基于光谱特征的超光谱遥感图像压缩算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超光谱遥感技术近些年发展迅速并得到广泛应用。但随着超光谱图像光谱和空间分辨率的增加造成的海量数据给传输和存储带来了巨大的困难。所以研究出有效的超光谱图像采样和压缩方法具有重要的理论意义和实用价值。因此,本文结合超光谱图像自身的光谱特点,提出了超光谱图像压缩的一些新方法。
     首先,论文从谱间的结构相关和统计相关角度出发,结合数据分析了超光谱图像具有强烈的谱间相关性,并远大于空间相关性。同时,发现超光谱图像的空间相关性也低于普通图像的空间相关性。发掘了它与多光谱图像的不同的局部非平稳特征。确定了压缩重点在于利用超光谱图像的谱间相关性以及局部不平稳特性。超光谱图像还具有高数据维的特点,通过计算得到高维谱空间大部分为空的结论,为选择向低维投影采样压缩方法提供了理论依据。
     本文将嵌入式编码应用于超光谱图像压缩,对SPIHT算法进行改进,在经典SPIHT算法中利用小波系数兄弟节点相关性,修改了零树结构,引入LZC算法的标志位图思想,图像恢复质量明显改善。
     基于超光谱图像特性,本文首先将基于侧四邻域定义的误差补偿预测树算法应用到超光谱图像无损压缩,建立了自适应双向波段预测的误差补偿预测树模型。针对模型预测器系数计算复杂度高的情况,设计了基于“权重”思想,利用已编码像素对系数完成自适应驱动估计。最后结合改进的SPIHT算法进行编码。实验表明,该算法在较低的计算复杂度下,压缩比优于目前流行的无损压缩算法。
     最后,将最近出现信号处理领域的新理论“压缩传感理论”应用于超光谱图像压缩。本文针对压缩传感理论中稀疏分解的计算量巨大,提出了对传统匹配跟踪算法的改进,使用改进的遗传算法来寻找基函数库最优原子,同时对图像进行分块匹配搜索,减小最优匹配搜索范围,并自适应决定稀疏分解结束。在实现了图像信号准确重构的基础上,以较低的计算复杂度完成了直接信息采样。
     本文围绕着超光谱图像所特有的光谱图像特性,提出并改进不同的压缩算法,并分别进行了性能分析和实验评价。
Hyperspectral remote sensing based on the research of cross-discipline including the electromagnetic spectrum, geographic information systems, electronic technology, computer technology, aerospace technology and other subjects, emerges as a novel remote sensing technology and develops rapidly in recent years. Spectral resolution of the hyperspectral remote sensing, which is higher than 1% of wavelength, hits nanometer (nm) order of magnitude, and the number of spectral channels reaches up to tens or even hundreds. It organically combines the ground object spectra determined by the material composition and the space imaging inflecting the existed pattern of ground object and each pixel of space imaging can be assigned its own information of characteristic spectrum, which may improve greatly cognitive ability of the objective world. Hence, hyperspectral remote sensing has great value of application in various areas, such as survey of land resources, forestry remote sensing, environmental monitoring, agricultural applications, the space environment, and military target detection.
     However, with the spectral resolution of the hyperspectral ascended, the image that contains a wealth of information of ground object and spectra brings out mass data, which leads to engender hosts of difficulties in the transmission, storage and processing of image and restricts the pace of progress in the application of hyperspectral remote sensing. In other words, how to fully utilize the potential advantages of hyperspectral images and proposing effective sampling and compression methods of hyperspectral images have important theoretical significance and practical value. Therefore, this paper, which is based on the research of the spectral image compression technology of predecessors and combined with the characteristics of hyperspectral images, proposes some novel approaches of hyperspectral image compression, and these approaches perform well.
     Firstly, this paper makes a detailed analysis of the hyperspectral image characteristics as the basis for follow-up compression methods. More precisely, hyperspectral image has hundreds of spectral bands and a strong correlation between spectral in terms of the common image, beside, it can be found from the data that the correlation between spectral is much larger than the spatial correlation of image. In terms of the spatial correlation, the spectral image is apparently lower than the common image due to the large coverage area of ground object. Moreover, in the analysis of correlation, it can be seen that the spectral image itself has the local non-stationary characteristics, which is obvious different from the multispectral image. Consequently, these compression approaches that are applied to common image and multispectral image are not fully suitable for the hyperspectral image. In order to obtain the idea rate of compression, correlation between spectral and local non-stationary characteristics of hyperspectral image should be sufficiently used. The hyperspectral image also has the character of high-dimensional data, and conclusion that the high-dimensional spectral space is empty can be obtained by calculation. This provides a theoretical basis for the low-dimensional projection sampling compression method.
     Secondly, an embedded code has been applied on the compression of hyperspectral image and the design method with SPIHT (Set Partitioning in Hierarchical Trees) algorithm based on wavelet transform has been proposed. This method for compression makes efforts on performance and shortening time for coding and decoding. But the quality of image reconstruction using the method under low bit rate is not good. To solve this problem, the classic SPIHT algorithm is improved. The correlation hypothesis about neighbor nodes has been added to SPIHT algorithm and zero- tree's structure is also modified. In the meanwhile, it broaches the mind of LZC algorithm's symbol flag idea. Finally, the performance on hyperspectral image compression is improved.
     Thirdly, to improve the real-time performance of the current compression algorithms on hyperspectral image, a new lossless compression method based on prediction tree with error variances compensated for hyperspectral image is proposed in this paper. The method incorporates prediction tree and adaptive interband prediction techniques, and bidirectional interband prediction to current band is firstly applied to hyperspectral image compression. Then the error created by prediction tree is compensated by linear adaptive predictor which de-correlates spectral statistic redundancy. In consideration of the complexity for the coefficients' calculation, a correlation-driven adaptive estimator is designed to coefficients whose parameters are uniquely determined by the previously coded pixels. After de-correlating intraband and interband redundancy, an efficient wavelet coding method, SPIHT, is used to encode residual image. Finally, the proposed method in this paper achieves both low overhead and high compression ratio on data from the NASA JPL AVIRIS than current compression methods.
     At last, a novel theory of information acquisition-"compressive sampling" has been applied in this paper. The proposed approach offers a different perspective with regards to common wisdom in data acquisition of Shannon theorem. Common perception in compressed sensing indicates that one can recover certain signals and images perfectly from far fewer samples or measurements than traditional methods use. This paper presents an improvement on genetic algorithm instead of match pursuit algorithm in consideration of the enormous computational complexity on sparse decomposition. When applied to image data, our proposed approach divides the original scene into small blocks which can be processed by sparse decomposition, and a stopping criterion to decomposition process is determined by a peak signal to noise ratio (PSNR) threshold in adaptive fashion. Our experimental results indicate that good performance on image reconstruction with less computational complexity can be achieved.
     This paper centers on particular spectral feature of hypersectal image. Different compression algorithms proposed have been improved for need. The performance analyses and experiment evaluation are respectively given.
引文
[1].童庆禧.我国高光谱遥感的发展[J].中国测绘报,2008(3)
    [2].曾鹏,徐建军,吴玲达.卫星数字图像的智能处理研究[J]..系统仿真学报2005,17(7):32-35
    [3].D.A.Landgrebe.The Evolution of Landsat Data Analysis[J].Photogrammetric Engineering and Remote Sensing.1997,63(7):859-867
    [4].周万蓬,祝民强,吴仁贵,葛本峰,张曰静.基于ETM影像数据融合的土地覆盖分类研究[J].东华理工学院学报,2004.27(4):333-339
    [5].G.Vane,R.Green,T.Chrien,H.Enmark,E.Hansen,W.Porter.The Airborne Visible/Infrared Imaging Spectrometer(AVIRIS)[J].Remote Sensing of Environment.1993,44(2):127-143
    [6].R.Green,Imaging Spectroscopy and Airborne Visible/Infrared Imaging Spectrometer(AVIRIS)[J].Remote Sensing of Environment.1998,65(3):227-248
    [7].Glen P Abousleman.Compression of Hyperspectral Imagery Using the 3-D DCT and Hybrid DPCM/DCT[J].IEEE Trans.On Geoscience and Remote Sensing.1995,33(1):26-34
    [8].Jarno Mielikainen,Pekka Toivanen,Arto Kaarna.Linear prediction in lossless compression of hyperspectral images[J].Optical Engineering.2003,42(4):1013-1017
    [9].Sushil K.Jain,Donald A.Adjeroh.Edge-based prediction for lossless compression of hyperspectral images[J].Data Compression onference Proceedings,2007:153-162
    [10].Bruno Aiazzi,Luciano Alparone,Stefano Baronti,Cinzia Lastri.Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery[J].IEEE Geoscience and Remote Sensing Letters.2007,4(4):532-536
    [11].Mielikainen Jarno,Toivanen Pekka.Clustered DPCM for the ssless compression of hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing.2003,41(12):2943-2946
    [12].Rizzo F,Carpentieri B,and Motta G,et al..Low-complexity lossless compression of hyperspectral imagery via linear prediction[J].IEEE Signal Process.Lett.,2005,12(2):138-141
    [13].Wang H,Babacan S D,and Sayood K.Lossless hyperspectralimage compression using context-based conditional averages[C].Proc.DCC,Snowbird,Utah,US,2005:418-426
    [14].Mielikainen J.Lossless compression of hyperspectral images using lookup tables[J].IEEE Signal Processing Letter,2006,3(3):157-160
    [15].Aiazzi B,Alparone L,and Baronti S.Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery[J].IEEE Gersci.& Remote Sens.Letter,2007,4(4):532-536
    [16].吴峥,何明一基十小波变换和分段DPCM混合编码的多光谱遥感图像压缩算法[J].电子与信息学报.2003,25(6):747-754
    [17].Zhang Jing and Liu Guizhong.An efficient reorderingprediction-based lossless compression algorithm for hyperspectral images[J].IEEE Geosci.& Remote Sens Letters,2007,4(2):283-287
    [18].Slyz M and Zhang L.A block-based inter-band lossless hyperspectral image compressor[C].Proc.DCC' 2005,Utah,US,2005:427-436
    [19].Ashok K.Rao and Sanjai Bhargava.Multispectral Data Compression Using Bidirectional Interband Prediction[J].IEEE Trans.on Geoscience and Remote Sensing.1996,34(2):385-397
    [20].Zhang Ye,Mita D.Desai.Hyperspectral image compression based on adaptive recursive bidirection prediction/JPEG[J].Pattern Recognition.2000,33(11):1851-1861
    [21].吴林峰,冯燕.基于JPEG2000和自适应预测的高光谱图像压缩方法[J].计算机仿真.2006.23(2):168-170
    [22].张晓玲,孙兰荪.基于三维自适应预测的高光谱图像无损压缩算法[J].电子学报.2004,32(6):957-959
    [23].Bruno Aiazzi,Pasquale S.Alba.Reversible compression of 2D and 3D data through a fuzzy linear prediction with context-based arithmetic coding [J].Proceedings of SPIE-The International Society for Optical Engineering.1998,v3456:126-133
    [24].Ling-Hua Su,Shao-Yu Lu,Jian-Wei Wan.Lossless compression of hyperspectral images based on multi-predictors[J].Journal of National University of Defense Technology.2007,29(1):44-48
    [25].David Salomon.数据压缩原理与应用[M].电子工业出版社.2003
    [26].Qian Du,Chein-I Chang.Segmented PCA-bsed Compression for Hyperspectral Image Analysis[J].Proceedings of SPIE.2004,v5268:274-281
    [27].Hoffman,Johnson,Douglas W.Application of EOF's to multispectral imagery:Data compression and noise detection for AVIRIS[J].IEEE Transactions on Geoscience and Remote Sensing.1994,32(1):25-34
    [28].Qian Du,James E Fowler.Hyperspectral image compression using JPEG2000 and principal component analysis[J].IEEE Geoscience and Remote Sensing Letters.2007.4(21:201-205
    [29].G.P.Abousleman,Marcellin M W,Hunt B R.Hyperspectral Image Compression Using Entropy-Constrained Predictive Trellis Coded Quantization[J].IEEE Trans.On Image Processing.1997,6(4):566-573
    [30].王春胜,禹秉熙.高光谱图像数掘变换压缩压缩方法[J].遥感学报.2004,4(2):95-99
    [31].赵春晖,陈万海,张凌雁.基十提升格式的高光谱遥感图像压缩算法[J].哈尔滨工程大学学报.2006,27(4):588-592
    [32].罗欣,郭雷,杨诸胜.基十可逆整数变换的高光谱图像无损压缩[J].光子学报.2007,36(8):1457-1462
    [33].Jing Huang,Rihong Zhu,Jianxin Li,Yong He.Hyperspectral image compression using three-dimensional significance tree splitting[J].Chinese Optics Letters.2007,5(7):393-396
    [34].Jia Ji Wu,Zhen Sen Wu,Chengke Wu.Hyperspectral image compression using three-dimensional wavelet embedded zeroblock coding[J].Journal of Software.2007,18(2):461-468
    [35].Kim Beong-Jo,Xiong Zixiang,Pearlman William.A.Low bit-rate scalablevideo coding with 3-D set partitioning in hierarchical trees(3-D SPIHT)[J].IEEE Transactions on Circuits and Systems for Video Technology.2000,10(8):1374-13 87
    [36].Yan Jingwen,Shen Guiming,Hu Xiaoyi,Xu Fang.Improved 3D SPIHT coding for hyperspectral imagery data compression[J].Chinese Journal of Lasers B.2002,11(4):306-310
    [37].张培强,柴众,张晓玲,沈兰荪.基于波段分组的3D-SPIHT高光谱图像无损压缩算法[J].中国图象图形学报.2005,10(4):425-430
    [38].Barbara Penna,Tammam Tillo,Enrico Magli,Gabriella Olmo.Progressive 3-D coding of hyperspectra images based on JPEG 2000[J].IEEE Geoscience and Remote Sensing Letters.2006,3(1):125-129
    [39].胡佳,丁文奇,张立明,胡波.视频帧组与其残差帧组交替的3D-DWT-SPIHT压缩编码方法研究[J].红外与毫米波学报.2004,23(4):265-270
    [40].赵春晖,陈万海,张凌雁.一种基于矢量量化的高光谱遥感图像压缩算法[J].哈尔滨工程大学学报.2006,27(3):447-452
    [41].张晓玲,张培强,沈兰荪.基于信息量失真测度的VQ及在高光谱图像无损压缩中的应用[J].遥感学报.2004,8(5):414-418
    [42].孙圣和,陆哲明.矢量量化技术及应用[M].科学出版社.2002
    [43].Michael J.Ryan,John F.Amold.The Lossless Compression of AVIRIS Images by Vector Quantization[J].IEEE Trans.on Geoscience and Remote Sensing.1997,35(3):546-550
    [44].M.J.Ryan and J.F.Arnold,Lossy compression of hyperspectral data using vector quantization.Remote Sens.Environ[J].1997,61(9):419-436
    [45].Gerardo R.Canta.Kronecher-Product Gain-Shape Vector Quantization for Multispectral and Hyperspectral Image Coding[J].IEEE Trans.On Image Processing.1998,7(5):668-678
    [46].Manohar,Tilton,James C.Model-based vector quantization with application to remotely sensed image data[J].IEEE Transactions on Image Processing.1999,8(1):15-21
    [47].Shen-En Qian.Hyperspectral data compression using a fast vector quantization algorithm[J].IEEE Transactions on Geoscience and Remote Sensing.2004,42(8):1791-1798
    [48].Shen-En Qian.Martin Bergeron,Ian Cunningham,Luc Gagnon,Allan Hollinger.Near lossless data compression onboard a hyperspectral satellite [J].IEEE Transactions on Aerospace and Electronic Systems.2006,42(3):851-865
    [49].Baoxin Hu,Shen-En Qian,Driss Haboudane,John R.Miller,Allan Hollinger, Nicolas Tremblay. Impact of vector quantization compression on hyperspectral data in the retrieval accuracies of crop chlorophyll content for precision agriculture [J]. International Geoscience and Remote Sensing Symposium (IGARSS). 2002: 1655-1657
    
    [50]. Shen-En Qian, A.B. Hollinger, M. Dutkiewicz, H. Tsang. Effect of lossy vector quantization hyperspectral data compression on retrieval of red-edge indices [J]. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(7): 1459-1470
    
    [51]. Baoxin Hu, Shen-En Qian, Driss Haboudane, John R. Miller, Allan B. Hollinger, Nicolas Tremblay, Elizabeth Pattey. Retrieval of crop chlorophyll content and leaf area index from decompressed hyperspectral data: The effects of data compression [J]. Remote Sensing of Environment. 2004,92(2): 139-152
    
    [52]. Jarno Mielikainen. Lossless compression of hyperspectral images using lookup tables [J]. IEEE Signal Processing Letters. 2006, 13(3): 157 — 160
    
    [53]. Jing Wang, Chein-I Chang. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis [J]. IEEE Transactions on Geoscience and Remote Sensing. 2006, 44(6): 1586-1600
    
    [54]. Qian Du, Chein-I Chang. Linear mixture analysis-based compression for hyperspectal image analysis [J]. IEEE Transactions on Geoscience and Remote Sensing. 2004, 42(4): 875-891
    
    [55]. Luis O. Jimenez&David A. Landgrebe. Supervised Classification in High-Dimensional Space: Geometrical, Statistical, and Asymptotical Properties of Multivariate Data [J]. IEEE Trans. on System, Man, and Cybernetics-Part C: Applications and Reviews. 1998, 28(1):39-54
    
    [56]. Jerome M.Shapiro.Wavelet Coefficients.Embedded Coding Using Zerotrees [J]. IEEE image of Transactions on Signal Processing. 1993, 41(12): 3445-3462
    
    [57]. Amir Said, William A.Pearlman. A New, Fast, and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees [J]. IEEE Transactions on Circuits and System for Video Technology, 1996,6(3):243-250
    
    [58]. Y. Takishima, M. Wada, and H. Murakami. Reversible variable length codes[J].IEEE Transactions on Communications,1995,43(2):158-162.
    [59].Lin W K,Burgress N.Listless zero- tree coding for color image[J].32nd A silo mar Conference on signals.Systems and computer,1998:231-235.
    [60].Lin W K,Burgress N.Low memory color image zerotree coding Information[J].Decisionand Control,1999,2:91-95
    [61].解成俊,刘艳涅,李晓滨,工延杰,赵贵军.基于提升力一案与SPIHT 算法相结合用于图像的无损压缩[J].光学精密工程,2002,10(6):564-568
    [62].高尚兵,张建伟.基于9-7整数小波变换的SPIHT的改进[J].计算机工程与设计,2006,27(5):884-886.
    [63].傅祖芸.信息论一基础理论与应用[M].北京:电子工业出版社,2005.
    [64].B.Huang,A.Ahuja,H.-L.Huang,Lossless Compression of Ultraspectral Sounder Data[C].Proceedings of SPIE - The International Society for Optical Engineering,v 6233 Ⅱ,2006
    [65].Memon N.D.,Sayood K.,Magliveras S.,Lossless Compression of Multispectral Image Data[J]IEEE Trans.On Geosci.& Remote Sensing,32(2):282 -289(1994).
    [66].Wu X.,Memon N.,Context-Based Lossless Interband Compression-Extending CALIC[J].IEEE Trans.on Image Processing,9(6):994-1001(2000).
    [67].Rong Zhang,Yan Qing,A Prediction Tree-based Lossless Compression Technique of Multispectral Image Data[J].Journal of Remote Sensing,2(3):171-175(1998).
    [68].Zheng Wu,Mingyi He,Lossless Compression of Multispectral Imagery by Error Compensated Prediction Tree[J].Journal of Remote Sensing,9(2):143-147(2005).
    [69].B.Aiazzi,P.S.Alba,L.Alparone,S.Baronti,and P.Guameri,Reversible inter-frame compression of multispectral images based on a previous-closest-neighbor prediction[J].Proc.ICARSS,pp.460-462(1996)
    [70].X.Li,M.T.Orchard,Edge-Directed Prediction for Lossless Compression of Natural Images[J]IEEE Trans.Image Processing,10(6)813-817(2001).
    [71].Free AVIRIS Standard Data Products.[Online]http://aviris.jpl.nasa. gov/html/aviris.freedata.html
    [72].E.Magli,G.Olmo,and E.Quacchio,Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J].IEEE Geosci.Remote Sens.Lett.,vol.1,no.1,pp.21 - 25,Jan.2004.
    [73].E Candes.Compressive sampling[A].Proceedings of the Inter-national Congress of Mathematicians[C].Madrid,Spain,2006,3:1433 - 1452.
    [74].E Candes,J Romberg,Terence Tao.Robust uncertainty prince-ples:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans.on Information Theory,2006,52(2):489-509.
    [75].E Candes and J Romberg.Quantitative robust uncertainty principles and optimally sparse decompositions[J].Foundations of Comput Math,2006,6(2):227-254.
    [76].D L Donoho.Compressed sensing[J].IEEE Trans.on Information Theory.2006,52(4):1289-1306.
    [77].E J Candes,J Romberg.Practical signal recovery from random projections [OL].http://www.acm.caltech.edu/-emmanuel/papers/PracticalRecovery.pdf.
    [78].D L Donoho,Y Tsaig.Extensions of compressed sensing[J].Signal Processing.2006,86(3):5332548.
    [79].B Kashin.The widths of certain finite dimensional sets and classes of smooth functions[J].Izv Akad Nauk SSSR.1977,41(2):3342351.
    [80].Emmanuel Candes and Michael Wakin,An introduction to compressive sampling[J].IEEE Signal Processing Magazine,25(2):21 - 30
    [81].E J Candes and T Tao.Near optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans.Info.Theory.2006,52(12):540625425
    [82].焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报.2003,31(12A):1975-1981.
    [83].R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
    [84].Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra2low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
    [85].Cand,S E J.Ridgelets:theory and applications[D].Stanford:Stanford University.1998.
    [86].E.Candes,D.L.Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
    [87].E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP' 2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
    [88].Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
    [89].G Peyre.Best Basis compressed sensing[J].Lecture Notes in Computer Science,2007,4485:80-91.
    [90].张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):6282633.
    [91].V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
    [92].S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.
    [93].D.L.Donoho,X Huo.Uncertainty principles and ideal atomic decompositions[J].IEEE Trans Inform Theory,2001,47(7):2845-2862.
    [94].M Elad,A M Bruckstein.A generalized uncertainty principle and sparse representation in pairs of bases[J].IEEE Trans Inform Theory.2002,48(9):255822567.
    [95].A Feuer,A Nemirovsky.On sparse representation in pairs of bases[J].IEEE Trans Inform Theory,2003,49(6):1579-1581
    [96].J A Tropp.Greed Is Good:Algorithmic Results for Sparse Approximation [J].IEEE Transactions on Information Theory,2004,50(I0):223122242.
    [97].R Gribonval,M Nielsen.Sparse decompositions in unions of bases[J].IEEE Transactions on Information Theory,2003,49(12):332023325.
    [98].刘丹华,石光明,周佳社.一种冗余字典下的信号稀疏分解新方法[J].西安电子科技大学学报(自然科学版),2008,35(2):2282232.
    [99].R Neff,A Zakhor.Very low bit rate video coding based on matching pursuits[J].IEEE Transactions on Circuits and Systems for Video Technology,1997,7(1):158-171.
    [100].S S Chen,D L Donoho,and M A Saunders.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
    [101].J A Tropp and A C Gilbert.Signal Recovery from Partial Information by Orthogonal Matching Pursuit[OL].April 2005,www.personal.umich.edu/-jtropp/papers/TG05-Signal-Recovery,pdf.
    [102].S Mallat著.杨力华,戴道清,黄文良,等译.信号处理的小波导引(第二版)[M].北京:机械工业出版社.2002.
    [103].C La,M N Do.Signal reconstruction using sparse tree representation[A].Proceedings of SPIE[C].San Diego,CA,United States:International Society for Optical Engineering.2005.5914:1-11.
    [104].WANG Juan,SHI Jun,WU Xianxiang,Survey of image mosaics techniques[J].App lication Research of Computers,2008,25(7):1940-1947.
    [105].D L Donoho,Y Tsaig,I Drori etc.Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[R].Technical Report,2006.
    [106].E Candes.The restricted isometry property and its implications for compressed sensing[J].Academie des sciences,2006,346(I):5982592.
    [107].R G Baraniuk,M Davenport,R De Vore etc.The J ohnson Lindenstrauss lemma meets compressed sensing[OL].http://dsp.rice.edu/cs/jlcs2v03.pdf.
    [108].S Sarvotham,D Baron,R G Baraniuk.Measurements vs.bits:Compressed sensing meets information theory[A].In Proc.Allerton Conference on Communication,Control and Computing[C].Monticello,2006.1419-1423.
    [109].L M Bregman.The method of successive projection for finding a common point of convex sets[J].Doklady Mathematics,1965,(6):6882692.
    [110].E T Hale,W T Yin,Y Zhang.A Fixed2point continuation method for L12regularization with application to compressedsensing[R].Rice University CAAM Technical Report,TR07,2007.
    [111].G.Cormode and S Muthukrishnan.Towards an algorithmictheory of compressed sensing [R]. DIMACS Tech. Report2005-25, September 2005.
    [112]. A C Gilbert , M J Strauss ,J A Tropp , etc. Algorithmic lineardimension reduction in the norm for sparse vectors [OL] .http:// www. math. ucdavis . edu/~vershynin/ papers/ algorithmic2dim2reduction. pdf
    [113]. D Needell, J A Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [J]. Appl Comp Harmonic Anal, 2009,26 (3): 301 - 321.
    [114].D Needell, R Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [OL] . http :/ / www.math.ucdavis.edu/ -vershynin/ papers/ ROMP2stability. pdf.
    [115]. D Needell, R Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [OL]. http:// www. math.ucdavis. edu/~vershynin/ papers/ROMP. pdf.
    [116]. S J Kim, K Koh, M Lustig , etc. Gorinevsky. A method for large2scale 2regularized least2squares [J]. IEEE J ournal on Selected Topics in Signal Processing, 2007,4 (1) :606-617.
    [117]. M A T Figueiredo, R D Nowak,S J Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems [J]. J ournal of Selected Topicsin Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1 (4) :586-598.
    [118]. I Daubechies,M Defrise , C De Mol . An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J] . Comm. Pure Appl. Math., 2004, 57 (11): 1413-1457.
    [119]. A C Gilbert, S Guha, P Indyk, etc. Near2optimal sparse Fourier representations via sampling [A]. Proceedings of the Annual ACM Symposium on Theory of Computing [C]. Montreal, Que, Canada :Association for Computing Machinery. 2002. 152-161.
    [120]. A C Gilbert, S Muthukrishnan, M J Strauss. Improved time bounds for near2optimal sparse Fourier representation [A].
    [121]. Proceedings of SPIE, Wavelets XI [C]. Bellingham WA: International Society for Optical Engineering. 2005, 5914:1-15.
    [122]. A C Gilbert, M J Strauss, J A Tropp,et al . One sketch for all: Fast algorithms for compressed sensing [A]. Proceedings of the 39th Annual ACM Symposium on Theory of Computing [C]. New York: Association for Computing Machiner. 2007.237-246.
    [123]. H Rauhut, K Schass, P Vandergheynst. Compressed sensingand redundant dictionaries [J]. IEEE Transactions on Information Theory, 2008. 54 (5):2210-2219.
    [124]. S Sarvotham, D Baron, and R.G. Baraniuk. Compressed sensing reconstruction via belief propagation[R].Technical reportECE06-01, Department of Electrical and Computer Engineering ,Rice University, Jul. 2006
    [125]. S Kirolos, J Laska, M.Wakin etc. Analog2to2information conversion via random demodulation [A]. Proceedings of the IEEE Dallas Circuits and Systems Workshop (DCAS) [C] .Dallas, Texas. 2006.
    [126]. J. Laska, S Kirolos, Y.Massoud etc. Random sampling for analog-to-information conversion of wideband signals [A]. Proceedings of the IEEE Dallas Circuits and Systems Workshop (DCAS' 06) [C] . Dallas, Texas, 2006.
    [127]. J Laska, S Kirolos, M Duarte etc. Theory and implementation of an analog-to-information converter using random demodulation [A]. Proceedings of the IEEE Int. Symp. On Circuits and Systems (ISCAS) [C . Piscataway: Institute of Electrical and Electronics Engineers Inc. 2007. 1959-1962.
    [128]. S Bhattacharya, T Blumensath, B Mulgrew etc. Fast encoding of synthetic aperture radar raw data using compressed sensing [A]. IEEE Workshop on Statistical Signal Processing [C] .Madison, Wisconsin,2007. 448-452.
    [129]. D Baron, M B Wakin, M Duarte, etc. Distributed compressed sensing [OL]. http :// www. dsp.rice.edu/~drorb/pdf/DCS112005. pdf.
    [130]. W Bajwa, J Haupt, A Sayeed, etc. Compressive wireless sensing [A]. Proceedings of the fifth International Conference on Information Processing in Sensor Networks , IPSN ' 06 [C] .New York :Association for Computing Machinery. 2006. 134-142.
    [131]. D Takhar, J Laska, M Wakin, etc. A new compressive imaging camera architecture using optical-domain compression [A] .Proceedings of SPIE[C] . Bellingham WA: International Society for Optical Engineering. 2006,6065.
    [132]. M Lustig, D L Donoho ,J M Pauly. Rapid MR Imaging with Compressed Sensing and Randomly Under-Sampled 3DFT Trajectories [A]. Proceedings of the 14th. Annual Meeting of ISMRM[C]. Seattle, WA. 2006.
    [133].Mona Sheik, Olgica Milenkovic, Richard Baraniuk. Compressed sensing DNA microarrays [L]. http://www.spece.rice.edu/cs/CSMProbeDesign02. pdf.
    [134]. P Borgnat, P Flandrin. Time2frequency localization from sparsity constraints [A]. IEEE Int. Conf. on Acoustics, Speech,and Signal Processing (ICASSP) [C] . Piscataway: Institute of Electrical and Electronics Engineers Inc., 2008. 3785-3788.
    [135]. R Willett, M Gehm, D Brady. Multiscale reconstruction for computational spectral imaging [A]. Proceedings of SPIE-I Sand T Electronic Imaging-Computational Imaging V [C] .Bellingham: SPIE, 2007. 64980L.
    [136]. J W Ma , F X L Dimet. Deblurring from highly incomplete measurements for remote sensing [OL]. To appear in IEEE Trans. Geoscience and Remote Sensing. http:// www.dsp.ece.rice.edu/ cs/ CS - Deblurring. pdf.
    [137]. F J Herrmann, G Hennenfent. Non-parametric seismic datarecovery with curvelet frames [R]. UBC Earth & Ocean Sciences Department Technical Report TR-2007-1,2007.
    [138]. F J Herrmann, D Wang, G Hennenfent etc. Curvelet2basedseismic data processing: a multiscale and nonlinear approach [J]. Geophysic. 2008 ,73 (1) :A1-A5.
    [139]. D Takhar, V Bansal , M Wakin , etc. A compressed sensing camera: New theory and an implementation using digital micromirrors [A]. SPIE Electronic Imaging: Computational Imaging[C]. San Jose. 2006.
    [140]. H J ung, J C Ye, E Y Kim. Improved k-t Blask and k-t Sense using Focuss [J]. Physics in Medicine and Biology. 2007, 52: 3201-3226.
    [141]. M Lustig, J M Santos, D L Donoho, etc. K-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity [AJ. Proceedings of the 14th Annual Meeting of ISMRM[C]. Seattle, Washington. 2006. 2420-2443.
    [142]. M A Sheikh, 0 Milenkovic. R G Baraniuk. Compressed sensing DNA microarrays [R]. Rice ECE Department TechnicalReport TREE 0706.May 2007.
    [143].Liangjun Wang, Xiaolin Wu, Guangming Shi . A compressive sensing approach of multiple descriptions for network multimedia communication [A]. IEEE 10th Workshop on Multimedia Signal Processing[C]. IEEE Press, 2008,445 - 449.
    [144]. R Chartrand. Nonconvex compressed sensing and error correction [A]. Proceedings of the IEEE International Conference on Acoustics , Speech and Signal Processing , ICASSP ' 07 [C] .Piscataway: Institute of Electrical and Electronics Engineers Inc. 2007, 3: 889-892.
    [145]. R Chartrand. Exact Reconstruction of Sparse Signals via Non-convex Minimization [J]. IEEE Signal Processing Letters.2007, 14(10) :707-710.
    [146]. R Tibshirani. Regression shrinkage and selection via the lasso [J] . The J ournal of the Royal Statistical Society, Series B ,1996 , 58 (1) :267-288.
    [147]. E van den Berg, M P Friedlander. In pursuit of a root [OL] .http:// www. Optimization online.org/ DB - FIL E/ 2007/ 06/1708. pdf.
    [148]. I F Gorodnitsky, B D Rao. Sparse signal reconstruction fromlimited data using FOCUSS:A re-weighted norm minimization algorithm[J] . IEEE Transactions on Signal Processing, 1997, 45 (3):6002616.
    [149]. B D Rao, K Engan , S F Cotter , etc. Subset selection in noise based on diversity measure minimization [J].IEEE Transactions on Signal Processing , 2003 ,51 (3) :760-770.
    [150]. J A Tropp and A C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory . 2007, 53 (12): 4655-4666.
    [151]. S Kunis, H Rauhut. Random sampling of sparse trigonometric polynomials II 2 Orthogonal matching pursuit versus basis pursuit [OL]. http :// homepage.univie.ac. at/ holger. rauhut/ KunisRauhutOMP. pdf.
    [152]. E J Candes, J Romberg. Sparsity and incoherence in compressive sampling [J] . Inverse Problems. 2007, 23 (3):969-985.
    [153]. J A Tropp, M B Wakin, M F Duarte, etc. Random filters for compressive sampling and reconstruction [A]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) [C]. Piscataway: Institute of Electrical and Electronics Engineers Inc. 2006. 3:872-875.
    [154]. T T Do, T D. Tran ,L Gan. Fast compressive sampling with structurally random matrces [OL]. http :// www. Dsp.ece.rice. edu/ cs/ FastCS14. pdf.
    [155]. S Ji, Y Xue, L Carin. Bayesian compressive sensing [J]. IEEE Transactions Signal Processing, 2008, 56 (6): 234622356.
    [156]. J Haupt, R Nowak. Signal reconstruction from noisy random projections [J]. IEEE Transactions Information Theory, 2006, 52 (9) :4036-4048.
    [157]. W Wang, M Garofalakis, K Ramchandran. Distributed sparse random projections for refinable approximation [A]. Proceedings of the Sixth International Symposium on Information Processing in Sensor Networks, (IPSN2007) [C]. New York: Association for Computing Machinery, 2007. 331-339.
    [158]. J Wright, A Yang, A Ganesh, etc. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2):201-227.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.