富油微藻筛选及油脂组分与影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口增长与自然资源短缺的矛盾日益尖锐,油脂与人类的关系越来越密切,无论是作为生物柴油的原料还是加工成为保健食品,油脂都具有至关重要的作用。目前,传统的油脂来源动物脂肪与植物油脂已经不能完全满足人们的食用、工业等生活中的各种需求,因此寻找一种成本低、来源广以及成分好的油脂原料成为亟待解决的问题。而利用微藻为原料生产油脂具有无可比拟的优势。大量研究表明,微藻油脂的含量随微藻种类的不同有较大差异,且微藻油脂含量及组成会因环境因素的差异而产生变化。
     本文首先通过比较比较冻融法、研磨法、乙醚-石油醚法、氯仿-甲醇法和酸热法5种方法对4类微藻的油脂提取率发现:细胞破碎方法与不同有机溶剂的组合对油脂提取率有较大影响,确定冻融法为从多株微藻中筛选富油微藻的最佳油脂提取方法。
     利用冻融法对十余株微藻进行筛选,筛选出金藻(Isochrysis sp.)、前沟藻(Amphidiniu sp.)、异湾藻(Heterosigma sp.)和原甲藻(Prorocentrum sp.)等4株富油微藻,其粗脂含量分别为45%、36.7%、35%和29.5%;对筛选出的4株富油微藻的生长特性和油脂产率进行研究,并利用气相色谱对脂肪酸组成进行分析,发现4株微藻油脂产率分别为5.58 mg·d~(-1)·L~(-1)、7.57mg·d~(-1)·L~(-1)、7.44mg·d~(-1)·L~(-1)和8.36 mg·d~(-1)·L~(-1),所产脂肪酸C16-C18系的含量均占脂肪酸总量的68%以上,从分子结构上分析符合制备生物柴油的要求。前沟藻EPA的含量高达24.95%,可对其优化培育,制备EPA应用于医疗和保健品中。
     最后以含油量最高的金藻为研究对象,研究培养液中不同浓度的氮、磷、硅对其油脂含量的影响。发现氮源不足会对金藻的生长产生抑制,但是会增加其油脂含量,在NaNO_3浓度为150μM、600μM和3000μM时,金藻的油脂含量分别为63.4%、47.3%和20.5%。油脂产率以NaNO3浓度为600μM时最高,为63.4mg·L~(-1);金藻平台期收获时的生物量随者磷源浓度的升高而增高,油脂含量变化随磷浓度的增高呈相反趋势,在NaH_2PO_4浓度为6μM、25μM和36μM时,金藻的油脂含量分别为55.1%、40.5%和37.8%。油脂产率的变化趋势与油脂含量相反,以NaH_2PO_4浓度为36μM时最高,为64.3mg·L~(-1);硅对金藻平台期收获时的生物量没有较大影响,油脂含量及油脂产率均在没有硅的情况下较高,分别为37.8%及42.2 mg·L~(-1)。
With the population increasing and scarcity of the natural resource, people have to find a renewable, biodegradable, and non-toxic fuel to replace the fossil fuel. The conventional oil resource such as plant lipids and anminal fat can not satisfy people’s demand, so finding a new kind of oil raw material is very important. Microalgae is one kind of the important raw materials due to the advantages such as high contents of lipids and the unoccupation of plantation.
     The contents of lipids of microalgae are different according to different kinds of microalgae and affected by various environmental factors. In this study, a high efficiency, easy and suitable method of lipids exacting was found by comparing different kinds of exacting methods. The rich lipids-microalgae were found out through determining the total fat contents of 12 strains of microalgae and the lipid yields were calculated according to the growth cycle and biomass. In addition, fatty acid composition of four microalgae were determined by GC-MS. The results showed that: 1)Isochrysis sp., Amphidinium sp., Heterosigma sp. and Prorocentrum sp. were rich lipids-microalgae with the total lipid content accounting for 45%、36.5%、35% and 29.5% of the total cells dry weight respectively. 2)Biomass was one of the important factors which affected the lipid yields and the lipid yields of four rich lipids-microalgae were 5.58 mg·d~(-1)·L~(-1)、7.57mg·d~(-1)·L~(-1)、7.44mg·d~(-1)·L~(-1) and 8.36 mg·d~(-1)·L~(-1) respectively. 3)The major fatty acids in four rich lipids-microalgae were C16-C18(more than 68% of total fatty acid). From the results, they were fit for chemical composition of biodiesel.
     The influence of nitrogen,phosphorus,and silicon nutrition on the growth rate and lipid content of Isochrysis sp. was studied by single factor experiment. The results showed that Isochrysis sp. grew slowly in low level of nitrogen,phosphorus nutrition but the content of oils was high. When the NaNO3 levels were 150μM, 600μM and 3000μM,the lipid contents were 63.4%、47.3% and 20.5% respectively and the highest lipid yield was 63.4mg·L~(-1) in the 600μM level. When the NaH2PO4 levels were 6μM, 25μM and 36μM,the lipid contents were 55.1%、40.5% and 37.8% respectively and the highest lipid yield was 64.3mg·L~(-1) in the 36μM level. Silicon nutrition did not affect much on the Isochrysis sp. growth, and the lipid content and lipid yield were 37.8% and 42.2mg·L~(-1) with silicon which were higher than silicon scarcity.
引文
[1]薛飞燕,张栩,谭天伟,微生物油脂的研究进展及展望,生物加工过程,2005,3(1):23~27
    [2] Chisti Y,Biodiesel from microalgae,Biotechnol,2007,25(3):294~306
    [3] Williams P J L B,Biofuel: microalgae cut the social and ecological costs,Nature, 2007,450(7169):478
    [4]张矗,李云昌,梅德圣,等,油菜油脂研究进展,植物学通报,2007,24(4): 435~443
    [5]颜治,陈晶,微生物油脂及其开发利用研究进展,粮食与油脂,2003(7):13~15
    [6] Harwood J L,Guschina I A,The versatility of algae and their lipid metabolism,Biochimie,2009,xx:1~6
    [7] Raja R,Hemaiswarya S,Kumar N A,et al,A perspective on the biotechnological potential of microalgae,Crit Rev Microbiol,2008,34(2):77~88
    [8]徐建祥,利用微藻培养生产DHA的进展,食品工业科技,2003,24(11):88~90
    [9] Sheehan J,Dunahay T,Benemann J,et al,A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae,U.S.:the National Renewable Energy Laboratory,1998.
    [10]中国新能源网,徐旭东研究员:微藻燃料,能源危机的出口? http: //www.newenergy.org.cn/Html/00811/1140822686.html.
    [11]缈晓玲,吴庆余,微藻油脂制备生物柴油的研究,太阳能学报,2007,28(2):219~222
    [12] Stephanopoulos G,Challenges in Engineering Microbes for Biofuels Production,Science,2007,315(5813):801~804
    [13]孙婷,杜伟,陈新,等,我国生物柴油产业化现状及前景,生物产业技术,2007,2(11):33~39
    [14] Ratledge C,The Biochemistry and Molecular Biology of Lipid Accumulation in oleaginous microorganisms,Advanees in Applied Microbiology,2002,51:1~51
    [15] MilanCertik,Saksyu Shimizu,Biosynthesis and Regulation of Microbial Polyunsaturated Fatty Acid Produetion. Journal of Bioscience and Bioengineering,1999,87(1):l~14
    [16] Wichlen Y,Ward OP,ω- 3 fatty acids:aitermative sources of production. Process Bigchem,1989,8(24):117~118
    [17]蒋冰飞,环境因子对球等鞭金藻生长和脂肪酸合成的影响,[硕士论文]大连:大连理工大学,2006.
    [18] Noémie Manuelle Dorval Courchesne,Albert Parisien,Bei Wang,et al,Enhancement of lipid production using Biochemical,genetic and transcription factor engineering approaches,Journal of Biotechnology,2009,xxx:xxx~xxx
    [19] E.W.Becker,Microalgae:Biotechnology and Microbiology,Cambridge Univ.Press: J.Baddiley,1994.178
    [20] Andersen R A,Diversity of eukaryotic algae,Biodivers Conserv,1992,1(4):267~92
    [21] Spolaore P,Joannis-Cassan C,Duran E,et al,Commercial applications of microalgae,J Biosci Bioeng,2006,101(2):87~96
    [22] Metting F B,Biodiversity and application of microalgae,J Inorg Biochem,1996,17(5-6):477~489
    [23]Guil-Guerrero J L,Navarro-Juárez R,López-Martínez J C,et al,Functional properties of the biomass of three microalgal species,J Food Eng,2004,65(4):511~517
    [24] Erwin J A,Biomembranes of Eukaryotic Microorganisms,New York:Academic Press,1973,197~232
    [25] Dembitsky V M,Srebnik M,Natural halogenated fatty acids: theiranalogues and derivatives,Prog Lipid Res,2002,41(4):315~367.
    [26] Guschina I A,Harwood J L,Lipids and lipid metabolism in eukaryotic algae,Prog Lipid Res,2006,45(2):160~186
    [27]曹春晖,孙世春,麦康林,等,30株海洋绿藻的总脂含量和脂肪酸组成,青岛海洋大学学报,2000,30(3):428~434
    [28]李荷芳,周汉秋,海洋微藻脂肪酸组成的比较的研究,海洋与湖沼,1999,30(1):34~40
    [29]黄鸿洲,康燕玉,梁君荣,等,五种底栖硅藻(鲍鱼饵料)的脂肪酸组成分析,植物生理学通讯,2007,3(2):349~354
    [30]孙利芹,杨林涛,环境因子对球等鞭金藻脂肪酸含量和组成的影响,食品研究与开发,2006,27(5):11~13
    [31]李春颖,仇雪梅,海洋微藻脂肪酸组成的研究进展,生物技术通报,2008,(4):63~65
    [32]俞建江,李荷芳,周汉秋,10种海洋微藻总脂、中性脂和极性脂的脂肪酸组成,水生生物学报,1999,23(5):481~488
    [33]蒋霞敏,郑亦周,14种微藻总脂含量和脂肪酸组成研究,水生生物学报,2003,27(3):243~247
    [34] Zhukova N V,Aizdaicher N A,Fatty acid composition of 15 species of marine microalgae,Phytochemistry,1995,39(2):351~356
    [35]李植峰,张玲,沈晓京,等,四种真菌油脂提取方法的比较研究,微生物学通报,2001,86(2):72~75
    [36]山瑛,索氏抽提法检测脂肪应注意的问题,中国卫生检验杂志,2007,l7(6):1138~1139.
    [37]费栓琴,微生物油脂进展,西部粮油科技,1998,23(2):23~24
    [38] Elesy D,Jameson D,Raleigh B,et al,Fluorescent measurement of microalgal neutral lipids,Journal of Microbiological Methods,2007,68(3):639~642
    [39]董欣荣,曹健,赵斌,等,几种真菌油脂的检测与提取,郑州工程学院学报,2002,23(1):15~16
    [40] Evans C T,Ratledge C,Influence of Nitrogen Metabolism on Lipid Accumulation by Rhodosporidium toruloides CBS14,J Gen Microbiol,1984,130(7):1704~1705
    [41] Yoon S H,Rhee J A,Quantitative Physiology of Rhodotorula glutinis for Microbial lipid Production,Process Biochem,1983,18(5):2~4
    [42] Spoehr H A,Milner H W,The chemical composition of Chlorella:effect of environmental conditions,Plant Physiol,1949,24:120~149
    [43] Jara A de la,Mendoza H,Martel A,et al,Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii,Appl Phycol,2003,15(5):433~438
    [44]林学政,李光友,环境因子对微藻脂类的影响,黄渤海海洋,1999,17(4):54~59
    [45] Lynn S G,Kilham S S,Kreeger D A,et al,Effect of nutrient availability on the biochemical and elemental stoichiometry in freshwater diatom Stephanodiscus minutulus (Bacillariophyceae),Phycol,2000,36:510~522
    [46] Kemain A L,Somkuti G A,Hunter-Cevera J C,et a1,Novel Microbial Products for Medicine and Agriculture,Amsterdam:Elsevier Science Publishers,1989.253~259
    [47] Grima E M,Sánchez Pérez J A,García Sánchez J L,et a1,EPA from Isochrysis galbana,Growth conditions and productivity,Process Biochem,1992,27(5):299~305
    [48] Wang B,Li Y Q,Wu N,et al,CO2 bio-mitigation using microalgae,Appl Microbiol Biotechnol,2008,79(5):707~718
    [49] Reitan K I,Rainuzzo J R,Olsen Y,Effect of nutrient limitation on fatty acid and lipid content of marine microalgae,Phycol,1994,30(6):972~979
    [50]刘晓娟,段舜山,李爱芬,不同营养因子对微藻3种培养方式产生EPA的影响,食品研究与开发,2006,27(8):185~188
    [51] Yongmanitchai W , Ward O P.Omega-3 fatty acids: altemative sources of production[J].Process Biochem,1989,24(4):117~125.
    [52] El-Sheek M M,Rady A A,Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri,Phyton,1995,35:51~139
    [53] Khozin-Goldberg I,Cohen Z,The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus,Phytochemistry,2006,67(7):696~701
    [54] Werner D,The Biology of Diatoms,London:Black well scientific publications,1977.110~149
    [55] Muradyan E A,Klyachko-Gurvich G L,Tsoglin L N,Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration, Russ J Plant Physiol,2004,51(1):53~62
    [56]陈峰,王菊芳,梁世中,几种无机盐对隐甲藻生长和DHA产量的影响,湛江海洋大学学报,2001,21(4):19~21
    [57] Hutchins D A,Witter A E,Butlert A,et al,Competition among marine phytoplankton for different chelated iron species,Nature,1999,400(6747):858~861
    [58] Stewart W D P,Algal physiology and biochemistry,London:Black Well Scientific Publications,1974.610~633
    [59] Voltolina D,Sánchez-Saavedra M P,Torres-Rodríguez L M,Outdoor mass microalgae production in Bahia Kino,Sonora,NW Mexico,Aquacultural Engineering,2008,38(2):93~96
    [60] Richmond A,CRC Handbook of Microalgal Mass culture,Florida,Boca Raton:CRC Press,1986.69~106
    [61] Xin-Qing X,Berdall J,Effect of salinity on fatty acid composition of a green microalgae from an Antarctic hypersaline lake,Phytochemistry,1997,45(4):655~658
    [62] Peeler T C,Stephenson M B,Einsphar K J,et al,Lipid characterization of enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity,Plant Physiol,1989,89:970~976
    [63] Fujii S,Uenaka M,Nakayama S,et al,Effect of sodium chloride on the fatty acids composi-tion in Boekelovia hooglandii (Ochramonadales, Chrysophyceae),Phycol Res,2001,49(1):73~77
    [64]蒋霞敏,柳敏海,邢晨光,不同生态条件对绿色巴夫藻生长与脂肪酸组成的影响,水生生物学报,2007,31(1):88~93
    [65] Doucha1 J,Straka F,Lívansky K,Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor,Appl Phycol,2005,17(5):403~412
    [66] Arief Widjaja,Chao-Chang Chien,Yi-Hsu Ju,Study of increasing lipid production from fresh water microalgae Chlorella vulgris,Journal of the Taiwan Institute of Chemical Engineers,2009,40:13~20
    [67] Riebesell U,Revill A T,Holdsworth D G,et al,The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi,Geochimica et Cosmochimica Acta,2000,64(24):4179~4192
    [68] Stewart W D P,Algal Physiology and Biochemistry,Berkeley:University of California Press,1974.236~265
    [69] Mitz M A,CO2 biodynamics: a new concept of cellular control,Theor Biol,1979,80(4): 537~551
    [70] Tsuzuki M,Ohnuma E,Sato N,et al,Effects of CO2 Concentration during Growth on Fatty Acid Composition in Microalgae,Plant Physiol,1990,93:851~856
    [71]Borowitzka M A,Borowitzka L J,Micro-algal Biotechnology,Cambridge: Cambridge University Press,1988.
    [72]徐年军,张学成,温度、光照、pH值对后棘藻生长及脂肪酸含量的影响,青岛海洋大学学报,2001,31(4):541~547
    [73] Tatsuzawa H,Takizawa E,Wada M,et al,Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp.,J Phycol,1996,32(4):598~601
    [74] Stadler T,Mellion J,Verdus M C,et al,Algal Biotechnology,London:Elsevier Applied Science,1988.303~314
    [75] Satu N,Murata N,Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: The central role of diacylmonoalactosylglycerol in thermo-adaption, Biochim Biophys Acta,1980,619(2):353~365
    [76] Oliveira M A S,Monteiro M P C,Robbs P G,et al,Growth and chemical composition of Spirulena maxima and Spirulena platensis biomass at different temperatures,Aquacult Int,1999,7(4):261~275
    [77] Richmond A E,Microalgaculture,Crit Rev Biotechnol,1986,4(4):368~438
    [78] Chen F,Johns M R,Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana,Appl Phycol,1991,3(3):203~209
    [79] Singh A,Ward O P,Microbial production of docosahexaenoic acid (DHA, C22:6),Adv appl Microbiol,1997,45:271~312
    [80]蒋汉明,翟静,张媛英,等,温度对海洋微藻生长及脂肪酸组成的影响,食品研究与开发,2005,26(6):9~12
    [81] James C M,Al-Hinty S,Salman A E,Growth andω3 fatty acid and amino acid composition of microalgae under different temperature regimes,Aquaculture,1989,77(4):337~351
    [82]Thompson P A,Harrison P J,Whyte J N C,Influence of irradiance on the fatty acid composition of phytoplankton,J Phyco1,1990,26(2):278~288
    [83]石娟,潘克厚,不同光照条件对小新月菱形藻和等鞭金藻8701生长及生化成分的影响,中国水产科学,2004,11(2):121~128
    [84] Emdadi D,Berland B,Variation in lipid class composition during batch growth of Nan-nochloropsis salina and Pavlova lutheri,Mar chem,1989,26(3):215~225
    [85] Hoppe,H A,Leving T,Tanaka Y,Marine Algae in Pharmaceutical Science,New York:De Gruyter,1979.473~523
    [86] Mortenson S H,Borsheim K Y,Rainuzzo J K,et a1.Fatty acid and elemental composition of the marine diatom Chaetoceros gracilis Schütt.Effects of silicate deprivation,temperature and light intensity,Exp Mar Bio1 Eco1,1988,122(2):173~185
    [87] Shelef G, Soeder C J, Balaban M , et al,Algal Biomass:Production and Use,Amsterdam:Elsevier/North Holland Biomedical Press,1980.619~626,625~653
    [88]Sukenik A,Carmeli Y,Berner T,Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp.,J Phyco1,1989,25(4):686~692
    [89] Sukenik A,Bennett J,Falkowski P G,Light saturated photosynthesis limitation by electron transport or carbon fixation?,Biochim Biophys Acta,1987,891(3):205~215
    [90] Berner T,Dubinsky Z,Wyman K,et al,Photoadaptation and the“package”effect in Dunaliella tertiolecta (Chlorophyceae),J Phyco1,1989,25(1):70~78
    [91] Nalewajko C,Voltolina D,Effects of environmental variables on growth rates and physiological characteristics of Lake Superior phytoplankton,Can J Fish Aquat Sci,1985,43(6):1163~1170
    [92] Grobbelaar J U,Physiological and technological considerations for optimising mass algal cultures,Appl Phycol,2000,l2(3-5):201~206
    [93] Becker E W , Microalgae:Biotechnology and Microbiology , Cambridge:Cambridge University Press,1994.293
    [94] Yuan-Kun L,Microalgal mass culture systems and methods: Their limitation and potential, Appl Phycol,2001,13(4):307~315
    [95] Lee Y K,Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend Trends,Biotechnol,1986,4(7):186~189
    [96] Janssen M,Tramper J,Mur L R,et al,Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency,scale-up,and future prospects , Biotechnol Bioeng , 2002 ,81(2):193~210
    [97] Carvalho A P,Meireles L A,Malcata F X,Microalgal reactors: A review of enclosed system designs and performances,Biotechnol Prog,2006,22(6):1490~1506
    [98]Chisti Y,Microalgae as sustainable cell factories,Environ Eng Man J,2006,5:261~274
    [99]刘晓娟,段舜山,李爱芬,有机碳源和氮源对三角褐指藻生长的影响,水生生物学报, 2008,32(2):252~257
    [100] Tan C K,Johns M R,Fatty acid production by heterotrophic ChIorella saccharophila ,Hydrobiologia,1991,215(1):13~19
    [101] Eriksen N T,The technology of microalgal culturing,Biotechnol Lett,2008,30(9):1525~1536
    [102] Wen Z Y,Chen F,Heterotrophic production of eicosapentaenoic acid by microalgae,Biotechnology Advances,2003,21(4):273~294
    [103] Yoon S H,Rhee J A,Quantitative Physiology of Rhodotorula glutinis for Microbial lipid production,Process Biochem,1983,18(5):2~4
    [104] Tan C K,Johns M R,Screening of diatoms for heterotrophic eicosapentaenoic acid production,Appl Phycol,1996,8(1):59~64
    [105] Rattanapoltee P,Chulalaksananukul W,James A E,et al,Comparison of autotrophic and heterotrophic cultivations of microalgae as a raw material for biodiesel production,Biotechnol,2008,136(1):S412
    [106] Grima,E.M.,Perez,J.A.S.,Camacho,F.G. Preservation of the marine microalga,Isochrysis galbana:influence on the fatty acid Profile.Aquaculture,1994,123:377~385.
    [107] Ahlgren,G,Gustafsson,I.B.,Boberg,M,Fatty acid content and chemical composition of freshwater microalgae,J.Phyeol,1992,28:37~50
    [108]周光正,金娟,存贮对海洋微藻浮性和脂肪酸分布影响的综述。海洋湖沼通报,1996,3:67~71
    [109] Alonso,D.L.,Clara,I.,Segura,D.C.,et al,First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bagillariophyceae) by induced mutagenesis,J. Phycol,1996,32:339~345
    [110] Cohen,Z.,Heimer,Y.M,Production of polyunsaturated fatty acids (EPA,ARA and GLA)by the microalgae Porphyridium and Spirulina.In Industrial Applications of Single Cell Oils,Am Oil Chem Soc Champaign,Illiois,1992,243~273
    [111] D?hler G.,Biermann T,Impact of UV-B radiation on the lipid and fatty acid composition of synchronized Ditulum brightwellii (West) Grunow. Naturforsch,1994,49C:607~614
    [112] GoesJ.I.,Handa N.,Taguchi S,et al,Effect of UV-B radiation on the fatty acid composition of the marine phytoplankter Tetraselmis sp.:relationship to cellular pigments.Mar.Eeol.Prog.Ser,1994,114:259~274
    [113] Wang K.S., Chai T.J,Reduction in omega-3 fatty acids by UV-B irradiation in microalgae,J.Appl.Phycol,1994,6:415~421
    [114] De Lange,H.J.,Donk,E.V,Effects of UVB-irradiated algae on life history traits of DaPhnia pulex,Freshwat.Biol,1997,38:711~720
    [115] Sundb?ck.,Odmark S.,Wulff A.,et al, Effects of enhanced UVB radiation on a marine benthic diatom mat,Mar.Biol,1997,128:171~179
    [116] SkerrattJ.H.,Davidson A.D.,Nicholsc P.D.,et al,Effect of UV-B on lipid content of three Antarctic marine phytoPlankton,Phytochemistry,l998,49:999~1007
    [117]王清池,廖启斌,陈清花,等,超声波对三角褐指藻脂肪酸组成的效应研究,厦门大学学报(自然科学版),2000,l:32~35
    [118]张元标,李文权,陈清花,超声辐射提高亚心形扁藻脂肪酸不饱和度研究,台湾海峡,2001,l:91~96
    [119]李文权,王宪,陈清花,等,超声波对湛江等鞭金藻生长和脂肪酸组成的影响,海洋学报,2002,24(3):94~100
    [120]李文权,王清池,陈清花,等,超声波对球等鞭金藻脂肪酸组成的效应研究,海洋科学,2000,4:7~9
    [121]嵇磊,张利雄,姚志龙,等,利用藻类生物质制备生物燃料研究进展,石油学报, 2007,23(6):1~5
    [122]许海鹏,张晓东,张杰,等,利用微藻生产生物柴油的研究进展,现代化工,2008(10):18~21
    [123]孙婷,杜伟,陈新,等,我国生物柴油产业化现状及前景,生物产业技术,2007,2(11):33~39
    [124]姜悦,乳制品中的DHA:微藻油还是鱼油?,食品工业科技,2006,27(12):191~192
    [125]缈晓铃,吴庆余,微藻生物质可再生能源的开发利用,可再生能源,2003,3(109): 13~16
    [126]孙俊楠,张建安,杨明德,等,利用微藻热解生产生物燃料的研究进展,科技导报,2006,24(6):26~28
    [127] Olaizola M,Commercial development of microalgal biotechnology: from the test tube to the marketplace,Biomol Eng,2003,20(4-6):459~466
    [128] Dunahay T G,Jarvis E E,Dais S S,et al,Manipulation of microalgal lipid production using genetic engineering,Appl Biochem Biotechnol,1996,57/58:223~231
    [129] León-Ba?ares R,González-Ballester D,Galván A,et al,Transgenic microalgae as green cell-factories,Trends in Biotechnology,2004,22(1):45~52
    [130] Sawayama S,Inoue S,Dote Y,et al,CO2 fixation and oil production through microalga,Energy Convers Manage,1995,36(6-9):729~731
    [131] Yun Y S,Lee S B,Park J M,et al,Carbon dioxide fixation by algal cultivation using wastewater nutrients,J Chem Technol Biotechnol,1997,69(4):451~455
    [132]中国新能源网,新奥微藻制生物柴油中试成功,http://www.newenergy.org.cn/Html/00812/12160823998.html
    [133]吴庆,蔡昭玲,丛威,等,从微藻中提取多不饱和脂肪酸,北京化工大学学报,2004,31(4):5~8
    [134]孙晓璐,孙玉梅,陈莉,等,不同酵母菌发酵产油脂及脂肪酶的研究,粮油加工,2007,8:80-83
    [135]王雪青,苗惠,翟燕,微藻细胞破碎方法的研究,天津工业大学学报,2007,22(1):21~25
    [136]齐沛沛,微藻油脂制备生物柴油研究,[硕士论文]南京:南京林业大学,2008
    [137]姚领,胡萍,湖北卷,等,两种溶剂提取法提取三角褐指藻中不饱和脂肪酸的比较,食品工业技术,2006,12:114~116
    [138]杨文,吉春明,微生物学通报,1995,22(1):58~59
    [139]孙利芹,王长海,江涛,紫球藻细胞破碎方法研究,海洋通报,2004,23(4):7l~74
    [140] Maged P M, Dion M F, Frampton,Lipid and fatty acid yield of nine stationary-phase microalgae: Applications and unusual C24–C28 polyunsaturated fatty acids,J Appl Phycol, 2005, 17(4):287~300
    [141] Brown M R, Dunstan G A, Norwood S J, et al,Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana,J Phycol, 1996, 32(1):64~73
    [142]陈伟平,陈必链,张艳燕,三种微藻细胞破碎方法的比较,生物技术,2008,18(1):55~58
    [143]沈萍萍,王朝晖,齐雨藻,等,光密度法测定微藻生物量,暨南大学学报,2001,22(3):115~119
    [144]董正臻,董振芳,丁德文,快速测定藻类生物量的方法探讨,海洋科,2004,28(11):1~5
    [145]任永霞,徐宁,段舜山,微藻叶绿素荧光值与传统生长指标的关联性研究,生态科学,2006,4(25):128~130
    [146] Yusuf C,Biodiesel from microalgae beats bioethanol,Trends in Biotechnology, 2007, 26(3):126~131
    [147] Mirón A S, García M C C, Gómez A C, et al,Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors,Biochem Eng J, 2003, 16(3):287~297
    [148]章炜,徐继林,严小军,等,利用脂肪酸对26种(株)海洋微藻聚类分析研究,宁波大学学报,2006,19(4):445~450
    [149] Kevin J H,Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance, Biomass,1986, 9(1):1~17
    [150]李铁,胡立阁,史致丽,营养盐对中肋骨条藻和新月菱形藻生长及氮磷组成的影响海,洋与湖沼,2000,31(1):46~52
    [151]翟中和,王喜忠,丁明孝.细胞生物学,北京:高等教育出版社,2000.19
    [152] Seppal J,Tamminen T, Kaitala S,Experimental evaluation of nutrient limitation of phytoplankton communities in the Gulf of Riga,Journal of Marine Systems,1999,23:107~126
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.