TLR2与TLR4对日本血吸虫感染转归影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽经半个多世纪的不懈抗争,日本血吸虫病(schistosomiasis japonica)迄今仍然是我国主要公共卫生问题之一。近年来,采取的以传染源控制为主的综合防治策略,将重点置于对构成我国现有疫区主要传染源--牛的控制上,似乎已经显示出较好的防治效果,但基本上没脱离以传播生态学为原理的思维。防治实践表明,依据疾病传播生态学原理设计的综合防治措施虽然有效,但效果难以巩固,极易受到自然生态环境和防治投入力度变化的挑战。鉴于疫苗在许多传染病控制中无可比拟的作用,试图发展血吸虫疫苗,获取化疗“短效”作用与疫苗接种诱导较“长效”的免疫预防作用相结合的双重效益来解决血吸虫病控制的期盼是近20-30年来世界各国有关科学家为之奋斗的目标之一,也是WHO/TDR自上世纪80年代以来在世界范围内协调血吸虫病疫苗研制努力的初衷。
     关于血吸虫病疫苗发展及相关的血吸虫病免疫学研究,大多集中在曼氏血吸虫病(schistosomiasis mansoni),日本血吸虫病疫苗发展研究还远滞后于曼氏血吸虫病相关研究,尤其是相关的免疫学基础研究更为薄弱。因此在努力研究和开发日本血吸虫病疫苗的过程中,不仅要重视现代生物学技术的进步所带来的机遇,而且更重要的是要回归到血吸虫感染免疫学的基础研究,以寻觅血吸虫病疫苗发展的合理策略和途径。
     在对曼氏血吸虫病疫苗进行研究的过程中,应用效应细胞、效应分子的抗体拮抗及基因缺陷小鼠模型等对辐照致弱(RA)尾蚴疫苗进行深入分析,发现对血吸虫病的保护性免疫主要依赖于抗原特异性的CD4+ Th细胞应答及体液免疫应答。这些关于保护性免疫的研究均集中于获得性免疫应答的效应端事件,而对天然免疫应答的启动端事件则涉及较少。
     迄今为止,在曼氏血吸虫感染中有关天然免疫应答的研究多集中在虫卵抗原,阐明为何在产卵之后宿主呈现Th2型优势应答。这些基于虫卵抗原的研究,提示虫源性分子可通过抗原特异性的模式识别受体(pattern recognition receptors, PRRs)级联通路的靶向作用,启动并支配获得性免疫应答的发展。由此不难推测在血吸虫感染的早期,虫源性抗原分子也会通过相应PRRs通路引起类似的效应。然而,国内外尚缺乏全面深入地对日本血吸虫感染后的天然免疫应答特征及其相关分子机制研究的报道。鉴于Toll样受体(Toll-like receptors, TLRs)在宿主早期免疫识别中的重要作用,故在血吸虫感染的天然免疫应答研究中应予特别关注。在对曼氏血吸虫的研究中提示TLR2和TLR4是识别虫卵抗原组分的PRRs,TLR4在识别尾蚴抗原分子中也发挥重要作用。因此,本研究旨在探讨TLR2与TLR4在日本血吸虫急性感染中的作用及相关分子机理。
     本研究采用TLR2基因敲除(TLR2-/-)与TLR4基因发生无效突变的(C57BL/10SCNJ,即TLR4-/-)小鼠,前者以野生型C57BL/6J(B6)小鼠为对照,后者以野生型C57BL/10J(B10)小鼠为对照,建立日本血吸虫急性感染的小鼠模型。为了观察感染/致病结果,在感染后6w通过胸主动脉灌注法计数成虫数、消化肝脏计数虫卵数以及每对成虫产卵数;为了观察感染后宿主的整体免疫应答特征,以间接ELISA法检测血清中日本血吸虫特异性IgG抗体,以Bio-plex技术检测脾脏单个核细胞培养上清中Th1/Th2型细胞因子的表达水平;进而采用Affymetrix公司的小鼠基因组430 2.0基因芯片,全面比较分析感染后6w小鼠脾脏单个核细胞内表达基因的转录水平,对信号强度发生2倍及以上变化的差异基因进行GO及pathway的显著性分析,并以RTQ-PCR法加以验证;最后采用虫源性抗原SEA致敏小鼠,观察比较小鼠脾脏自然杀伤细胞(Natural Killer cells, NK细胞)与CD8+T细胞的免疫杀伤功能。
     本研究获得如下主要结果:
     1、在日本血吸虫急性感染过程中,与野生型小鼠相比,TLR2-/-小鼠虫荷与卵荷均降低,而TLR4-/-小鼠的虫荷与卵荷则增高。在日本血吸虫感染后6w,TLR2-/-组的成虫数、肝脏总虫卵数以及每对成虫产卵数均低于B6组;而与B10组相比,感染后TLR4-/-组小鼠的成虫数、肝脏总虫卵数以及每对成虫产卵数均高于B10组。其中,仅成虫数未显示统计学差异,而肝脏总虫卵数以及每对成虫产卵数均具有显著性差异。
     2、在日本血吸虫感染6w后,TLR2-/-小鼠的细胞免疫应答水平较B6小鼠显著增强,而TLR4-/-小鼠的细胞应答水平低于B10小鼠。脾脏单个核细胞经虫源性抗原SEA或有丝分裂原ConA刺激后,培养上清中细胞因子水平显示:在SEA和ConA刺激下,TLR2-/-小鼠产生IL-12p70、IFN-γ、IL-2、GM-CSF和IL-4的水平均较B6小鼠显著增高;在ConA刺激下TNF-α和IL-10较高,而在SEA刺激下产生的IL-10低于B6小鼠。在SEA与ConA刺激后,TLR4-/-小鼠产生IL-12p70、IFN-γ、IL-4和IL-5的水平均显著低于B10小鼠;在单独ConA刺激下IL-10显著降低,而在SEA刺激后,TNF-α显著降低。其余细胞因子在TLR4-/-亦低于B10小鼠,但无统计学上差异。
     3、日本血吸虫感染后,TLR4-/-小鼠抗原特异性IgG水平显著高于B10小鼠,但TLR2-/-小鼠与B6小鼠之间无显著差异。随着日本血吸虫感染的发展,小鼠血清中日本血吸虫特异性IgG抗体水平均持续升高。在感染后3w和6w,TLR4-/-小鼠血清中针对可溶性成虫抗原(SWAP)和SEA特异的IgG抗体水平显著高于B10组;但TLR2-/-与B6小鼠之间无显著性差异。
     4、采用高通量基因芯片技术分析比较日本血吸虫感染6w后脾脏单个核细胞的基因转录水平,发现TLR2-/-小鼠中与T细胞免疫应答相关的大量基因以及免疫杀伤功能相关的基因(颗粒酶、穿孔素、FasL等)被显著上调;而在TLR4-/-小鼠中,这两大类基因的表达均被显著下调。与B6小鼠相比,在感染后6w的TLR2-/-小鼠脾细胞中,有251个基因信号有显著性改变,并且信号强度增强2倍以上,444个基因信号减弱2倍以上;在TLR4-/-小鼠脾细胞中,仅有91个基因信号增强2倍以上,同时121个基因信号减弱2倍以上。值得注意的是,在TLR2-/-小鼠中信号增强的基因在TLR4-/-小鼠中大多减弱。对差异基因的GO分类及pathway的显著性分析发现,差异基因及参与的通路主要涉及两大类:一是T细胞免疫应答相关基因及通路,二是免疫杀伤相关基因及通路。
     5、经SEA致敏后,TLR2-/-和TLR4-/-小鼠脾脏NK细胞杀伤活性均略高于野生型小鼠,但无显著性差异;相较于野生型小鼠,CD8+T细胞杀伤功能相关基因mRNA水平在TLR2-/-小鼠中升高,在TLR4-/-小鼠中降低。经SEA致敏后,TLR2-/-和TLR4-/-小鼠脾脏CD49b+NK细胞对YAC-1细胞的杀伤活性均略高于野生型小鼠,但无统计学差异。TLR2-/-小鼠CD8+T细胞中免疫杀伤功能相关基因(gzma、gzmb、gzmk、pfr1以及fasl)的mRNA水平高于B6小鼠,其中pfr1具有显著性差异;而TLR4-/-小鼠CD8+T细胞中gzma、gzmb和fasl的mRNA水平均显著低于B10小鼠。
     综上,感染日本血吸虫后,与野生型小鼠相比,TLR2-/-小鼠与TLR4-/-小鼠在感染结果、T细胞免疫应答程度以及免疫杀伤功能等方面均明显不同,表明TLR2与TLR4对血吸虫感染转归的影响与T细胞免疫应答以及免疫杀伤功能相关。
Though great efforts have been made in the past 50 years, schistosomiasis japonica remains a serious public health problem in China. The comprehensive measures for controlling schistosomiasis were based on the population chemotherapy with praziquantel, combined with public health promotion and killing snails in endemic areas, which have made great achievements. However, the control task is being challenged by the change of natural circumstance and decreased financial resources, and the most important challenge is high rate of reinfection after chemotherapy due to large numbers of reservoir hosts and difficulties in controlling the areas with Oncomelania hupensis infestation. In 1980s, the worldwide scientists reached consensus that is the priority to develop an effective anti-schistosomiasis vaccine in order to prevent reinfection after chemotherapy.
     During the past decades, vaccine development and related basic immunological researches were mainly concerned on schistosomiasis mansoni. Consequently, the development of vaccines against schistosomiasis japonica is far behind that of schistosomiasis mansoni, especially the understanding of basic immunology, which greatly limits our choice of rational strategies for vaccine development for schistosomiasis japonica. Thus, fundamental immunological research should be highlighted to develop effective and specific vaccines against schistosomiasis japonica.
     Many vaccine studies for schistosomiasis mansoni have estabilished that antigen-specific CD4+ T cell-mediated immunity and humoral response are fundamental to the acquired resistance against schistosome, which concentrate on the acquired immunity. On the other hand, the understanding of innate immunity involved is just in the very initial stage.
     So far, many studies of the innate immune response during the infection of Schistosoma mansoni (S. mansoni) focused on egg antigen to illuminate why host developed a predominant Th2 response after egg deposition. All these data suggested that antigens derived from parasite could activate the cascade pathway induced by pattern recognition receptors (PRRs) to initiate and direct the acquired immune response. Thus, we could speculate that during the early stage of infection, parasite molecules might also cause a similar effect through specific PRRs pathway. Nevertheless, up to now few studies reported characteristics of immune response and related molecules during TLRs recognition of Schistosoma japonicum (S. japonicum). Those results from studies of S. mansoni also suggested that, Toll-like receptor 2 (TLR2) and TLR4 were two important immune receptors involved in recognition of components of SEA; and TLR4 also played an important role in the immunorecognition of cercaria molecules. Therefore, the purpose of this study is to investigate the effects of TLR2 and TLR4 on the outcomes of S. japonicum infection.
     TLR2 knock out (TLR2-/-), TLR4 null mutated (TLR4-/-) mice and their counterpart wild-type (WT) C57BL/6J and C57BL/10J mice were infected with S. japonicum. Mice were sacrificed to measure the parasite burdens at 6 weeks after infection.To evaluate the immune responses after infection, the levels of schistosoma antigen- specific IgG were determined for each mouse by indirect ELISA; and the production of Th1/Th2 cytokines by spleen mononuclear cells was determined by Bio-plex system. Then we further compared the gene expression profiles from gene deficient and their WT control 6 weeks post infection using microarrays (Mouse Genome Expression 430 2.0, Affymetrix Co.). Those genes with more than 2-fold change were further analyzed with both GO and pathway anaylsis, and the mRNA levels of cytotoxicity associated genes were validated by real-time quantitative PCR (RTQ-PCR). Finally, the cytotoxicity of natural killer (NK) cells and CD8+T cells from each groups of mice primed with SEA were compared.
     The main results we got are as follows:
     1. Both worm and egg burdens were reduced in TLR2-/- mice, but increased in TLR4-/- mice. Six weeks after challenge with 40 S. japonicum cercariae, parasite burdens including total worms, total eggs in livers and eggs produced by each pair of worms (EPP) were evaluated. The parasite burdens were decreased in TLR2-/- group, but increased in TLR4-/- group when compared to the WT mice, respectively. Significant differences were observed in total eggs and EPP but not in total worms.
     2. The level of cellullar immune response in TLR2-/- mice was higher than that in B6 mice, while the expression of cytokines in TLR4-/- mice was lower than that in B10 mice during the acute phase of S. japonicum infection. In the supernatant of spleen mononuclear cells stimulated with SEA or ConA, the concentrations of IL-12p70, IFN-γ, IL-2, GM-CSF and IL-4 in TLR2-/- mice were markedly higher than those of B6 mice. The production of TNF-αand IL-10 in TLR2-/- mice were more than that in WT mice when stimulated with ConA, but the expression of IL-10 stimulated with SEA was less than that in B6 mice. On the contrary, the production of IL-12p70, IFN-γ, IL-2, IL-5 and IL-4 in TLR4-/- mice were significantly less than that in B10 group; the levels of IL-10 stimulated with ConA was much less. After stimulated with SEA, the expression of TNF-αwas significantly less than that in the B10 mice.
     3. After infection with S. japonicum, the level of antigen-specific IgG in TLR4-/- mice was significantly higher than that in B10 mice, but there was no significant difference between TLR2-/- and B6 mice. Following S. japonicum infection, schistosome antigen-specific IgG antibody in the sera of all three groups of mice kept on rising. In acute phase of infection, the level of SWAP- and SEA-specific IgG antibody in TLR4-/- mice were significantly higher than those in B10 mice; but there were no significant difference in both SWAP and SEA-specific antibody between TLR2-/- and B6 mice.
     4. Using the microarrays to compare the gene expression profiles in splenocytes 6 weeks post-exposure, we found that two categories of genes involved in T cell responses and cytotoxicity were significantly upregulated in TLR2-/-mice; and these genes were downregulated in TLR4-/- mice. In TLR2-/- mice, there were 251 probe sets found to have significantly higher signal values and 444 probe sets were downregulated when compared to B6 mice; and in TLR4-/- mice, only 91 probe sets were found to be enhanced more than 2-fold, and 121 genes have lower signal values. Interestingly, those genes enhanced in TLR2-/- mice were downregulated in TLR4-/- mice correspondingly. Further analysis of GO and pathway indicated that these genes and pathway mainly belong to two categories: T cell response and cytotoxicity pathway.
     5. After being primed with SEA, the cytotoxicity of NK cells in both TLR2-/- and TLR4-/-mice was slightly higher than that in WT mice without significant difference. And the mRNA levels of cytotoxicity-associated genes from CD8+T cell were increased in TLR2-/- mice, but decreased in TLR4-/- mice. The cytotoxicity of CD49b+ NK cells from spleens of both TLR2-/-and TLR4-/-mice to YAC-1 cells was similar to that in their WT controls. On the other hand, the mRNA levels of cytotoxicity-associated genes (gzma, gzmb, gzmk, pfr1 and fasl) from CD8+ T cells of TLR2-/- mice were higher than that of B6 mice, and only the level of pfr1 was significantly different; and the expression of gzma, gzmb and fasl from CD8+ T cells of TLR4-/- mice were significantly lower than those of B10 mice.
     In conclusion, after infection with S. japonicum, parasite burdens, T cell-mediated immune response as well as the cytotoxicity pathway were significantly different in TLR2-/- mice and TLR4-/- mice, when compared with the wild-type mice, respectively. These results indicate that TLR2 and TLR4 might influence the outcomes of S. japonicum infection through both T cell immune response and cytotoxicity pathway.
引文
[1] Chitsulo, L., D. Engels, A. Montresor, and L. Savioli. The global status of schistosomiasis and its control. Acta Trop. 2000, 77: 41-51.
    [2] Ross, A. G., P. B. Bartley, A. C. Sleigh, G. R. Olds, Y. Li, G. M. Williams, and D. P. McManus. Schistosomiasis. N. Engl. J. Med. 2002, 346:1212-1220.
    [3] King, C. H., K. Dickman, and D. J. Tisch. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 2005, 365:1561-1569.
    [4] Brown, M., P. A. Mawa, S. Joseph, J. Bukusuba, C. Watera, J. A. Whitworth, D. W. Dunne, and A. M. Elliott. Treatment of Schistosoma mansoni infection increases helminth-specific type 2 cytokine responses and HIV-1 loads in coinfected Ugandan adults. J. Infect. Dis. 2005, 191:1648-1657.
    [5] Brown, M., G. Miiro, P. Nkurunziza, C. Watera, M. A. Quigley, D. W. Dunne, J. A. Whitworth, and A. M. Elliott. Schistosoma mansoni, nematode infections, and progression to active tuberculosis among HIV-1-infected Ugandans. Am. J. Trop. Med. Hyg. 2006, 74:819-825.
    [6] Kallestrup, P., R. Zinyama, E. Gomo, A. E. Butterworth, G. J. van Dam, C. Erikstrup, and H. Ullum. Schistosomiasis and HIV-1 infection in rural Zimbabwe: implications of coinfection for excretion of eggs. J. Infect. Dis. 2005, 191:1311-1320.
    [7] Kallestrup, P., R. Zinyama, E. Gomo, A. E. Butterworth, G. J. van Dam, J. Gerstoft, C. Erikstrup, and H. Ullum. Schistosomiasis and HIV in rural Zimbabwe: efficacy of treatment of schistosomiasis in individuals with HIV coinfection. Clin. Infect. Dis. 2006, 42:1781-1789.
    [8] Kjetland, E. F., P. D. Ndhlovu, E. Gomo, T. Mduluza, N. Midzi, L. Gwanzura, P. R. Mason, L. Sandvik, H. Friis, and S. G. Gundersen. Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS 2006, 20:593-600.
    [9] Elias, D., H. Akuffo, and S. Britton. Helminths could influence the outcome of vaccines against TB in the tropics. Parasite Immunol. 2006, 28:507-513.
    [10] Elias, D., H. Akuffo, A. Pawlowski, M. Haile, T. Schon, and S. Britton. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine, 2005, 23: 1326-1334.
    [11] Elias, D., H. Akuffo, C. Thors, A. Pawlowski, and S. Britton. Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin. Exp. Immunol. 2005, 139:398 -404.
    [12] Booth, M., B. J. Vennervald, A. E. Butterworth, H. C. Kariuki, C.Amaganga, G. Kimani, J. K. Mwatha, A. Otedo, J. H. Ouma, and D. W.Dunne. Exposure to malaria affects the regression of hepatosplenomegaly after treatment for Schistosoma mansoni infection in Kenyan children.BMC Med. 2004, 2:36.
    [13] Briand, V., L. Watier, L. E. Hesran, A. Garcia, and M. Cot. Coinfection with Plasmodium falciparum and Schistosoma haematobium: protective effect of schistosomiasis on malaria in Senegalese children? Am. J. Trop. Med. Hyg. 2005,72:702-707.
    [14]郝阳,吴晓华,郑浩,王立英,郭家钢,夏刚,陈朝,周晓农. 2007年全国血吸虫病疫情通报.中国血吸虫病防治杂志.2008, 20(6):401-405.
    [15]郑江.中国血吸虫病防治现状及展望.中国血吸虫病防治杂志,2003, 15(1): 1-2.
    [16] Long-De Wang, Hong-Gen Chen, Jia-Gang Guo, Xiao-Jun Zeng, Xian-Lin Hong, Ji-Jie Xiong, Xiao-Hua Wu, Xian-Hong Wang, Li-Ying Wang, Gang Xia, M.Sc., Yang Hao, Daniel P. Chin, and Xiao-Nong Zhou. A Strategy to Control Transmission of Schistosoma japonicum in China. N Engl J Med. 2009. 360(2): 121-128.
    [17] PM Wiest, G Wu, S Zhang, et al. The impact of annual screening and chemotherapy with praziquantel on Schistosomiasis japonica on Jishan Island, People’s Republic of China. Am J Trop Med Hyg, 1994, 51: 162-169.
    [18] AE Butterworth. Vaccines against schistosomiasis: where do we stand? Trans R Soc Trop Med Hyg, 1992, 86(1): 1-2.
    [19] EA Kelly, DG Colley. In vivo effects of monoclonal anti-L3T4 antibody onimmune responsiveness of mice infected with Schistosoma mansoni. Reduction of irradiated cercariae-induced resistance. J Immunol, 1988, 140(8): 2737-2745.
    [20] LE Smythies, PS Coulson, RA Wilson. Monoclonal antibody to IFN-gamma modifies pulmonary inflammatory responses and abrogates immunity to Schistosoma mansoni in mice vaccinated with attenuated cercariae. J Immunol, 1992, 149(11): 3654-3658.
    [21] RA Wilson, PS Coulson, C Betts, et al. Impaired immunity and altered pulmonary responses in mice with a disrupted interferon-gamma receptor gene exposed to the irradiated Schistosoma mansoni vaccine. Immunology, 1996, 87(2):275-282.
    [22] S Anderson, VL Shires, RA Wilson, et al. In the absence of IL-12, the induction of Th1-mediated protective immunity by the attenuated schistosome vaccine is impaired, revealing an alternative pathway with Th2-type characteristics. Eur J Immunol, 1998, 28(9): 2827-2838.
    [23] Anderson, S., P. S. Coulson, S. Ljubojevic, A. P. Mountford, and R. A.Wilson.. The radiation-attenuated schistosome vaccine induces high levels of protective immunity in the absence of B cells. Immunology, 1999, 96(1): 22-28.
    [24] BL Mangold, DA Dean. Passive transfer with serum and IgG antibodies of irradiated cercaria-induced resistance against Schistosoma mansoni in mice. J Parasitol, 1986, 136(7): 2644-2648.
    [25] V Delgado, DJ Mclaren. Evidence for enhancement of IgG1 subclass expression in mice polyvaccinated with radiation-attenuated cercariae of Schistosoma mansoni and role of this isotype in serum-transferred immunity. Parasite Immunol, 1990, 12(1): 15-32.
    [26] Jankovic, D., T. A. Wynn, M. C. Kullberg, S. Hieny, P. Caspar, S. James, A. W. Cheever, and A. Sher. Optimal vaccination against Schistosoma mansoni requires the induction of both B cell- and IFN-gamma-dependent effector mechanisms. J. Immunol. 1999, 162:345-351.
    [27] Mountford, A. P., K. G. Hogg, P. S. Coulson, and F. Brombacher. Signaling via interleukin-4 receptor alpha chain is required for successful vaccination againstschistosomiasis in BALB/c mice. Infect. Immun. 2001, 69:228-236.
    [28] Capron, A., G. Riveau, M. Capron, and F. Trottein. Schistosomes: the road from host-parasite interactions to vaccines in clinical trials. Trends Parasitol. 2005, 21:143-149.
    [29] Capron, A., G. J. Riveau, P. B. Bartley, and D. P. McManus. Prospects for a schistosome vaccine. Curr. Drug Targets Immune Endocr. Metab. Disord. 2002, 2:281-290.
    [30] Caldas, I. R., R. Correa-Oliveira, E. Colosimo, O. S. Carvalho, C. L. Massara, D. G. Colley, and G. Gazzinelli. Susceptibility and resistance to Schistosoma mansoni reinfection: parallel cellular and isotypic immunologic assessment. Am. J. Trop. Med. Hyg. 2000, 62:57-64.
    [31] Viana, I. R., R. Correa-Oliveira, S. Carvalho Odos, C. L. Massara, E. Colosimo, D. G. Colley, and G. Gazzinelli. Comparison of antibody isotype responses to Schistosoma mansoni antigens by infected and putative resistant individuals living in an endemic area. Parasite Immunol. 1995, 17:297-304.
    [32] Viana, I. R., A. Sher, O. S. Carvalho, C. L. Massara, S. M. Eloi-Santos, E. J.Pearce, D. G. Colley, G. Gazzinelli, and R. Correa-Oliveira. Interferon-gamma production by peripheral blood mononuclear cells from residents of an area endemic for Schistosoma mansoni. Trans. R. Soc. Trop. Med. Hyg. 1994, 88:466-470.
    [33] Caldas, I. R., R. Correa-Oliveira, E. Colosimo, O. S. Carvalho, C. L. Massara, D. G. Colley, and G. Gazzinelli. Susceptibility and resistance to Schistosoma mansoni reinfection: parallel cellular and isotypic immunologic assessment. Am. J. Trop. Med. Hyg. 2000, 62:57-64.
    [34] A. Iwasaki, R. Medzhitov. Toll-like receptor control of the adaptive immune responses, Nat. Immunol. 2004,5:987-995.
    [35] Giorgio Trinchieri and Alan Sher. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 2007. 7: 179-190
    [36] Kiyoshi Takeda1 and Shizuo Akira. Toll-like receptors in innate immunity. International Immunology. 2005, 17(1): 1-14.
    [37] M.L. Kapsenberg. Dendritic-cell control of pathogen-driven T-cell polarization, Nat. Rev. Immunol. 2003, 3:984-993.
    [38] van der Kleij, D., E. Latz, J. F. Brouwers, Y. C. Kruize, M. Schmitz, E. A. Kurt-Jones, T. Espevik, E. C. de Jong, M. L. Kapsenberg, D. T. Golenbock, A. G. Tielens, and M. Yazdanbakhsh. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 2002, 277:48122-48129.
    [39] Thomas, P. G., M. R. Carter, O. Atochina, A. A. Da’Dara, D. Piskorska, E. McGuire, and D. A. Harn. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J. Immunol. 2003, 171:5837-5841.
    [40] Irma van Die, Sandra J. van Vliet, A. Kwame Nyame, Richard D. Cummings, Christine M.C. Bank, Ben Appelmelk, Teunis B.H. Geijtenbeek, and Yvette van Kooyk. The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology. 2003, 13( 6 ): 471-478.
    [41] Sandra Meyer, Boris Tefsen, Anne Imberty, Rudolf Geyer, and Irma van Die1. The C-type lectin L-SIGN differentially recognizes glycan antigens on egg glycosphingolipids and soluble egg glycoproteins from Schistosoma mansoni. Glycobiology. 2007,17(10):1104-1119.
    [42] Cervi L, MacDonald AS, Kane C, Dzierszinski F & Pearce EJ. Cutting edge: dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J Immunol. 2004, 172: 2016-2020.
    [43] E. Aksoy, C.S. Zouain, F. Vanhoutte, J. Fontaine, N. Pavelka, N. Thieblemont, F. Willems, P. Ricciardi-Castagnoli, M. Goldman, M. Capron, B. Ryffel, F. Trottein. Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells, J. Biol. Chem. 2005, 280:277-283.
    [44] Franc?ois Vanhoutte, Laetitia Breuilh, Josette Fontaine, Claudia S. Zouain,Thierry Mallevaey, Virginie Vasseur, Monique Capron, Stanislas Goriely, Christelle Faveeuw, Bernhard Ryffel, Franc?ois Trottein. Toll-like receptor (TLR) 2 and TLR3 sensing is required for dendritic cell activation, but dispensable to control Schistosoma mansoni infection and pathology. Microbes and Infection. 2007,9: 1606-1613.
    [45] Laura E. Layland, Roland Rad, Hermann Wagner and Clarissa U. Prazeres da Costa. Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2. Eur. J. Immunol. 2007, 37: 2174-2184.
    [46] Stephen John Jenkins, James Philip Hewitson, Stephanie Ferret-Bernard and Adrian Paul Mountford. Schistosome larvae stimulate macrophage cytokine production through TLR4-dependent and -independent pathways. International Immunology, 2005, 17(11):1409-1418.
    [47] S. Dillon, A. Agrawal, T. Van Dyke, G. Landreth, L. McCauley, A. Koh, C. Maliszewski, S. Akira, B. Pulendran, A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signalregulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells, J. Immunol. 2004.172: 4733-4743.
    [48] A. Didierlaurent, I. Ferrero, L.A. Otten, B. Dubois, M. Reinhardt, H. Carlsen, R. Blomhoff, S. Akira, J.P. Kraehenbuhl, J.C. Sirard, Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response, J. Immunol. 2004.172: 6922-6930.
    [49] H.S. Goodridge, F.A. Marshall, K.J. Else, K.M. Houston, C. Egan, L. Al-Riyami, F.Y. Liew, W. Harnett, M.M. Harnett, Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62, J. Immunol. 2005.174: 284-293.
    [50] M Schena, D Shalon, RW Dais, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270: 467-470.
    [51] T Nagata, H Yamada, Z Du, et al. Microarray analysis of genes that respond togamma-irradiation in Arabidopsis. J Agric Food Chem, 2005, 53(4): 1022-1030.
    [52] T Joshi, Y Chen, JM Becker, et al. Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae. OMICS, 2004, 8(4): 322-333.
    [53] E Linney, B Dobbs-McAuliffe, H Sajadi, et al. Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol, 2004, 138(3): 351-362.
    [54] R Airik, M Karner, A Karis, et al. Gene expression analysis of Gata3-/- mice by using cDNA microarray technology. Life Sci, 2005, 76(22): 2559-2568.
    [55] F Bosetti, JM Bell, P Manickam. Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res Bull, 2005, 65(4): 331-338.
    [56] H Chen, J Wang, P Liang, et al. Microarray analysis for identification of Plasmodium-refractoriness candidate genes in mosquitoes. Genome, 2004, 47(6): 1061-1070.
    [57] IJ Blader, ID Manger, JC Boothroyd. Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol Chem, 2001, 276(26): 24223-24231.
    [58] D Moore-Lai, E Rowland. Microarray data demonstrate that Trypanosoma cruzi downregulates the expression of apoptotic genes in BALB/c fibroblasts. J Parasitol, 2004, 90(4): 893-895.
    [59] CM Kane, L Cervi, J Sun, et al. Helminth antigens modulate TLR-initiated dendritic cell activation. J Immunol, 2004, 173(12): 7454-7461.
    [60] Rumbley, C.A., S.A. Zekavat, H. Sugaya, et al., The schistosome granuloma: characterization of lymphocyte migration, activation, and cytokine production. J Immunol, 1998. 161(8): p. 4129-37.
    [61] Hoffmann, K.F., T.A. Wynn, and D.W. Dunne. Cytokine-mediated host responses during schistosome infections; walking the fine line between immunological control and immunopathology. Adv Parasitol, 2002. 52: p. 265-307.
    [62] Wilson, R.A., Interferon gamma is a key cytokine in lung phase immunity to schistosomes but what is its precise role? Braz J Med Biol Res, 1998. 31(1): p. 157-61.
    [63] Pancre, V., H. Schellekens, P. Van der Meide. Biological effect of interferon-gamma during the course of experimental infection of rat by Schistosoma mansoni. Cell Immunol, 1990. 125(1): p. 58-64.
    [64] Rebecca A. Shilling, Hozefa S. Bandukwala , Anne I. Sperling. Regulation of T: B cell interactions by the Inducible Costimulator molecule: Does ICOS‘‘induce’’disease? Clinical Immunology. 2006. 121: 13-18.
    [65] Ozinsky A, Underhill DM, Fontenot JD. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA. 2000, 97: 13766 -13771.
    [66] Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003. 21: 335 -376.
    [67] Matthew R. Murawski, Glennice N. Bowen, Anna M. Cerny, Larry J. Anderson, Lia M. Haynes, Ralph A. Tripp, Evelyn A. Kurt-Jones, and Robert W. Finberg. Respiratory Syncytial Virus Activates Innate Immunity through Toll-Like Receptor 2. J Virol. 2009. 83(3):1492-1500.
    [68] Anna Tja¨rnlund, Evelyn Guirado, Esther Julia′n, Pere-Joan Cardona, Carmen Ferna′ndez. Determinant role for Toll-like receptor signalling in acute mycobacterial infection in the respiratory tract. Microbes and Infection. 2006.8: 1790-1800.
    [69] Carl G. Feng, Charles A. Scanga, Carmen M. Collazo-Custodio, Allen W. Cheever, Sara Hieny, Patricia Caspar, and Alan Sher. Mice Lacking Myeloid Differentiation Factor 88 Display Profound Defects in Host Resistance and Immune Responses to Mycobacterium avium Infection Not Exhibited by Toll-Like Receptor 2 (TLR2)- and TLR4-Deficient Animals.. The Journal of Immunology, 2003, 171: 4758-4764.
    [70] Etsu T. Fuse, Kazuhiro Tateda, Yoshiaki Kikuchi, Tetsuya Matsumoto, Fumio Gondaira, Arata Azuma, Shoji Kudoh, Theodore J. Standiford and KeizoYamaguchi. Role of Toll-like receptor 2 in recognition of Legionella pneumophila in a murine pneumonia model. Journal of Medical Microbiology. 2007.56:305-312.
    [71] M. Luisa Gil and Daniel Gozalbo.TLR2, but not TLR4, triggers cytokine production by murine cells in response to Candida albicans yeasts and hyphae. Microbes and Infection. 2006. 8:2299-2304.
    [72] Hye-Seong Mun, Fumie Aosai, Kazumi Norose, Mei Chen, Lian-Xun Piao, Osamu Takeuchi, Shizuo Akira, Hiroshi Ishikura and Akihiko Yano. TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection. International Immunology. 2003.15(9): 1081-1087.
    [73] Pascale Kropf, Marina A. Freudenberg, Manuel Modolell, Helen P. Price, Shanti Herath, Simone Antoniazi, Chris Galanos, Deborah F. Smith and Ingrid Mu¨ller. Toll-Like Receptor 4 Contributes to Efficient Control of Infection with the Protozoan Parasite Leishmania major. Infec. Immun. 2004.72(4): 1920-1928.
    [74] P. Kropf, N. Freudenberg, C. Kalis, M. Modolell, S. Herath, C. Galanos, M. Freudenberg, and I. Mu¨ller. J. Leukoc. Infection of C57BL/10ScCr and C57BL/10ScNCr mice with Leishmania major reveals a role for Toll-like receptor 4 in the control of parasite replication. Biol. 2004.76: 48-57.
    [75] Marco A. S. Campos, Igor C. Almeida, Osamu Takeuchi, Shizuo Akira, Eneida P. Valente, Daniela O. Proco′pio, Luiz R. Travassos, Jason A. Smith, Douglas T. Golenbock, and Ricardo T. Gazzinelli. Activation of Toll-Like Receptor-2 by Glycosylphosphatidylinositol Anchors from a Protozoan Parasite. J. Immuno, 2001. 167: 416-423.
    [76] Ana-Carolina Oliveira, Jaqueline R. Peixoto, Luciana B. de Arruda, Marco A. Campos, Ricardo T. Gazzinelli, Douglas T. Golenbock, Shizuo Akira, Jose′O. Previato, Lu′cia Mendonc?a-Previato, Alberto Nobrega, and Maria Bellio. Expression of Functional TLR4 Confers Proinflammatory Responsiveness to Trypanosoma cruzi Glycoinositolphospholipids and Higher Resistance to Infection with T. cruzi1. J. Immuno, 2004, 173: 5688-5696.
    [77] Mihai G. Netea, Roger Sutmuller, Corinna Hermann, Chantal A. A. Van derGraaf, Jos W. M. Van der Meer, Johan H. van Krieken, Thomas Hartung, Gosse Adema, and Bart Jan Kullberg. Toll-Like Receptor 2 Suppresses Immunity against Candida albicans through Induction of IL-10 and Regulatory T Cells. The Journal of Immunology. 2004. 172: 3712-3718.
    [78] Evelyn A. Kurt-Jones, Melvin Chan, Shenghua Zhou, Jennifer Wang, George Reed, Roderick Bronson, Michelle M. Arnold, David M. Knipe, and Robert W. Finberg. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. PNAS 2004.101(5):1315-1320.
    [79] Shimizu J., Yamazaki S., Takahashi T., Ishida Y. and Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 2002. 3: 135-142.
    [80] Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 2002.20:323-70.
    [81] Dipanjan Chowdhury and Judy Lieberman. Death by a Thousand Cuts: Granzyme Pathways of Programmed Cell Death. Annu. Rev. Immunol. 2008. 26: 389-420.
    [82] Chávez-Galán L, Arenas-Del Angel MC, Zenteno E, Chávez R and Lascurain R.Cell Death Mechanisms Induced by Cytotoxic Lymphocytes. Cellular& Molecular Immunology. 2009, 6(1):15-25.
    [83] Paul Bolitho, Ilia Voskoboinik, Joseph A Trapani and Mark J Smyth. Apoptosis induced by the lymphocyte effector molecule perforin. Current Opinion in Immunology 2007. 19:339-347.
    [84] Lee RK, Spielman J, Zhao DY, Olsen KJ, Podack ER. Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine- activated killer cells. J Immunol. 1996. 157:1919-1925.
    [85] Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001. 104:487-501.
    [86] Liu CC, Rafii S, Granelli-Piperno A, Trapani JA, Young JD. Perforin and serine esterase gene expression in stimulated human T cells. Kinetics, mitogen requirements, and effects of cyclosporin A. J. Exp. Med. 1989.170:2105-18.
    [87] Ye W, Young JD, Liu CC. Interleukin-15 induce the expression of mRNAs of cytolytic mediators and augments cytotoxic activities in primary murine lymphocytes. Cell. Immunol. 1996.174:54-62.
    [88] Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 2005. 201:139-48.
    [89] Leonard WJ, Spolski R. Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat. Rev. Immunol. 2005.5:688-98.
    [90] White L, Krishnan S, Strbo N, Liu H, Kolber MA. Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV). Blood. 2007.109:3873-80.
    [91] Yamamoto K, Shibata F, Miyasaka N, Miura O. The human perforin gene is a direct target of STAT4 activated by IL-12 in NK cells. Biochem. Biophys. Res. Commun. 2002.297:1245-52.
    [92] Rukavina D, Laskarin G, Strbo N, Sotosek V, Bedenicki I, Podack ER: Cytokines and hormones in the regulation of perforin expression in the decidual lymphocytes. Period Biol 1998. 100(Suppl. 3):41.
    [93] Strbo N, Laskarin G, Sotosek V, Randic LJ, Rukavina D: Regulation of cytolytic activity of decidual lymphocytes: role of cytokines IL-2 and IL-15. Placenta 1999; 20:A64 (abstract).
    [94] Salcedo TW, Azzoni L, Wolf SF, Perussia B: Physical and functional association of p56lck with Fc gamma RIIIA (CD16) in natural killer cells. J Exp Med 1993. 177:1475-1480.
    [95] Hyodo Y, Matsui K, Hayashi N, Tsutsui H, Kashiwamura S, Yamauchi H, Hiroishi K, Takeda K, Tagawa Y, Iwakura Y, Kayagaki N, Kurimoto M, Okamura H, Hada T, Yagita H, Akira S, Nakanishi K, Higashino K: IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J Immunol. 1999.162:1662-1668.
    [96] Tsutsui H, Nakanishi K, Matsui K, Higashino K, Okamura H, Miyazawa Y, Kaneda K: IFN-gammainducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol. 1996. 157: 3967-3973.
    [97] Eischen, C. M., Schilling, J. D., Lynch, D. H., Krammer, P. H., Leibson, P. J. Fc receptor-induced expression of Fas ligand on activated NK cells facilitates cell-mediated cytotoxicity and subsequent autocrine NK cell apoptosis. J. Immunol. 1996.156: 2693-2699.
    [98] Kashii, Y., Giorda, R., Herberman, R. B., Whiteside, T. L., Vujanovic, N. L. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J. Immunol. 1999. 163: 5358-5366.
    [99] Medvedev, A. E., Johnsen, A. C., Haux, J., Steinkjer, B., Egeberg, K., Lynch, D.H., Sundan, A., Espevik, T. Regulation of Fas and Fas-ligand expression in NK cells by cytokines and the involvement of Fas-ligand in NK/LAK cell-mediated cytotoxicity. 1997. Cytokine. 9: 394-404.
    [100] Genaro Patin?o-Lopez, Peter Hevezi, Jerry Lee, Dorian Willhite, Gail M. Verge, Sandra M. Lechner, Vianney Ortiz-Navarrete, Albert Zlotnik. Human class-I restricted T cell associated molecule is highly expressed in the cerebellum and is a marker for activated NKT and CD8+ T lymphocytes. Journal of Neuroimmunology. 2006. 171:145 - 155.
    [101] Noriko Arase, Arata Takeuchi, Midori Unno, Satoshi Hirano, Tadashi Yokosuka, Hisashi Arase and Takashi Saito. Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. International Immunology, 2005.17 (9):1227-1237.
    [102] Kent S. Boles, Winfried Barchet, Tom Diacovo, Marina Cella, and Marco Colonna Blood. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. 2005. 106: 779-786.
    [103] Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L. What is a natural killer cell? Nat Immunol 2002, 3: 6-8.
    [104] Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008, 27(45):5932-43.
    [105] Alter G, Malenfant JM, Delabre RM, Burgett NC, Yu XG, Lichterfeld M, Zaunders J, Altfeld M. Increased natural killer cell activity in viremic HIV-1 infection. J Immunol 2004, 173:5305-5311.
    [106] Le-Barillec K, Magalhaes JG, Corcuff E, Thuizat A, Sansonetti PJ, Phalipon A, Di Santo JP. Roles for T and NK cells in the innate immune response to Shigella flexneri. J Immunol 2005, 175:1735-1740.
    [107] Artavanis-Tsakonas K, Eleme K, McQueen KL, Cheng NW, Parham P, Davis DM, Riley EM: Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J Immunol 2003, 171:5396- 5405.
    [108] Lieke T, Graefe SE, Klauenberg U, Fleischer B, Jacobs T. NK cells contribute to the control of Trypanosoma cruzi infection by killing free parasites by perforin-independent mechanisms. Infect Immun 2004, 72:6817-6825.
    [109] Duthie MS, Kahn SJ. NK cell activation and protection occur independently of natural killer T cells during Trypanosoma cruzi infection. Int Immunol 2005, 17:607-613.
    [110] E. Speziali, J. Bethony, O. Martins-Filho, L. A. O. Fraga, D. S. Lemos, L. J. Souza, R. Correa-Oliveira and A. M. C. Faria. Production of interferon-γby natural killer cells and aging in chronic human schistosomiasis. 2004, Mediators of Inflammation, 13(5/6), 327-333.
    [111] Chrystel Asseman, Vkronique PancrC, Brigitte Quatennensb, Claude Auriault. Schistosoma mansoni-infected mice show augmented hepatic fibrosis and selective inhibition of liver cytokine production after treatment with anti-NKl .1 antibodies. Immunology Letters 1996, 54:11-20.
    [112] Adrian P. Mountford, Sonia Anderson and R. Alan Wilson. Induction of Thl Cell Mediated Protective Immunity to Schistosoma mansoni by Co-Administration of larval Antigens and IL-12 as an Adjuvant. J Immunol, 1996, 156: 4739-4745.
    [113] Seitzer U, Ahmed J.Tropical theileriosis: cytotoxic T lymphocyte response to vaccination. Vaccine. 2008.19(26 Suppl 6):G24-8.
    [114] Akoolo L, PelléR, Saya R, Awino E, Nyanjui J, Taracha EL, Kanyari P, Mwangi DM, Graham SP.Evaluation of the recognition of Theileria parva vaccine candidate antigens by cytotoxic T lymphocytes from Zebu cattle. Vet Immunol Immunopathol. 2008.121(3-4):216-21.
    [115] Khan IA, Casciotti L.IL-15 prolongs the duration of CD8+ T cell-mediated immunity in mice infected with a vaccine strain of Toxoplasma gondii. J Immunol. 1999.163(8):4503-9.
    [116] Wilson DC, Matthews S, Yap GS. IL-12 signaling drives CD8+ T cell IFN-gamma production and differentiation of KLRG1+ effector subpopulations during Toxoplasma gondii Infection. J Immunol. 2008.180(9):5935-45.
    [117] White KL, Snyder HL, Krzych U. MHC class I-dependent presentation of exoerythrocytic antigens to CD8+ T lymphocytes is required for protective immunity against Plasmodium berghei. J Immunol. 1996 .156(9):3374-81.
    [118] Krzych U, Schwenk R, Guebre-Xabier M, Sun P, Palmer D, White K, Chalom I. The role of intrahepatic lymphocytes in mediating protective immunity induced by attenuated Plasmodium berghei sporozoites. Immunol Rev. 2000.174:123- 34.
    [119] Bustamante JM, Bixby LM, Tarleton RL. Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nat Med. 2008.14(5):542-50.
    [120] Miyahira Y. Trypanosoma cruzi infection from the view of CD8+ T cell immunity--an infection model for developing T cell vaccine. Parasitol Int. 2008. 57(1):38-48.
    [121] Cytolytic T Lymphocytes Recognize Alloantigens on Schistosomula of Schistosoma mansoni, but fail to Induce Damage. Anthony E. Butterworth, Mathew A. Vadas, Eric Martz and Alan Sher. J Immunol. 1979.122 (4): 1314- 1321.
    [122] PancréV, Gras-Masse H, Delanoye A, Herno J, Capron A, Auriault C.Induction of cytotoxic T-cell activity by the protective antigen of Schistosoma mansoni Sm28GST or its derived C-terminal lipopeptide. Scand J Immunol. 1996. 44(5): 485-92.
    [123] V Pancre, I Wolowczuk, S Guerret, M C Copin, A Delanoye, A Capron, and C Auriault. Protective effect of rSm28GST-specific T cells in schistosomiasis: role of gamma interferon. Infect Immun. 1994 September; 62(9): 3723-3730.
    [124] Yinchang Zhu, Jin Si, DA Harn, Chuanxin Yu, Yousheng Liang, Jiangong Ren, Xuren Yin, Wei He and Wanquan Hua. The Protective Immunity of A DNA Vaccine Encoding Schistosoma Japonicum Chinese Strain Triose-Phosphate Isomerase In Infected BALB/C Mice. Southeast Asian J Trop Med Public Health. 2004.35(3): 518-522.
    [125] V. PANCRE?, M. DELACRE, J. HERNO & C. AURIAULT. Schistosomal egg antigen-responsive CD8 T-cell population in Schistosoma mansoni-infected BALB/c mice. Immunology. 1999. 98:525-534.
    [126] Anne Cottalorda, Claire Verschelde, Antoine Mar_ais, Martine Tomkowiak, Philippe Musette, Satoshi Uematsu, Shizuo Akira, Jacqueline Marvel and Nathalie Bonnefoy-Berard. TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur. J. Immunol. 2006. 36: 1684-1693.
    [127] Julie Tabiasco, Estelle Deve?vre, Nathalie Rufer, Bruno Salaun, Jean-Charles Cerottini, Daniel Speiser and Pedro Romero. Human Effector CD8+ T Lymphocytes Express TLR3 as a Functional Coreceptor. J Immunol. 2006, 177: 8708-8713.
    [128] Mohamed L. Salema, , C. Marcela Diaz-Monteroa, Sabry A. EL-Naggara, Yian Chena,Omar Moussab, David J. Colea. The TLR3 agonist poly (I:C) targets CD8+ T cells and augments their antigen-specific responses upon their adoptive transfer into naive recipient mice. Vaccine. 2009, 27: 549-557.
    [129] Beena John and Ian Nicholas Crispe. TLR-4 Regulates CD8+ T cell Trapping in the Liver. J. Immunol., 2005, 175: 1643-1650.
    [130]李浩,何艳燕,林矫矫,林邦发,傅志强,刘金明,魏梅雄,汪英华,陈永军,石耀军,王振果.东方田鼠抗日本血吸虫病现象的观察.中国兽医寄生虫病.2000,8(2): 12-15.
    [131]刘金明,傅志强,李浩.东方田鼠血清体外杀伤日本血吸虫童虫效果的初步观察.中国人兽共患病杂志,2002,18(2) :81- 83.
    [132]欧阳理,易新元,曾宪芳.东方田鼠血清及其不同部分对日本血吸虫童虫的体外杀伤作用.中国血吸虫病防治杂志,2003,15 (2) :98- 101.
    [133]蒋守富,魏梅雄,林矫矫,潘彩娥,邱倩雯,何艳燕,李浩,石耀军.东方田鼠IgG3抗体抗血吸虫病作用研究.中国寄生虫学与寄生虫病杂志.2008, 26(1): 34-36.
    [134] Young, J. D.-E, Z. A. Cohn, and E. R. Podack. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science. 1986.233:184.
    [135] Zalman, L. S., M. A. Brothers, F. J. Chiu, and H. J. Muller-Eberhard. Mechanism of cytotoxicity of human large granular lymphocytes: relationship of the cytotoxic lymphocyte protein to the ninth component (C9) of human complement. Proc. Natl. Acad. Sci. 1986. 83:5262.
    [136] Tschopp, J, D. Masson, and K. K. Stanley. Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte- mediated cytolysis. Nature1986. 322:831.
    [137] Jone Ding-E Young, Chau-Ching Liu, Lauren G Leong and Zanvila. Conh. The pore-forming protein (perforin) of cytolytic T lymphocytes is immunologically related to the components of membrane attack complex of complement through cysteine-rich domains. J. Exp. Med. 1986. 164: 2077-2082.
    [1] Trinchieri G. Biology of natural killer cells. Adv Immunol 1989, 47: 187-376.
    [2] Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L. What is a natural killer cell? Nat Immunol 2002, 3: 6-8.
    [3] Cooper M A, Fehnier T A, Turner S C, et al. Human natural killer cells:a unique innate immunoregulatory role for the CD56 bright subset. Blood, 2001, 97(10): 3146-3151.
    [4] Chiorean E G, Miller J S. The biology of natural killer cells and implications for therapy of human disease. J Hematother Stem Cell Res, 2001, 10(4): 451- 463.
    [5] Farag SS, Febniger TA, Ruggeri L. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood, 2002, 100: 1935-1947.
    [6] Borrego F, Kabai J, Kim DK. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol, 2002, 38: 637-660.
    [7] Radaev S, Sun PD. Structure and function of natural killer cell surface recetors. Annu Rev Biophys Biomol Sturct, 2003, 32: 93-114.
    [8] Wu J, Song Y, Bakker AB. An activating immunoreceptor complex formed by NKG2D and DAP10. Science, 1999, 285: 730-732.
    [9] Biasoni R, Cantoni C, Pende D. Human natural killer cell receptors and co-receptors. Immunol Rev, 2001, 181: 203-214.
    [10] Yusa S ,Catina TL ,Campbell KS. KIR2DL5 can inhibit human NK cell activation via recruitment of Src homology region-2 containing protein tyrosine phosphatase-2 (SHP-2). J Immunol, 2004,172 (12): 7385-7392.
    [11] Faure M, Long EO. KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential. J Immunol, 2002, 168 (12): 6208-6214.
    [12] Yusa S, Catina TL, Campbell KS. SHP-1- and phosphotyrosine independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK Cells. J Immunol. 2002, 168 (10): 5047-5057.
    [13] Vyas Y M, Maniar H, Dupont B. Visualization of signaling pathways and cortical cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses. Immunol Rev , 2002 ,189 :161-178
    [14] Veillette A. Specialised adaptors in immune cells. Current Opin Cell Biol, 2004 ,16 :146-155.
    [15] Rudd C E, Wang H. Hematopoietic adaptors in T-cell signaling: potential applications to transplantation. Am J Transplant , 2003 ,3 :1204-1210.
    [16] Sasahara Y, Rachid R, Byrne M J. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Molecular Cell , 2002 ,10 :1269-1282.
    [17] Badour K, Zhang J , Siminovitch K A. The Wiskott- Aldrich syndrome protein: forging the link between actin and cell activation. Immunol Rev, 2003, 192 :98- 112.
    [18] Lanier L L. Natural killer cell receptor signaling. Curr Opin Immunol, 2003, 15: 308-314.
    [19] Rivera G M, Briceìo C A , Takeshima F. Inducible clustering of membrane- targeted SH3 domains of the adaptor protein nck triggers localized actin polymerization. Current Biol, 2004,14 :11-22.
    [20] Tay CH, Welsh RM. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J Virol 1997, 71:267-275.
    [21] Loh J, Chu DT, O’Guin AK, Yokoyama WM, Virgin HW. Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol 2005, 79:661-667.
    [22] Iversen AC, Norris PS, Ware CF, Benedict CA. Human NK cells inhibit cytomegalovirus replication through a noncytolytic mechanism involving lymphotoxin-dependent induction of IFN-β. J Immunol 2005, 175:7568-7574.
    [23] Warfield KL, Perkins JG, Swenson DL, Deal EM, Bosio CM, Aman MJ, Yokoyama WM, Young HA, Bavari S. Role of natural killer cells in innate protection against lethal ebola virus infection. J Exp Med 2004, 200:169-179.
    [24] Bernstein HB, Kinter AL, Jackson R, Fauci AS. Neonatal natural killer cells produce chemokines and suppress HIV replication in vitro. AIDS Res Hum Retroviruses, 2004, 20:1189-1195.
    [25] Alter G, Malenfant JM, Delabre RM, Burgett NC, Yu XG, Lichterfeld M, Zaunders J, Altfeld M. Increased natural killer cell activity in viremic HIV-1 infection. J Immunol 2004, 173:5305-5311.
    [26] Siren J, Sareneva T, Pirhonen J, Strengell M, Veckman V, Julkunen I, Matikainen S. Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 2004, 85:2357- 2364.
    [27] Le-Barillec K, Magalhaes JG, Corcuff E, Thuizat A, Sansonetti PJ, Phalipon A, Di Santo JP. Roles for T and NK cells in the innate immune response to Shigella flexneri. J Immunol 2005, 175:1735-1740.
    [28] Vankayalapati R, Garg A, Porgador A, Griffith DE, Klucar P, Safi H, Girard WM,Cosman D, Spies T, Barnes PF. Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol 2005, 175:4611-4617.
    [29] Junqueira-Kipnis AP, Kipnis A, Jamieson A, Juarrero MG, Diefenbach A, Raulet DH, Turner J, Orme IM. NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J Immunol 2003, 171:6039-6045.
    [30] Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol 2004, 4:169-180.
    [31] Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-g from human NK cells by live Plasmodium falciparum-infected erythrocytes. J Immunol 2002, 169:2956-2963.
    [32] Korbel DS, Newman KC, Almeida CR, Davis DM, Riley EM. Heterogeneous human NK cell responses to Plasmodium falciparum-infected erythrocytes. J Immunol 2005, 175:7466-7473.
    [33] Baratin M, Roetynck S, Lepolard C, Falk C, Sawadogo S, Uematsu S, Akira S, Ryffel B, Tiraby JG, Alexopoulou L et al. Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Natl Acad Sci USA 2005, 102:14747-14752.
    [34] Artavanis-Tsakonas K, Eleme K, McQueen KL, Cheng NW, Parham P, Davis DM, Riley EM: Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J Immunol 2003, 171:5396-5405.
    [35] Lieke T, Graefe SE, Klauenberg U, Fleischer B, Jacobs T. NK cells contribute to the control of Trypanosoma cruzi infection by killing free parasites by perforin- independent mechanisms. Infect Immun 2004, 72:6817-6825.
    [36] Duthie MS, Kahn SJ. NK cell activation and protection occur independently of natural killer T cells during Trypanosoma cruzi infection. Int Immunol 2005, 17: 607-613.
    [37] E. Speziali, J. Bethony, O. Martins-Filho, L. A. O. Fraga, D. S. Lemos, L. J. Souza, R. Correa-Oliveira and A. M. C. Faria. Production of interferon-γbynatural killer cells and aging in chronic human schistosomiasis. 2004, Mediators of Inflammation, 13(5/6), 327-333
    [38] Chrystel Asseman, Vkronique PancrC, Brigitte Quatennensb, Claude Auriault. Schistosoma mansoni-infected mice show augmented hepatic fibrosis and selective inhibition of liver cytokine production after treatment with anti-NKl .1 antibodies. Immunology Letters 1996, 54:11-20
    [39] Adrian P. Mountford, Sonia Anderson and R. Alan Wilson. Induction of Thl Cell-Mediated Protective Immunity to Schistosoma mansoni by Co- Administration of larval Antigens and IL-12 as an Adjuvant. J Immunol, 1996, 156: 4739-4745.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.