因特网与无线局域网若干模型与关键算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕用户通过无线局域网与Internet中的服务器通信中若干关键问题进行模型和算法研究,贡献及创新点包括以下几个方面:
     1802.11无线局域网MAC层的有限负载模型。首先,用户通过无线局域网与Internet服务器相连,无线局域网的性能直接关系到用户与服务器通信的性能。无线局域网的MAC层协议对于无线局域网的性能发挥着重要作用。我们提出了一种有限负载条件下802.11 MAC层协议的数学模型,该模型利用二维Markov链分析了802.11无线局域网节点的退避过程及空闲等待过程,通过求解Markov模型的稳态概率,计算出802.11无线局域网MAC的吞吐量,并得出802.11 WLAN MAC层接入延时。我们根据模型结果,首次提出了802.11MAC在饱和与非饱和临界条件下的不稳定问题,并通过仿真验证了分析结果。
     2多跳无线局域网的MAC层优化协议。当前的单跳无线局域网存在着覆盖范围小等问题,目前IEEE 802.11s工作组正在制定一种多跳的Mesh WLAN标准,因此多跳的802.11无线局域网是无线局域网研究的前沿课题。本文分析了多跳IEEE 802.11网络的节点传输失败原因的非对称性(即节点在不同传输方向上的导致传输失败原因不相同的特性),针对已有的802.11 MAC采用相同的失败重传机制存在的问题,提出在多跳IEEE 802.11 MAC协议中对于不同的传输方向采用非对称的退避机制,进而提出了MAC层优化协议DCF-CD。DCF-CD主要思想是:根据对节点传输失败概率和退避过程中时隙繁忙概率的估计,在节点进行传输失败重传时以计算得到的概率增大退避时间,通过提高多跳802.11网络中信道空间复用能力,来提高网络的整体吞吐能力。本文提出的优化协议不需要对物理层提供额外要求,降低了该优化协议实现的复杂度。
     3 Internet路由器主动队列管理模型与算法研究。用户与服务器在Internet上通信的关键问题是Internet拥塞控制,路由器主动队列管理是Internet拥塞控制的重要机制。本文中,我们根据TCP/AQM流体模型的分析提出了TCP/AQM系统稳定的充分条件。流体模型存在着不足,我们利用2-D Markov链提出了一种新的TCP/AQM时延闭环反馈模型,它不仅能有效地分析TCP发送窗口、路由器队列长度(排队时延)及路由器丢包率的平均值,还能通过Markov链的求解得到TCP/AQM系统重要参数的稳态分布。对于TCP-UDP混合流,本文研究了路由器TCP与UDP区分服务的队列机制,并将TCP/AQM Markov模型扩展为TCP-UDP/AQM模型,以分析UDP流对TCP/AQM系统的影响;同时我们提出了一种在单一队列中区分不同优先级UDP流的区分服务的主动队列管理算法,它能够通过对队列状态的估计调整丢包策略以减少UDP流的丢包率。
     4用户行为与流量模型和服务器参数优化算法。影响用户与服务器通信性能的另一关键问题是服务器拥塞控制。我们提出了用户行为与服务器消息流量的数学模型。我们根据对用户随时间行为变化的分析,提出了一种用户状态转移模型,根据用户行为与服务器消息流量的关系以及系统消息相互之间的关系,提出了服务器的流量模型。根据该模型可以估计到达服务器的消息流量,以用于设计服务器容量以及预测服务器潜在的拥塞风险。此外,我们分析了服务器中一种特殊消息队列QCVBA(集束式到达服务器带休假队列)的模型,并根据模型分析的结果提出了一种服务器的参数的优化算法。利用该算法,服务器能够在满足消息队列的QoS要求的前提下,获得最长的休假时间处理其它事务,从而提高服务器的性能。
This thesis studies on the models and schemes of some key issues in the communication between users and server via Wireless Local Area Network (WLAN) and Internet. Its contribution is as follows:
     1. The model of 802.11 MAC layer in finite load condition. When users access to Internet server via WLAN, the performance of WLAN directly influences the performance of users-server communication. The MAC layer protocol plays a crucial role in WLAN. We propose a novel model of 802.11 MAC in finite load condition. This model implements a 2-D Markov chain to analyze the backoff periods and waiting periods of nodes in 802.11 WLAN, and the stationary distribution of the Markov chain is calculated. By this model, not only the system throughput but also the access delay in MAC layer can be obtained. The instability problem of 802.11 WLAN in the saturated-unsaturated border field is firstly proposed based on this model, and this model is validated by simulations.
     2. The enhanced MAC protocol for multihop WLAN. There are some shortages in the single-hop WLAN currently used, such as limited coverage. IEEE 802.11s Task Group is developing a standard for multihop Mesh WLAN, so it is an advanced topic to study on the multihop 802.11 WLAN MAC. This thesis analyzes the asymmetry of transmission failures in different directions (which means in different directions a node may encountes different kinds of failures) and points out the reasons why current 802.11 MAC which uses symmetrical backoff mechanism operates inefficiently in the multihop WLAN. We propose an enhanced MAC protocol called DCF-CD to use asymmetrical backoff mechanisms in different directions. The basic idea of DCF-CD is:based on the estimation of transmission failure probability and slot busy probability in backoff period, when a node transmits unsuccessfully it increases its backoff period with a calculated probability. This protocol can improve the channel spatial reuse in multihop 802.11 WLAN and increase the total throughput. The proposed protocol does not require any additional overheads in physical layer, so it is easy to be implemented.
     3. Research on model and scheme of Active Queue Management (AQM) in Internet router. Congestion control is a key issue when users communicate with server via Internet. AQM is an important Internet congestion control mechanism. In this thesis, based on the fluid model we propose a sufficient condition for stability of TCP/AQM system. For some shortages in fluid model, we propose a novel model of TCP/AQM delayed closed-loop feedback system based on 2-D Markov Chain. This model can estimate the mean values of TCP congestion window, router queue length (queuing delay) and packets dropped probability. The distribution of some key parameters can also be obtained from the equilibrium distribution of the Markov chain. For TCP-UDP mixed flows, we study on the multi-queues mechanism, and extend the TCP/AQM Markov model to a TCP-UDP/AQM model to analyze the TCP/AQM system with UDP flows existing. For the UDP queue, we propose a differentiated services (DiffServ) AQM scheme for multi-priorities UDP flows, which can decrease the UDP packets dropped ratio by estimating the queue states.
     4. The user behavior and traffic model and a scheme to optimize server's parameters. In addition to the issues in WLAN and Internet, congestion control in server is another key issue affecting the performance of users-server communication. We propose a model analyzing the user behavior to estimate the messages traffic in server. Firstly, we analyze the user behavior in a day, and then propose a user behavior model, and based on the relationship between user behavior and system traffic and the relationship among messages, we propose a model of the messages traffic in server. Moreover, we analyze a special messages queue QCVBA (Queue with Controlled Vacation and Batched Arrival) in server, and based on analysis results we propose a scheme to optimize the server parameters. By the proposed scheme, when handling QCVBA queue, the server can obtain optimal vacation time with satifying the basic QoS requirements, to make server performance improved.
引文
[1]S. Shenker. Fundamental design issues for the future Internet, IEEE Journal on Selected Areas in Communications,1995,13(7):1176-1188.
    [2]B. Braden, D. Clark, J. Croweroft, et al. Recommendations on Queue Management and Congestion Avoidance in the Internet. RFC2309, IETF,1998.
    [3]Zhenzhen Cao, Ren P. Liu, Xun Yang and Yang Xiao, Modeling IEEE 802.11 DCF system dynamics, IEEE Wireless communications and Networking conference (WCNC'2010)已录用.
    [4]Zhenzhen Cao, Zvi Rosberg, Xun Yang and Ren P. Liu. Instability of Queuing systems of IEEE 802.11 WLANs. In proc. of ICTCC'09, Sydney, Nov.2009.
    [5]Zhenzhen Cao, Zvi Rosberg, Xun Yang and Yang Xiao, MAC Enhancement to Improve throughput for IEEE 802.11 Multihop WLANs. (submitted to IEEE Transaction on Vehicular Technology.,2009).
    [6]Zhenzhen Cao, Zvi Rosberg, Xun Yang and Yang Xiao, Differentiate backoff mechanisms for transmission directions in IEEE 802.11 multihop WLANs, IEEE ICC'2010已录用.
    [7]Yang Xiao, Haifeng Du, Zhenzhen Cao and Moon-he Lee,2D Stability Analysis for Bottleneck Networks with Active Queue Management(AQM), Chinese Journal of Electronics, April 2007,.
    [8]曹振臻,肖扬,瓶颈网络TCP/主动队列管理模型及仿真,系统仿真学报,Sep.2009,21(17):5491-5497.
    [9]曹振臻,肖扬,基于离散二维Markov链的TCP/RED模型,信号处理,Aug.2007,23(4):425-428.
    [10]Zhenzhen Cao, Yang Xiao and Caixia Chi, A Novel Markov Analytical Model for the TCP/AQM Systems. (Journal of Electronic (China)已录用,2009)。
    [l1]曹振臻,肖扬,一种支持区分服务的主动队列管理算法,铁道学报,Aug.2008,30(4):32-38.
    [12]Zhenzhen Cao and Yang Xiao, A New DiffServ Supported AQM Algorithm, the 8th International Conference on Signal Processing (ICSP'06), November,2006, pp.2031-2034.
    [13]Zhenzhen Cao, Caixia Chi, Ruibing Hao and Yang Xiao, User Behavior Modeling and traffic analysis of IMS Presence Servers, IEEE GLOBECOM'08, New Orleans, Nov.2008, pp.1-5.
    [14]Caixia Chi, Ruibing Hao, Dawei Wang and Zhenzhen Cao, "IMS Presence server:traffic Analysis and Performance modeling". In proc. of IEEE ICNP'08, Dec.2008, pp.63-72.
    [15]The network simulator-ns-2, http://www.isi.edu/nsnam/ns.
    [16]IEEE Computer Society. IEEE Std 802.11-1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. New York:IEEE press,1999.
    [17]IEEE Computer Society. IEEE Std 802.11 a-1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Higher-Speed Physical Layer Extension in the 5GHz Band. New York:IEEE press,1999.
    [18]IEEE Computer Society. IEEE Std 802.11b-1999.Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Higher-Speed Physical Layer Extension in the 2.4GHz Band. New York:IEEE press,1999.
    [19]IEEE Computer Society. IEEE Std 802.11g-2003.Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4:Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band. New York:IEEE press,2003.
    [20]IEEE Computer Society. IEEE Std 802.11d-2001. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 3:Specification for operation in additional regulatory domains. New York:IEEE press,2001.
    [21]IEEE Computer Society. IEEE Std 802. 11e-2005.Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Medium Access Control (MAC) Quality of service Enhancements. New York:IEEE press,2005.
    [22]N. Abramson. The ALOHA System-Another Alternative For Computer Communications, in AFIPS Conference Proceedings, Montvale, N.J.:AFIPS Press,1970,37:281-285.
    [23]L. Kleinrock and F. Tobagi, Random Access Techniques for Data Transmission over Packet-switched Radio Channels, in Proc. of AFIPS, Montvale, N.J.,1975,44:187-201.
    [24]L. G. Roberts. ALOHA Packet System with and without Slots and Capture, Computer Communications Review, April 1975,1:28-42.
    [25]N. Abramson, Packet Switching with Satellites, in Proc. of AFIPS, Montvale, N.J.,1973, 42:695-702.
    [26]L. G. Roberts, ARPANET Satellite System, Notes 8 (NIC Document 11290) and 9 (NIC Document 11291), available from the ARPA Network Information Centre, Stanford Research Institute, Menlo Park, Calif,1972.
    [27]L. Kleinrock and S. Lam. Packet-switching in a Slotted Satellite Channel, in Proc. of AFIPS, Montvale, N.J.,42:703-710.
    [28]L. Kleinrock and F. A. Tobagi. Packet Switching in radio channels:Part Ⅰ-Carrier sense multiple-access modes and their throughput-delay characteristics, IEEE Transactions on Communications,Dec.1975,COM-23:1400-1416;
    [29]S. G. Glisic.1-persistent Carrier Sense Multiple Access in Radio Channels with Imperfect Carrier Sensing, IEEE Transaction on Communications, Mar.1991,39(3):458-464.
    [30]S. G. Glisic, R. Rao and L. B. Milstein, The Effect of Imperfect Carrier sensing On NonPersistent Carrier Sense Multiple Access, in Proceedings of IEEE International Conference on Communications, Atlanta, April 1990,1266-1269.
    [31]H. Takagi and L. Kleinrock. Throughput Analysis for Persistent CSMA Systems, IEEE Transaction on Communications, Jul.1985, COM-33(7):627-638.
    [32]S. Floyd, V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking,1993,1 (4):397-413.
    [33]W. Feng, D. Kandlur, D. Saha, and K. Shin. "The BLUE active queue management algorithms", IEEE/ACM Transactions on Networking (TON),2002,10 (4):513-528.
    [34]S. Floyd, R. Gummadi, and S. Shenker. "Adaptive RED:an algorithm for increasing the robustness of RED's Active Queue Management". http://www.icir.org/floyd.
    [35]T. Ott, et.al. SRED:Stabilized RED, in Proc. IEEE INFOCOM, San Francisco, CA, Mar.1999, pp.1346-1355.
    [36]G Bianchi, IEEE 802.11 Saturated Throughput Analysis, IEEE Communication Letter, Dec. 1998,2(12):318-320.
    [37]G Bianchi, Performance Analysis of the IEEE 802.11 Distributed Coordination Function, IEEE Journal on Selected Areas in Communication, March 2000,18(3):535-547.
    [38]H. Wu, Y. Peng, K. P. Long, et al., Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN:Analysis and Enhancement, in Proc. of IEEE Conference on Computer Communications (INFOCOM'02), New York, US,2002,599-607.
    [39]V. M. Vishnevsky and A. I. Lyakhov,802.11 LANs:Saturated Throughput in the Presence of Noise, in Proc. of the 2nd International IFIP TC6 Networking Conference, Pisa, Italy,2002, 1008-1019.
    [40]V. M. Vishnevsky and A. I. Lyakhov, IEEE 802.11 Wireless LAN:Saturation Throughput Analysis with Seizing Effect Consideration, Cluster Computing, April 2002,5(2):535-548.
    [41]F. Cali, M. Conti and E. Gregori, IEEE 802.11 Wireless LAN:Capacity Analysis and Protocol Enhancement, in Proc. of IEEE Computer and Communications (INFOCOM'98), San Francisco, CA,1998, pp.142-149.
    [42]F. Cali, M. Conti, and E. Gregori, IEEE 802.11 Protocol:Design and Performance Evaluation of an Adaptive Backoff Mechanism, IEEE Journal on Selected Areas in Communications, September 2000,18(9):1774-1786.
    [43]P. Chatzimisios, V. Vitsas and A. C. Boucouvalas, Throughput and Delay Analysis of the IEEE 802.11 Protocol, in Proc. of the 5th IEEE International Workshop on Network Appliances (IWNA'02), Liverpool, UK,2002,168-174.
    [44]P. Chatzimisios, A. C. Boucouvalas and V. Vitsas, Packet Delay Analysis of IEEE 802.11 MAC Protocol, IEE Electronics Letters, Sep.2003,39(18),1358-1359.
    [45]Z. Hadzi-Velkov and B. Spasenovski, Saturated Throughput Delay Analysis of IEEE 802.11 DCF in Fading Channel, in Proc. of IEEE International Conference on Communications (ICC'03), Anchorage, AK,2003,121-126.
    [46]E. Ziouva and T. Antonakopoulos, CSMA/CA Performance Under High Traffic Conditions: Throughput and Delay Analysis, Computer Communications, Mar.2002,25(3):313-321.
    [47]F. Alizadeh-Shabdiz and S. Subramaniam, A Finite Load Analytical Model for the IEEE 802.11 Distributed Coordination Function MAC, in Proc. of WiOpt'03 workshop, INRIA Sophia-Antipolis, France,2003,3-5.
    [48]E. Ziouva and T. Antonakopoulos, The Effect of Finite Population on IEEE 802.11 Wireless LANs Throughput/Delay Performance, The 2002 Mediterranean Electro technical Conference (MELECON'02), Cairo, Egypt,2002,95-99.
    [49]J. Weinmiller, H. Woesner and A. Wolisz, Analyzing and Improving the IEEE 802.11-MAC Protocol for Wireless LANs, in Proc. of the 4th International Workshop on Modeling, Analysis, and Simulation On Computer and Telecommunication Systems, San Jose, California, USA, 1996,200-206.
    [50]S. Sadalgi, A Performance Analysis of the Basic Access of IEEE 802.11 Wireless LAN MAC Protocol (CSMA/CA), Tech. Report, CS-Rutgers University, NJ,2000.
    [5l]李波,李建东,方勇,非饱和状态下IEEE 802.11 DCF的性能分析,西安电子科技大学学报,2007,34(1):76-81.
    [52]M. Natkaniec and A. R. Pach, An Analysis of the Backoff Mechanism used in IEEE 802.11 networks, in Proc. of 5th IEEE Symposium on Computers and Communications(ISCC'00), Antibes, France,2000, pp.444-449.
    [53]Y. C. Tay and K. C. Chua, A Capacity Analysis for the IEEE 802.11 MAC Protocol, Wireless Networks, Mar.2001,7(2):159-171.
    [54]G Cantieni, Q. Ni, C. Barakat, T. Turletti, "Performance analysis under finite load and improvements for multirate 802.11", Commput. Commun., June 2005,28(10):1095-1109.
    [55]D. Malone, K. Duffy, D. Leith, "Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions", IEEE/ACM Trans, on Networking, Feb.2007,15(1): 159-172.
    [56]R. Liu, G. Sutton, I. B. Collings, A 3-D Markov Chain Queueing Model of IEEE 802.11 DCF with Finite Buffer and Load, in Proc. of IEEE ICC 2009, June 2009, pp.1-6.
    [57]K. Duffy, D. Malone and J. Leith, Modeling the 802.11 Distributed Coordination Function in Non-Saturated Conditions, IEEE Communication Letters, Aug.2005,9(8):715-717.
    [58]W. Lee, C. Wang and K. Sohraby, On Use of Tranditional M/G/1 Model for IEEE 802.11 DCF in Unsaturated Traffic Conditions, in Proc. of IEEE WCNC 2006,2006, pp.1933-1937.
    [59]O. Tickoo and B. Sikdar, A queueing model for finite load IEEE 802.11 random access MAC, in Proc. of IEEE ICC 2004,2004, pp.175-179.
    [60]F. Daneshgaran, M. Laddomada, F. Mesiti and M. Mondin, On the Linear Behavior of the Throughput of IEEE 802.11 DCF in Non-saturated Conditions, IEEE Communication Letters, Nov.2007,11(11):856-858.
    [61]L. Kleinrock. Queuing Systems, Vol. Ⅰ:Theory, New York, Wiley Interscience,1975.
    [62]G. R. Hiertz, S. Max, Y. Zang, T. Junge, D. Denteneer, IEEE 802.11s MAC Fundamentals, in Proc. IEEE MASS'07, Oct.2007, pp.1-8.
    [63]L.Bononi, M.Conti and E.Gregori, Runtime Optimization of IEEE 802.11 Wireless LANs Performance, IEEE Trans. on Parallel and Distributed Systems, January 2004,15(1):66-80.
    [64]E. Jung, N. Vaidya, An Energy Efficient MAC Protocol for Wireless LANs, Proc. of IEEE INFORCOM, June 2002, pp.1756-1764.
    [65]H. Wu, S. Cheng, Y. Peng, IEEE 802.11 Distributed Coordination Function (DCF):Analysis and Enhancement, Proc. of IEEE ICC'02, May 2002, pp.605-609.
    [66]Y. Peng, H. Wu, S. Cheng, A New self-adapt DCF algorithm, Proc. of IEEE GLOBECOM'02, Nov.2002, pp.87-91.
    [67]张国鹏,邹向毅,赵力强,张海林,基于效用最大化的IEEE 802.11 DCF性能分析及改进,电子与信息学报,2008,30(12):3027-3030.
    [68]D. Deng, C. Ke, H. Chen and Y. Huang, Contention Window Optimization for IEEE 802.11 DCF Access Control, IEEE Trans. on Wireless Communications, Dec.2008,7(12):5129-5135.
    [69]Y. Kwon, Y. Fang, H. Latchman, Design of MAC protocols with fast Collision resolution for wireless local area networks, IEEE trans. on Wireless Communications,3(3):793-807.
    [70]G. Bianchi, L. Fratta, M. Oliveri, Performance evaluation and enhancement of the CSMA/CA MAC protocol for IEEE 802.11 wireless LANs, Proc. of PIMRC, vol.2, Oct.1996, pp.392-396.
    [71]G. Bianchi, I. Tinnirello, Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network, Proc. of IEEE INFOCOM, vol.2, Apr.2004, pp.844-852.
    [72]J. Kim, E. Serpedin, and D. Shin, Improved particle filtering-based estimation of the number of competing stations in IEEE 802.11 networks, IEEE Signal Processing Letter,2008,15:87-90.
    [73]K. Kim, A. Ahmad, K. Kim, A wireless multimedia LAN architecture using DCF with shorten contention window for QoS provisioning, IEEE Communications Letters, Feb.2003,7(2): 97-99.
    [74]A. Toledo, T. Vercauteren, X. Wang, Adaptive Optimization of IEEE 802.11 DCF Based on Bayesian Estimation of the Number of Competing Terminals, IEEE Transactions on Mobile Computing, Sept.2006,5(9):1283-1296.
    [75]C. Wang, B. Li, L. Li, A New Collision Resolution Mechanism to enhance the Performance of IEEE 802.11 DCF, IEEE Transactions on Vehicular Technology,2004,53(4):1235-1246.
    [76]Y. Kwon, Y. Fang, H. Latchman, A Novel MAC protocol with Fast Collision Resolution for Wireless LANs, in Proc. of IEEE INFOCOM'03, Vol.2, Apr.2003, pp.853-862.
    [77]陈羽中,IEEE 802.11 DCF退避机制分析和改进,应用科学学报,2006,24(1):10-14.
    [78]H. Ma, X. Li, H. Li, P. Zhang, S. Luo, C. Yuan, Dynamic Optimization of IEEE 802.11 CSMA/CA Based on the Number of Competing Stations, in Proc. of IEEE ICC'04, Jun.2004, pp.191-195.
    [79]李云,隆克平,吴诗其,陈前斌,IEEE 802.11 DCF性能分析及改进,电子学报,2003,31(10):1446-1451.
    [80]D. Qiao, K. Shin, UMAV:a simple enhancement to the IEEE 802.11 DCF, in Proc. of the 36th Annual Hawaii International Conference on System Science, Jan.2003, pp.9-13.
    [81]N. Song, B. Kwak, J. Song, L. Miller, Enhancement of IEEE 802.11 Distributed Coordination Function with Exponential Increase Exponential Decrease Backoff Algorithm, in Proc. IEEE VTC'03,2003.
    [82]Y. Yang, J. Wang, R. Kravets, Distributed Optimal Contention Window Control for Elastic Traffic in Single Cell Wireless LANs, IEEE/ACM Transaction on Networking, Dec.2007,15(6): 1373-1386.
    [83]H. Kim, J. Hou, Improving Protocol Capacity with Model-based Frame Scheduling in IEEE 802.11-operated WLANs, in Proc. ofACMMobiCom,2003, pp.190-204.
    [84]H. Kim, J. Hou, Improving Protocol Capacity for UDP/TCP Traffic with Model-based Frame Scheduling in IEEE 802.11-operated WLANs, IEEE Journal on Selected Areas in Communications, Dec.2004,22(10):1987-2003.
    [85]康凯,林孝康,IEEE 802.11 MAC层中一种减小冲突的方法,哈尔滨工业大学学报,2009,41(1):156-160.
    [86]赵力强,樊昌信,ADCF:IEEE 802.11 DCF协议的自适应简便算法,电路与系统学报,2003,8(4):100-102.
    [87]Q. Ni, I. Aad, C. Barakat, T. Turletti, Modeling and analysis of slow CW decrease IEEE 802.11 WLAN, in Proc. ofIEEE PIMRC'03,Vol.2, Sept.2003, pp.1717-1721.
    [88]I. Aad, Q. Ni, C. Barakat, T. Turletti, Enhancing IEEE 802.11 MAC in congested environments, Computer Communications, Sept.2005,28(14):1605-1617.
    [89]Y. Peng, H. Wu, S. Chen, K. Long, Design of a New Self-Adapt DCF Algorithm, Chinese of Journal Electronics,2004,13(2):349-354.
    [90]W. Kuo, C. Kuo, Enhanced backoff scheme in CSMA/CA for IEEE 802.11, in Proc. of IEEE VTC'03-Fall, Vol.5, Oct.2003, pp.2809-2813.
    [91]Z. Haas, J. Deng, On Optimizing the Backoff Interval for Random Access Schemes, IEEE Transactions on Communications, Dec.2003,51(12):2081-2090.
    [92]H. Cho, S. Park, Modified Backoff Algorithm with Station Number Adaptiveness for IEEE 802.11 Wireless LANs, IEICE Transactions on Communications, Dec.2003, E86-B(12): 3626-3629.
    [93]X. Tian, X. Chen, T. Ideguchi, Y. Fang, Improving Throughput and Fairness in WLANs Throughput Dynamically Optimizing Backoff, IEICE Transactions on Communications, Nov. 2005, E88-B(11):43284338.
    [94]K. Xu, M. Gerla, S. Bae, Effectiveness of RTS/CTS handshake in IEEE 802.11 based ad hoc networks, Ad Hoc Networks, Jul.2003,1(1):107-123.
    [95]K. Mittal, E. Belding, RTSS/CTSS:Mitigation of exposed terminals in static 802.11-based mesh networks, in Proc. of 2nd Workshop Wireless Mesh Netw., Sep.2006, pp.3-12.
    [96]S. Ray, J. B. Carruthers, D. Starobinski, RTS/CTS-Induced Congestion in Ad Hoc Wireless LANs, in Proc. IEEE WCNC'03, Mar.2003, pp.1516-1621
    [97]F. Ye, S. Yi, B. Sikdar, Improving spatial reuse of IEEE 802.11 based ad hoc networks, in Proc. of IEEE GlobeCom'03, Dec.2003, pp.1013-1017.
    [98]J. Deng, B. Liang, P. Varshney, Tuning the carrier sensing range of IEEE 802.11 MAC, in Proc. IEEE GlobeCom, Nov.-Dec.2004, pp.2987-2991.
    [99]J. Zhu, X. Guo, L. Yang, W. Conner, Leveraging spatial reuse in 802.11 mesh networks with enhanced physical carrier sensing, in Proc. IEEE ICC'04, Jun.2004, pp.4004-4011.
    [100]X. Yang, N. Vaidya, On physical carrier sensing in wireless ad hoc networks, in Proc. of IEEE INFOCOM'05, pp.2525-2535.
    [101]H. Zhai, Y. Fang, Physical carrier sensing and spatial reuse in multirate and multihop wireless ad hoc networks, in Proc. of IEEE INFOCOM'06, Apr.2006, pp.1-12.
    [102]J. Monks, V. Bharghavan, W.-M. Hwu, A power controlled multiple access protocol for wireless packet networks, in Proc. of IEEE INFOCOM, Apr.2001, pp.219-228.
    [103]M. Cesana, D. Maniezzo, P. Bergamo, M. Gerla, Interference aware (IA) MAC:An enhancement to IEEE 802.11b DCF, in Proc. of IEEE VTC'03-Fall, Oct.2003, pp.2799-2803.
    [104]C.-H. Yeh, The heterogeneous hidden/exposed terminal problem for power-controlled ad hoc MAC protocols and its solutions, in Proc. of IEEE VTC'04-Fall, Sep.2004, pp.2548-2554.
    [105]S. Heuvel-Romaszko, C. Blondia, Enhancements of the IEEE 802.11-A MAC protocol for ad hoc network with history of power adjustment, in Proc. IEEE Int. Conf. Wireless Netw., Commun., Mobile Comput., Jun.2005, pp.48-54.
    [106]Y. Zhou, S. Nettles, Balancing the hidden and exposed node problems with power control in CSMA/CA-based wireless networks, in Proc. IEEE WCNC'05, Mar.2005, pp.683-688.
    [107]A. Acharya, A. Misra, S. Bansal, MACA-P:A MAC for concurrent transmissions in multi-hop wireless networks, in Proc. of IEEE Int. Conf. Pervasive Computer Communications, Mar.2003, pp.505-508.
    [108]S. Hur, S. Mao, T. Hou, K. Nam, and J. H. Reed, Exploiting Location Information for Concurrent Transmissions in Multihop Wireless Networks, IEEE Transactions on Vehicular Technology, Jan.2009,58(1):314-323.
    [109]L. Jiang, S. Liew, Improving Throughput and Fairness by Reducing Exposed and Hidden Nodes in 802.11 Networks, IEEE Transactions on Mobile Computing, Jan.2008,7(1):34-49.
    [110]P. Wang, H. Jiang, W. Zhuang, A New MAC Scheme Supporting Voice/Data Traffic in Wireless Ad Hoc Networks, IEEE Transaction on Mobile Computing, Dec.2008,7(12): 1491-1503.
    [11l]谢海波,崔毅东,徐惠民,一种联合路由层信息设计的多跳Ad Hoc MAC层协议,电子学报,2006,34(12):2129-2133.
    [112]Z. Haas, J. Deng, Dual Busy Tone Multiple Access (DBTMA)-A Multiple Access Control Scheme for Ad Hoc Networks, IEEE Transactions on Communications, Jun.2002, 50(6):975-985.
    [113]H. Zhai, J. Wang, Y. Fang, D. Wu, A Dual-Channel MAC Protocol for Mobile Ad Hoc Networks, in Proc. of IEEE GlobeCom Workshops, Nov.-Dec.2004, pp.27-32.
    [114]X. Yang, N. Vaidya, Priority Scheduling in Wireless Ad Hoc Networks, in Proc. ACM MobiHoc'02, Jun.2002, pp.71-79.
    [115]S. Jiang, J. Rao, D. He, X. Ling, C. Ko, A Simple Distributed PRMA for MANETs, IEEE Transactions on Vehicular Technology, Mar.2002,51(2):293-305.
    [116]张克旺,张德运,蒋卫华,一种适应于静态Ad Hoc网络的高吞吐量MAC协议,软件学报,2009,20(4):954-964.
    [117]F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin, and M. Zanolo, "Saturation Throughput Analysis of IEEE 802.11 in the Presence of Non Ideal Transmission Channel and Capture Effects," IEEE Trans. on Comms., vol.56, no.7, Jul.2008
    [118]F. Daneshgaran, M. Laddomada, F. Mesiti, and M. Mondin, "Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects," IEEE Trans. on Wireless Comms. vol.7, no.4, Apr.2008.
    [119]Ad hoc on demand distance vector (AODV) routing, IETF Internet Draft, Work in Progress, [Online]. Available:http://www.ietf.org/internet-drafts/draft-ietf-manet-adov.03.txt, Jun.1999.
    [120]W. Feng, D. Kandlur, D. Saha and K. Shin. A self-configuring RED gateway. Proc. of INFOCOM'99, New York, IEEE Communications Society,1999,1320-1328.
    [121]S. Floyd, R. Gummadi, S. Shenker. Adaptive RED:An algorithm for increasing the robustness of RED's active queue management. Technical Report,2001, http://www.icir.org/floyd/papers/adaptive Red.pdf
    [122]安智平,张德运,党红梅,丁会宁,一种改进的随机早期检测算法,西安交通大学 学报,2003,37(8):829-832.
    [123]汤德佑,骆嘉伟,张大方,参数自适应的随机早期检测算法,系统仿真学报,2003,15(12):1741-1744.
    [124]安智平,张德运,赵东平,高磊,一种适用于实时多媒体业务的随机早期检测算法,西安交通大学学报,2004,38(10):1061-1064.
    [125]V. Misra, W. Gong, D. Towsley. Fluid-Based analysis of a network of AQM routers supporting TCP flows with an application to RED. ACM SIGCOMM Computer Communication Review,2000,30(4):151-160.
    [126]C.V.Hollot, Misra V, Towsley D, Gong WB. On designing improved controllers for AQM routers supporting TCP flows. IEEE INFOCOM,2001:1726-1734.
    [127]卿利,主动队列管理及无线传感器网络若干问题研究[博士论文],电子科技大学,成都,2007.
    [128]H. Alazemi, A. Mokhtar, M. Azizoglu, Stochastic approach for modeling random early detection gateways in TCP/IP networks, in proc. of IEEE ICC'01,2001:2385-2390.
    [129]汪浩,严伟,基于自相似聚合业务流量的AQM算法性能分析,软件学报,2004,17(9):1958-1968.
    [130]T. Bonald, M. May, J. Bolot, Analytic evaluation of RED performance, in proc. of IEEE INFOCOM,2000:1415-1424.
    [131]Postel, J. (ed.), Transmission Control Protocol DAPRA Internet Program Protocol Specification, RFC 793, USC/Information Science Institute, September 1981.
    [132]R. Caceres, Measurements of Wide-Area Internet Traffic, UCB/CSD 89/550, University of California, Berkeley, CA, December 1989.
    [133]K. Thompson, G. Miller, R. Wilder, Wide Area Internet Traffic Patterns and Characteristics, IEEE Network,Nov./Dec.1997,11(6):10-23.
    [134]Y. Xiao, "Robust stability conditions of interval time-delay systems", Proc. of IEEE TENCON 2004, pp.465-468.
    [135]Y. Xiao, "2-D algebraic test for stability of time-delay systems", Proceedings of the American Control Conference,2002, pp.3351-3356.
    [136]Y. Xiao, "2-D algebraic test for robust stability of interval time-delay systems", Proc. of 8th International Conference on Control, Automation, Robotics and Vision (ICARCV2004), 2004, pp.1620-1625.
    [137]孙荣恒,李建平.排队论基础.北京:科学出版社,2002。
    [138]Postel, J. (ed.), User Datagram Protocol, RFC 768, USC/Information Science Institute, August 1980.
    [139]Y. Xiao, L. Wang, J. Niu, etc, Congestion control algorithms for a new TCP/UDP router based on 2-D stability conditions, IEEE Wicom'2009, Sep.2009, pp.1-5.
    [140]Y. Xiao, K. Kim, Congestion Control of Differentiated Service Network, Chinese Journal of Electronics,2008.
    [141]D. Clark and W. Fang. Explicit allocation of best effort packet delivery service, IEEE/ACM Trans. on Networking,1998,6(4), pp.362-373.
    [142]CISCO SYSTEM, Congestion Avoidance Overview, http://www.cisco.com/en/US/docs /ios/12_2/qos/configuration/guide/qcfconav_ps1835_TSD_Products_Configuration_Guide_Cha pter.html#wp1000979.
    [143]Shushan Wen, Yuguang Fang, Hairong Sun, "Differentiated Bandwidth Allocation with TCP Protection in Core Routers", IEEE Transactions on Parallel and Distributed Systems, 2009,20(1):34-47.
    [144]S. Blake, D. Black, M. Carlson, et al. An Architecture for Differentiated Services. RFC 2475, IETF,1998.
    [145]C. Urrutia-Valdes, A. Mukhopadhyay, and M. El-Sayed, Presence and Availability with IMS:Applications Architecture, Traffic Analysis, and Capacity Impacts, Bell Labs Technical Journal,2006,10(4):101-107.
    [146]M.Pous, et.al. Performance Evaluation of a SIP Based Presence and Instant Messaging Service For UMTS, in Proc. of International Conference on 3G Mobile Communication Technologies, June 2003, pp.254-258.
    [147]周咏梅,阳爱民,彭召意,wEB服务器区域访问流量预测模型设计,计算机工程与应用,2004,40(3):154-157.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.