PBMC),利用磁性激活细胞分离技术(MACS)阳性分选得到CD3+T细胞,流式细胞仪检测CD3+T细胞的纯度;从CD3+T细胞提取核蛋白后,采用凝胶电泳迁移率变化分析(EMSA)研究CREB蛋白能否和IFN-γ的近端启动子结合;采用超迁移率(supershift)变化分析实验验证低迁移率条带的DNA-蛋白质复合物的特异性。Western blotting检测结核病患者和PPD阳性健康对照者CREB蛋白表达水平的差异。
     第二部分:选取25例初治肺结核患者和18例PPD阳性健康人作为研究对象,留取血标本,分离外周血单个核细胞(PBMC);利用磁性激活细胞分离技术(MACS)阳性分选得到CD3+T细胞,流式细胞仪检测CD3+T细胞的纯度;加入通过热灭活方法制备的结核分枝杆菌抗原, RPMI1640培养24小时;利用染色质免疫共沉淀(CHIP)技术研究在体内状态下,结核分枝杆菌抗原刺激CD3+T细胞能否诱导CREB蛋白产生并和IFN-γ近端启动子的结合;并采用Western blotting研究结核分枝杆菌抗原能否诱导CREB蛋白磷酸化。
     研究结果
     第一部分:在25例初治肺结核患者中有18例的EMSA结果相比于18例PPD阳性健康人的结果缺失一条低迁移率的条带,说明结核患者缺少和IFN-γ的近端启动子结合的蛋白;超迁移率变化分析实验证明蛋白质-DNA复合物的特异性,结果证明核蛋白特异性的与IFN-γ近端启动子结合,并且蛋白质内含有CREB蛋白;Western blotting结果显示结核患者的CREB蛋白表达水平与PPD阳性健康对照者相比显著降低。
     第二部分:10例PPD阳性健康对照者ChIP实验PCR产物电泳图都有一条204bp条带,证实PPD阳性健康人活体T细胞在结核分枝杆菌抗原刺激时诱导产生CREB蛋白并与IFN-γ的近端启动子结合。12例结核病患者的电泳图204bp条带缺失,显示缺少与IFN-γ的近端启动子结合的CREB蛋白,表明在体内条件下肺结核患者CD3+T细胞产生CREB蛋白的能力下降;而且,Western blotting结果显示肺结核患者CD3+T细胞在结核分枝杆菌抗原刺激时不能诱导磷酸化CREB蛋白的产生。
     研究结论:
     1. CREB蛋白和IFN-γ的近端启动子结合,调控IFN-γ的转录、分泌。
     2.结核病患者的CREB蛋白表达水平降低,并且活体T细胞在结核分枝杆菌抗原刺激时不能诱导产生磷酸化的CREB蛋白,导致与IFN-γ的近端启动子结合的CREB蛋白减少, IFN-γ的近端启动子的活性下降,限制IFN-γ的转录,下调IFN-γ的分泌。
     3. CREB蛋白是一种保护性蛋白,促进IFN-γ的转录和分泌,有助于机体对结核分枝杆菌的保护性免疫反应。
Background
     Tuberculosis remains a major health problem worldwide. Two billion people are infected with the pathogenic agent, Mycobacterium tuberculosis. Approximately 8-10 million people are infected with this pathogen every year. China was one of the highest TB epidemic countries, according to the results of the national epidemiological sampling surveys on TB conducted in 2000, it’s characterized by higher TB prevalence (the prevalence of pulmonary tuberculosis was 367/100,000 and smear-positive prevalence was 122/100,000) and higher drug resistance rate(the primary resistance rate was 18.6% ). Development of multi-drug resistant TB (MDR-TB) and HIV-TB coinfection are greatly increased worldwide, posing a threat to the existing therapeutic possibilities. Hence, the reach of new prophylactic and therapeutic strategies are urgent to control TB.
     TB is a disease caused by Mycobacterium tuberculosis whose interaction with the host may lead to a cell-mediated protective immune response. Interferon- gamma (IFN-γ) is essential to the response. IFN-γ, a key cytokine in control of M. tuberculosis infection is produced by both CD4+ and CD8+ T cells, as well as by NK cells. IFN-γmight augment antigen presentation, leading to recruitment of CD4+ T-lymphocytes and/or cytotoxic T-lymphocytes, which might participate in mycobacterial killing. Although IFN-γproduction alone is insufficient to control M. tuberculosis infection, it is required for the protective response to this pathogen. IFN-γis the major activator of macrophages, such as generation of reactive oxygen intermediates (ROI), reactive nitrogen intermediates (RNI), so it helps macrophages to inhibit the growth of M. tuberculosis.
     Transcription of the IFN-γgene in activated T cells is controlled by the proximal promoter element (-73 bp to -48 bp). Binding of specific proteins to these regulatory regions markedly affects IFN-γpromoter activity and the production of IFN-γ. Cyclic adenosine monophosphate response element binding protein (CREB), as a transcription factor, binds to the IFN-γproximal promoter to adjust the transcription of the IFN-γ, and the binding is enhanced by phosphorylation of CREB.
     At present, the study of CREB protein regulatory of IFN-γtranscription is in an infancy stage. Some questions need to be elucidated such as CREB protein is a positive or negative regulator of IFN-γtranscription, the function of CREB in immune protection. Knowledge about the functioning of CREB protein during IFN-γtranscription and production provides the basis for rational tuberculosis treatment and prevention.
     Purpose
     1. Study binding of CREB protein to the proximal IFN-γpromoter in vitro and in vivo; discuss the function of CREB protein in IFN-γtranscription.
     2. Compare the level of CREB protein in tuberculosis patients and PPD-positive healthy donors; investigate the functions of CREB protein in the immunity against tuberculosis.
     Methods
     Part one:Venous blood samples were obtained from 18 PPD-positive healthy donors and from 25 HIV-seronegative patients with smear-positive pulmonary tuberculosis, all of whom had received < 4 weeks of antituberculosis therapy. PBMC were isolated by differential centrifugation over Ficoll-Paque. Freshly isolated PBMC were incubated with magnetic beads conjugated to anti-CD3 and a magnetic cell separator was used to positively select CD3+ cells. The purity of CD3+ cells was measured by flow cytometer. After Extraction of nuclear proteins, EMSA was performed to determine nuclear proteins binding to the proximal IFN-γpromoter in vitro, and the specificity of binding complex was tested by competitive EMSA. Western blotting was performed to compare the difference of expression of CREB protein in tuberculosis patients and PPD-positive healthy donors.
     Part two:Venous blood samples were obtained from 18 PPD-positive healthy donors and from 25 HIV-seronegative patients with smear-positive pulmonary tuberculosis. PBMC were isolated by differential centrifugation over Ficoll-Paque,Freshly isolated PBMC were incubated with magnetic beads conjugated to anti-CD3 and a magnetic cell separator was used to positively select CD3+ cells. The purity of CD3+ cells was measured by flow cytometer. CD3+ cells were cultured with heat-killed mycobacterial Ags for 24h. Chromatin immunoprecipitation with anti-CREB Ab was used to determine whether CREB binds to the chromosomal IFN-γproximal promoter in vivo in live T cells exposed to microbial Ags. Western blotting with Abs specific for serine 133-phosphorylated CREB was performed to determine whether M. tubtuberculosis Ags elicited phosphorylation of CREB.
     Results
     Part one:The results of EMSA showed a low-mobility complex binding to the IFN-γpromoter, the binding pattern observed was similar for T cells from all 18 PPD-positive healthy donors. However, in T cells from 18 of 25 tuberculosis patients, the low-mobility complex binding to the IFN-γpromoter was absent. It suggested that DNA-binding proteins to the IFN-γpromoter reduced in tuberculosis patients. The results of competitive EMSA suggested these nuclear proteins specifically bound to the IFN-γpromoter region and contained CREB. CREB protein expression markedly decreased in tuberculosis patients compared with PPD-positive healthy donors detected by Western blotting.
     Part two: The results of ChIP showed a 204bp product yielded in CD3+T cell from 10 PPD-positive healthy donors cultured with heat-killed M. tuberculosis for 24h. However, CD3+T cell from 12 tuberculosis patients didn’t yield a 204bp product. The results elicited that CREB protein can bind to the chromosomal IFN-γproximal promoter in vivo in live T cells from PPD-positive healthy donors exposed to microbial Ag, but no binding was seen in live T cells from tuberculosis patients. Furthermore, M. tubtuberculosis Ags also elicited phosphorylation of CREB in CD3~+T cell from PPD-positive healthy donors, but not in CD3+T cell from tuberculosis patients.
     conclusions
     1. CREB protein binds to IFN-γproximal promoter to regulate the transcription and production of IFN-γ.
     2. CREB protein binding to IFN-γproximal promoter reduced in tuberculosis patients compared with PPD-positive healthy donors. Tuberculosis patients had diminished CREB protein levels, reduced ability of binding to the IFN-γpromoter, diminished IFN-γpromoter activity, and low IFN-γproduction.
     3. CREB positively regulates the production of IFN-γby human T cells in response to M. tuberculosis.
引文
1. Dye C, Scheele S, Dolin P, et al. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. J. Am. Med. Assoc. 1999, 282(7): 677-686.
    2. Cantwell MF, Snider DE Jr, Cauthen GM,et al. Epidemiology of tuberculosis in the United States, 1985 through 1992. JAMA. 1994, 272(7):535-539.
    3. Raviglione MC, Sudre P, Rieder HL,et al. Secular trends of tuberculosis in western Europe. Bull World Health Organ. 1993, 71(3-4):297-306.
    4. Markowitz N, Hansen NI, Hopewell PC, et al. Incidence of tuberculosis in the United States among HIV-infected persons, Ann Intern Med,1997,126:123~132.
    5. Goletti D, Weissman D, Jackson RW, et al. Effect of mycobacterium tuberculosis on HIV replication. J Immunol, 1996,157:1271~1278.
    6. Baumann S, Nasser EA, Kaufmann SH. Progress in tuberculosis vaccine development. Curr Opin Immunol, 2006,18(4):438-448.
    7. Ottenhoff TH, Verreck FA, Hoeve MA et al. Control of human host immunity to mycobacteria. Tuberculosis, 2005,85(1-2):53-64.
    8. (Rivas-SB, Vieyra-RP, Araujo Z. Cell immunity response in human pulmonary tuberculosis. Invest Clin. 2005 ,46(4):391-412.
    9.吴守芝宋俊峰.结核分支杆菌致病机制与免疫.中华结核和呼吸杂志,2003,26(2)101-103.
    10. Orme IM. Immunity to mycobacteria. Curr Opin Immunol. 1993, 5(4):497-502.
    11. Gilbertson B, Zhong J, Cheers C. Anergy, IFN-gamma production, and apoptosis in terminal infection of mice with Mycobacterium avium. J Immunol. 1999, 15;163(4):2073-2080.
    12. Mori T, Sakatani M, Yamagishi F, et al. Specific detection of tuberculosis infection: an interferon-gamma-based assay using new antigens[J]. Am J Respir Crit Care Med, 2004,170(1):59-64.
    13.谢莉,马玙,高微微,等。抗原刺激后外周血单个核细胞γ干扰素释放反应在结核分枝杆菌感染和结核病诊断中的意义.中华结核和呼吸杂志,2005,28(8)545-549.
    14. Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet, 1997, 349(9064): 1513-1515.
    15. Moreira AL, Tsenova L, Murray PJ et al. Aerosol infection of mice with recombinant BCG secreting murine IFN-gamma partially reconstitutes local protective immunity. Microb Pathog, 2000; 29(3):175–185.
    16. Serbina N, Flynn J. Early emergence of CD8+ T cells primed for production of type 1 cytokines in the lungs ofMycobacterium tuberculosis-infected mice. Infect Immun, 1999,67: 3980-3988.
    17. Caruso AM, Serbina N, Kiein E, et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-γ, yet succumb to tuberculosis. J Immunol, 1999, 162:5407-5416.
    18. Samten B, Howard ST, Weis SE et al. Cyclic AMP response element-binding protein positively regulates production of IFN-gamma by T cells in response to a microbial pathogen. J Immunol, 2005, 174 (10):6357-6363.
    19. World Health Organization. Word health report 2000.Health systems improving performance. Geneva: WHO, 2000.
    20. Salgame P. Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol. 2005, 17(4): 374-80.
    21. Reljic R. IFN-gamma therapy of tuberculosis and related infections. J Interferon Cytokine Res. 2007, 27(5):353-364.
    22. Chackerlan AA, Perera TV, Behar SM. Gamma interferon-producing CD4+T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect Immun, 2001,69(4):2666-2667.
    23. Penix L A, Sweetser M T,. Weaver W M, et al. The proximal regulatory element of the IFN-γpromoter mediates selective expression in T cells. J. Biol. Chem. 1996.271(50): 31964–31972.
    24. Lee JS, Song CH, Kin CH, et al. Profiles of IFN-gamma and it is regulatorycytokines (IL-12, IL-8 and IL-10)in peripheral blood mononuclear cells from patients with multidrug-resistat tuberculosis [J]. Clin Exp Immunol, 2002, 128(3):516.
    25.王琳,蔡映云,程秋兰等.肺结核患者的Th1 / Th2细胞因子失衡.中华结核和呼吸杂志,2002,25(9):535-537.
    26. Zhang F, Wang DZ, Boothby M, et al. Regulation of the activity of IFN-γpromoter elements during Th cell differentiation. J Immunol, 1998, 161(11):6105-6112.
    27. Zhang F, Rincon M, Flavell RA, et al.Defective Th function induced by a dominant-negative cAMP response element binding protein mutation is reversed by Bcl-2. J Immunol, 2000, 165(4):1762-1770.
    28. 2000年全国结核病流行病学抽样调查资料汇编.中华人民共和国卫生部.北京,人民卫生出版社12-19.
    29. Mazurek GH, LoBue PA, Daley CL, et al. Comparison of a whole-blood interferon gamma assay with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection. JAMA. 200,1286(14):1740-1747.
    30. American thoracic Society. Targeted Tuberculin Testing and Treatment of Latent Tuberculosis Infection [J].MMWR.2000, 49:1-51.
    31. Safarík I, SafaríkováM. Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl. 1999; 722(1-2):33-53.
    32. Klein U, Tu Y, Stolovitzky GA, et al. Transcriptional analysis of the B cell germinal center reaction. Proc Natl Acad Sci U S A. 2003; 100(5): 2639-2644.
    33.沈关心,周汝麟.现代免疫学实验技术[M].第二版.武汉:湖北科学技术出版社, 2002: 387-389.
    34. Ma J, Chen T, Mandelin J, et al. Regulation of macrophage activation. Cell Mol Life Sci. 2003 Nov;60(11):2334-2346.
    35. Zimonjic DB, Rezanka LJ, Evans CH, et al. Mapping of the immune interferon gamma gene (IFNG) to chromosome band 12q14 by fluorescence in situ hybridization. Cytogenet Cell Genet, 1995, 71(3):247-248..
    36.余瑞元,王燕峰,徐长法. CREB研究进展.中国生物工程杂志,2003: 23(1) 39-47.
    37. Wade JT, Struhl K, Busby SJ. et al. Genomic analysis of protein-DNA interactions in bacteria: insights into transcription and chromosome organization. Mol Microbiol. 2007; 65(1):21-26.
    38. Lane D,Prentki P, Chandler M. Use of gel retardation to analyze protein-nucleic acid interactions. [J]. Microbiol Rev, 1992, 56:509-528.
    39. Kass, Jason, Ruben A, et al. Non-radioactive electrophoretic mobility shift assay using digoxigenin-ddUTP labeled probes. Dros.inf.serv, 2000, 83:185-188.
    40.华东,李敏俐,王进科.两种化学发光电泳迁移率变动分析技术的比较.生物医学工程研究,2007:26(2):111-115.
    41. Motojima M, Ando T, Yoshioka T. Sp1-like activity mediates angiotensin–II -induced plasminogen-activator inhibitor type-1 (PAI-1) gene expression in mesangial cells. Biochem J. 2000 Jul 15;349 (Pt 2):435-41.
    42. Denkin SM, Sekaric P, Nelson DR. Gel shift analysis of the empA promoter region in Vibrio anguillarum. BMC Microbiol. 2004 29(4):42-51.
    43. Torres M, Herrera T, Villareal H, et al. Cytokine profiles for peripheral blood lymphocytes from patients with active pulmonary tuberculosis and healthy household contacts in response to the 30-kilodalton antigen of Mycobacterium tuberculosis. Infect Immun, 1998, 66:176-180.
    44. Im H, Grass JA, Jonsh, KD, et al. Measurement of DNA-protein. 2004, 284: 129-146.
    45. Mogga SJ, Mustafa T, Sviland L, et al.Increased Bcl-2 and reduced Bax expression in infected macrophages in slowly progressive primary murine mycobacterium tuberculosis infection. Scand J Immunol, 2002, 56(4):383-391.
    46.夏飞,刘胜武,魏雅稚,等.结核分枝杆菌诱导宿主巨噬细胞凋亡机制初探.中华微生物学和免疫学杂志,2005,25(6): 463-468.
    47. Wu GY, Deisseroth K, Tsien RW Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A.2001, 98(5): 2808-2813.
    48. Saeki K, Yuo A, Takaku F. Cell-cycle-regulated phosphorylation of cAMP response element-binding protein: identification of novel phosphorylation sites. Biochem J. 1999, 338 ( Pt 1):49-54.
    49. Aparicio O, Geisberg JV, Sekinger E, et al. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Mol Biol. 2005, Chapter 21: Unit 21.3.
    50. Nair A, Vaidya VA. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: molecules that modulate our mood? J Biosci. 2006, 31(3):423-434.
    51. White DM, Walker SL, Brenneman DE, et al. CREB contributes to the increased neurite of sensory neurons induced by vasoactive intestinal polypeptide and activity dependent neurotrophic factor. Brain Res, 2000, 868(1):31~38.
    52. Richards J P,BachingerHP, Good-man RH,et al.Analysis ofthe structural properties of cAMP responsive element binding protein(CREB) and phosphorylated CREB.J Biol Chem,1996, 271(23):13716~13723.
    53. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation -dependent factor CREB. Nat. Rev. Mol. Biol. 2001. 2: 599–609.
    54. Kaiser M, Wiggin GR, Lightfoot K.et al. MSK regulate TCR-induced CREB phosphorylation but not immediate early gene transcription. Eur J Immunol. 2007 ;37(9):2583-2595.
    55. Chaudhry S, Freebern WJ, Smith JL, et al. Cross-regulation of T cell growth factor expression by p53 and the Tax oncogene. J Immunol. 2002; 169(12):6767-6778.
    56. Zhang F, Rincon M, Flavell RA et al. Defective Th function induced by a dominant-negative cAMP response element binding protein mutation is reversed by Bcl-2. J Immunol. 2000, 165(4):1762-1770.
    57. Barton K, Muthusamy N, Chanyangam M, et al. Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature. 1996, 379(6560):81-85.
    58. Rook GA, Seah G, Ustianowski A. M. tuberculosis: immunology and vaccination. Eur Respir J. 2001 Mar; 17(3):537-57.
    59. Schluger NW. Recent advances in our understanding of human host responses to tuberculosis. Respir Res. 2001, 2 (3):157-163.
    60. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001, 19: 93-129.
    61. Koh WJ, Kwon OJ, Suh GY, et al. Six-month therapy with aerosolized interferon-gamma for refractory multidrug-resistant pulmonary tuberculosis. J Korean Med Sci, 2004, 19(2):167-171.
    62.王琳,汪学智,程秋兰,等.肌注重组IFN-γ联合抗结核药治疗肺结核的效果.中国防痨杂志,2006,28(2):77-79.
    63. Kincaid EZ, Ernst JD. Mycobacterium tuberculosis exerts gene-selective inhibition of transcriptional responses to IFN-gamma without inhibiting STAT1 function. J Immunol. 2003, 171(4):2042-2049.
    64. Wang Y, Curry HM, Zwilling BS, et al. Mycobacteria inhibition of IFN-gamma induced HLA-DR gene expression by up-regulating histone deacetylation at the promoter region in human THP-1 monocytic cells. J Immunol. 2005, 174(9): 5687-5694.
    65. Pennini ME, Pai RK, Schultz DC, et al. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J Immunol. 2006, 176(7): 4323-4330.
    1. Abbptt A. A post-genomic challenge: learning to read patterns of protein synthesis.Nature. 1999,402(6763):715-720.
    2. Davidson EH, Rast JP, Oliveri P, et al. A genomic regulatory network for development. Science 2002, 295:1669-1678.
    3. Wyrick JJ, Young RA: Deciphering gene expression regulatory networks. Curr Opin Genet Dev 2002, 12:130-136.
    4.李英贤,贺福初. DNA与蛋白质相互作用研究方法.生命的化学,2003,23(4):306-308.
    5. Pennacchio LA, Rubin EM. Comparative genomic tools and databases: providing insights into the human genome. J Clin Invest 2003, 111:1099-1106.
    6. Ohler U, Niemann H. Identification and analysis of eukaryotic promoters: recent computational approaches. Trends Genet.2001, 17:56-60.
    7. Wu Jiejun, Smith LT, Christoph P et al.ChIP-chip Comes of Age for Genome-wide Functional Analysis. Cancer Res 2006; 66(14): 6899-6902.
    8. Nal B, Mohr E, Ferrier P. Location analysis of DNA-bound protein. BioEssays, 2001 ,23(6):473~476.
    9. Taverner NV, Smith CJ,Wardle CF. Identifying transcriptional targets. Genome Biology,2004,5:210.
    10. Turner FB, Cheung WL, Cheung P. Chromatin immunoprecipitation assay for mammalian tissues. Methods Mol Biol. 2006; 325:261-72.
    11. Weinmann AS, Farnham PJ. Identification of unknown target genes of human transcription factors using chromatin immunoprecipition. Methods. 2002, 37-47.
    12. Wells J, Farnham P J. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation . Methods, 2002, 26(1):48~56.
    13. Johnson K D, Bresnick E H. Dissecting long range transcriptional mechanisms by chromatin immunoprecipitation.Methods,2002,26(1):27~36.
    14. Beatrice N, Mohr E, Ferrier P,Location analysis of DNA-bound proteins at the whole-genome level: untangling transcriptional regulatory networks 2001 BioEssays 23:473-476.
    15. Kuo MH, Allis CD. In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods. 1999 Nov;19(3):425-433.
    16. Dimitrov SI, Moss T. UV laser-induced protein-DNA crosslinking. Methods Mol Biol. 2001;148:395-402.
    17.傅湘辉,刘德培,辛立,等.一种简便的染色质免疫沉淀法的建立.生物化学与生物物理进展2003 ; 30 (4): 634-638.
    18. Solomon MJ, Larsen PL, Varshavsky A. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell. 1988 Jun 17;53(6):937-947.
    19. Shan B, Xu J, Zhuo Y, et al. Induction of p53-dependent activation of the human proliferating cell nuclear antigen gene in chromatin by ionizing radiation. J Biol Chem. 2003 ; 278(45): 44009-44017.
    20. Li T, Vu TH, Ulaner GA, et al. Activating and silencing histone modifications form independent allelic switch regions in the imprinted Gnas gene. Hum Mol Genet. 2004,13(7):741-750.
    21. Jenuwein T , Allis CD. Translating the histone code. Science, 2001, 293 (5532) : 1074-1080.
    22. van Steensel B. Mapping of genetic and epigenetic regulatory networks using microarrays. Nat Genet. 2005; 37: S18-24.
    23. Weinmann AS. 2004 Novel ChIP-based strategies to uncover transcription factor target genes in the immune system. Nat Rev Immunol. 2004 May;4(5):381-386.
    24. Wu J, Smith LT, Plass C. ChIP-chip comes of age for genome-wide functional analysis. Cancer Res. 2006 , 66(14): 6899-6902.
    25. Perez-Romero P, Imperiale MJ. Assaying protein-DNA interactions in vivo and in vitro using chromatin immunoprecipitation and electrophoretic mobility shift assays. Methods Mol Med. 2007,131: 123-139.
    26. Shang Y, Hu X, DiRenzo J,et al. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell, 2000, 103(6):843-852.
    27. Sharma D, Fondell JD. Ordered recruitment of histone acetyltransferases and theTRAP/Mediator complex to thyroid hormone-responsive promoters in vivo. Proc Natl Acad Sci USA, 2002, 99(12):7934-7939.
    28. Camus JC, Pryor MJ, Cole S T, et al. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. [J]. Microbiology, 2002, 148(10) 2967-2973.
    29. Kincaid, EZ, Ernst JD. 2003. Mycobacterium tuberculosis exerts geneselective inhibition of transcriptional responses to IFN-γwithout inhibiting STAT1 function. J. Immunol. 171: 2042–2049.
    30. Pai RK, Pennini ME, Tobian AA, et al. Prolonged Toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibitsγinterferon-induced regulation of selected genes in macrophages. Infect. Immun. 2004.72: 6603–6614.
    31. Noss, EH, Pai RK, Sellati TJ, Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19 kD lipoprotein of Mycobacterium tuberculosis. J. Immunol. 2001.167: 910–918.
    32. Kanaseki, T, Ikeda H, Takamura Y, et al. Histone deacetylation, but not hypermethylation, modifies class II transactivator and MHC class II gene expression in squamous cell carcinomas. J. Immunol. 2003. 170: 4980–4985.
    33. Pennini ME, Pai RK, Schultz DC, et al. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J Immunol. 2006, 176(7): 4323-4330.
    34. Pennini ME, Liu Y, Yang JQ, et al. CCAAT/enhancer-binding protein beta and delta binding to CIITA promoters is associated with the inhibition of CIITA expression in response to Mycobacterium tuberculosis 19-kDa lipoprotein. J Immunol, 2007,179(10): 6910-6918.
    35. Flynn JL, Chan J. Immunology of tuberculosis. Annu. Rev. Immunol. 2001. 19: 93–129.
    36. Zhang F, Rincon M, Flavell RA, et al. Defective Th function induced by a dominant-negative cAMP response element binding protein mutation is reversed by Bcl-2. J. Immunol. 2000.165: 1762–1770.
    37. Penix, LA, Sweetser MT, Weaver WM et al. The proximal regulatory element ofthe IFN-γpromoter mediates selective expression in T cells. J. Biol. Chem. 1996. 271: 31964–31972.
    38. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation -dependent factor CREB. Nat. Rev. Mol. Biol. 2001. 2: 599–609.
    39. Mayr BM, Canettieri G, Montminy MR. Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB. Proc Natl Acad Sci USA. 2001; 98(19):10936-10941.
    40. Yamamoto KK, Gonzalez GA, Biggsl WH, et al. Phosphorylation induced binding and transcriptional efficacy of factor CREB. Nature, 1988, 334:494~498.
    41. White DM, Walker SL, Brenneman DE, et al. CREB contributes to the increased neurite of sensory neurons induced by vasoactive intestinal polypeptide and activity dependent neurotrophic factor. Brain Res,2000, 868(1):31~38.
    42. Cippitelli, M., Sica A, Viggiano V, et al.. Negative transcriptional regulation of the interferon-δpromoter by glucocorticoids and dominant negative mutants of c-Jun. 1995,J. Biol. Chem. 270(21):12548-12556.
    43. Penix, LA, Sweetser MT, Weaver WM, et al. The proximal regulatory element of the interferon-γpromoter mediates selective expression in T cells. J. Biol. Chem. 1996.271: 31964–31972.
    44. Zhang, F, Wang D Z, Boothby M, et al. Regulation of the activity of IFN-γpromoter elements during Th cell differentiation. J. Immunol. 1998.161: 6105–6112.
    45. Samten B, Ghosh P, Yi AK .et al. Reduced expression of nuclear cyclic adenosine 5'-monophosphate response element-binding proteins and IFN-gamma promoter function in disease due to an intracellular pathogen. J Immunol. 2002; 168(7): 3520-3526.
    46. Samten B, Howard ST, Weis SE et al. Cyclic AMP response element-binding protein positively regulates production of IFN-gamma by T cells in response to a microbial pathogen. J Immunol, 2005, 174 (10):6357-6363.
    47. Alspaugh JA, Pukkila-Worley R, Harashima T, et al.Adenylyl cyclase functions downstream of the G protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot Cell, 2002, 1(1):75–84.
    48. Wolfgang MC, Lee VT, Gilmore ME, et al. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell, 2003, 4(2):253–263.
    49. Kim YR, Kim SY, Kim CM, et al. Essential role of an adenylate cyclase in regulating Vibrio vulnificus virulence. FEMS Microbiol Lett, 2005, 243(2): 497-503.
    50. Spreadbury CL, Pallen M J, Overton T, et al. Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation. Microbiology, 2005.151:547–556.
    51. Zahrt TC, Deretic V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci USA. 2001, 98(22): 12706-12711.
    52. Haydel SE, Clark-Curtiss JE. Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol Lett. 2004, 236(2):341-347.
    53. Fol M, Chauhan A, Nair NK, et al. Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol. 2006, 60(3):643-657.
    54. Zeitlinger J, Simon I, Harbison CT, et al. Program-specific distribution of a transcription factor dependent on partner transcription-factor and MAPK signaling. Cell, 2003, 113:395-404.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.