钙离子介导的信号通路在人成骨肉瘤细胞迁移中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于肿瘤转移机制的报道很多,本课题主要针对Ca2+相关通路,以人成骨肉瘤细胞(MG63)为平台,研究钙调磷蛋白磷酸酶(PP2B)、钙调素依赖蛋白激酶Ⅱ(CaMKII)和LIM激酶(LIMK1)对丝切蛋白磷酸酶(SSH1L)的活性调控,从而观察肿瘤细胞伪叶的形成及细胞迁移能力的变化。
     本研究将不同方法标记的丝切蛋白磷酸酶重组载体(YFP-SSH1L, Myc-SSH1L等)分别转染到MG63细胞中,并加入Ca2+运输载体A23187,通过共聚焦显微镜和免疫印迹来观察发现5μM的A23187可通过调节钙调磷蛋白磷酸酶(PP2B)的活性,激活SSH1L,促使P-cofilin的水平降低。当用1μM的A23187载体作用MG63细胞时, CaMKII和LIMK1活性达到了最大,同时P-cofilin水平升高,当在高钙环境时(A23187为5μM),CaMKII和LIMK1活性则降至最低。当P-cofilin水平较低时,促进了肌动蛋白(actin)的动力学作用,从而促进细胞的移动和趋化性,诱导骨肉瘤细胞细胞形成伪叶,并且其作用可被PP2B的抑制剂氯氰菊酯(cypermethrin)完全抑制。通过体外激酶测定及SSH1L磷酸酶活性测定实验显示CaMKII可使SSH1L磷酸化,但是对其的2个丝氨酸突变体无作用。
     这些结果表明Ca2+信号介导PP2B对SSH1L有激活作用,而CaMKII和LIMK1则对SSH1L起着负相调节的作用,通过对这些Ca2+的相关通路的研究有助于揭示骨肉瘤细胞侵袭、转移的机制,并为临床治疗提供了一定的理论基础。
Osteosarcoma is the second most common primary malignancy of bone, espacialy for the children and adolescents. Osteosarcoma accounts for 20% of primary bone malignancies. The age of onset of this tumors mainly in 14- 25 years and above 60 years, slightly lower than the incidence of chondrosar- coma, but has higher mortality, accounting for 2/5 of bone sarcoma, pathogenesis is unknown. Osteosarcoma is a bone tumor that can occur in any bone. The major of shcolar believe that The tumour may be localised at the end of the long bone. Most often it affects the upper end of tibia or humerus, or lower end of femur. When the tumor occures or the spread under the periosteum, the periosteum from the bone surface stripping and arising reactive new bone, like daylight radiation. New bone was triangular at The junction between tumors and the backbone. Grossly, osteosarcomas are big bulky tumors that are gritty, are gray-white, and often contain areas of hemorrhage and cystic degeneration. When joint invasion occurs, the tumor grows into it along tendinoligamentous structures or through the insertion site of the joint capsule. The mortality of osteosarcoma is high, survival rate of only 3-5 years after an amputation of 5-20%. It can occures lung metastasis within a few months. The percents Occurred in the distal femur and proximal tibia osteosarcoma is about three-quarters of all the other premises such as the humerus, femur, fibula, spine, iliac bone, etc can also occur.
     Calcineurin was extracted from binding protein of cyclic nucleotide phosphodiesterase, a kind of calmodulin (CaM). Calcineurin (CaN) is one member of the serine/threonine protein phosphatase family and the only known phosphatase activated by Ca2+ and CaM. The Ca2+ dependence of the phosphatase activity of CaN is controlled by two structurally similar but functionally different Ca2+ binding proteins, CaM and a regulatory subunit CaNB. Calcineurin is widely distributed in various mammalian tissues,but its concentration in brain is 10-20 times that found in other tissues . In T lymphocytes, CaN has been found intranuclearly, colocalized with one of its substrates, NFAT (Nuclear Factor of Activated T cell),which is not able to translocate into the nucleus unless it is dephosphorylated. CaN has also been found in nuclei from different species. It is also a heterodimer of a catalytic subunit (CNA) and a regulatory subunit (CNB).The catalytic subunit contains four functional domains: a catalytic domain, a CNB-binding domain (BBH), a calmodulin binding domain (CBD), and an autoinhibitory domain (AI). Some studies have shown that calcium (Ca2+) / PP2B activating downstream effector SSH-1L, and further activate its downstream Cofilin. Slingshot (SSH) is a cofilin phosphatase, its function can lead to abnormal phosphorylation of - Wire-factor (P-cofilin) level rises. Studies have shown that SSH family can play an important role through cofilin phosphorylation in the regulation of the actin cytoskeleton. Calcium / calmodulin dependent protein kinase family is a serine / threonine protease, by calmodulin (CaM) regulation. Ca2+/CaM binding to CaMKⅡsubunit, it first triggers the phosphorylation of substrate, then promoting CaMKⅡmolecules on the first 286 self-threonine phosphorylation, leading to Ca2+/ CaM dissociation rate decrease and prevent the CaM dissociation of enzymes in post- inactivation. Some studies have shown that calcium (Ca2+) / PP2B pathway can activate downstream effector SSH-1L, which can activate its downstream Cofilin.
     1 Calmodulin phosphoprotein phosphatase regulation of Slingshot 1L
     Calcium(Ca2+)/calmodulin phosphoprotein phosphatase (Calcineurin/ PP2B/ CnA/Cn) is currently the only one known phosphoprotein phosphatase depends on the Ca2+/ CaM-Ser / Thr. Our preliminary work has proven that calcium (Ca2+) / PP2B pathway can activate SSH-1L, and further activate its downstream Cofilin. However, Ca2+/ PP2B/SSH/ Cofilin pathway activated on cell biological behavior has not been unknown. In this study,we set the human osteosarcoma MG63 cells as object of study, focused on the above-mentioned pathway activation on cell morphology and its mechanism.
     We Applicate the mothed of liposome-containing YFP-SSH1L recombinant plasmid transfected into MG63 cells (human into osteoma cells) by calcium ionophore A23187 in 10-minute incubation then carried out immunocytochemical staining and cell morphology; In Vivo and In Vitro Experimental Detection of the activity of PP2B regulation on SSH1L, and also application of the immune co-precipitation experiments testing the interaction with PP2B and SSH1L situation. And we find that Ca2+ signals can induce human osteosarcoma cells to form pseudo-leaves, But was completely blocked by PP2B inhibitor of Cypermethrin; In Vitro, SSH1L phosphatase activity measurement experiments and SSH1L PP2B binding assay confirmed that SSH1L and PP2B in the cell are a pair of mutually-binding protein, while PP2B has a role in promoting SSH1L activity.
     2 CaMKII regulation activity of SSH1L
     CaMKⅡ,beling to the calcium/calmodulin-dependent protein kinase family (Ca2+/CaMK) has been becoming more hot. Calcium / calmodulin -dependent protein kinase family is a serine/threonine protease,can be regulation by calmodulin (CaM). Ca2+/ CaM binds to CaMKⅡsubunit, the first role of its is triggering the phosphorylation of substrat, while promoting CaMKⅡmolecules within the 286threonine self-phosphorylation, leading to Ca2+/ CaM dissociation rate decrease and keep the activity of enzymes while CaM dissociation. This study focused on CaMKII’s regulation on Slingshot 1L (SSH1L) activity.
     Transfect the recombinant plasmids containing Myc-SSH1L to cell MG63 through liposome method and incubate for ten minutes via calcium ionophore A23187 of different concentrations; then observe the changes of P-cofilin, P-SSH1L and P-CaMKII with Western Blot . In Vivo and In Vitro assays test the phosphorylation and activity regulation of CaMKⅡon SSH1L. Results: When the concentration of A23187 is 1μM, CaMKII activity gets to the highest and the levels of P-cofilin and phosphorylation on Ser 978 of SSH1L rise too. In vitro assays have proved that CaMKII can phosphorylate SSH1L(WT) and (NP)、SSH1L(C), but has no effect on its mutant SSH1L (2SA)); apart from this, CaMKII inhibits the activity of SSH1L (WT) obviously, but has no effect on SSH1L(2SA).
     3 Ca2+ mediated signal pathway on the regulation of LIMK1
     LIM Kinase (LIMK) is a serine / threonine protein kinase. Human LIMK family, were found two subtype, LIMK1 and LIMK2. They both have two N-terminal LIM domain, a spacer region and a C-terminal of the kinase domains. LIMK1 shuttle between the cytoplasm and the nucleus. LIMK1, in cytoplasm, can be directly phosphorylated Cofilin protein 3 serine residue and inactivate them, mainly play a role in the assembly thereby reversing the cofilin-induced actin depolymerization. Rho and other proteins can activate the phosphatase ROCK or PAK, etc., and then take the role of its by activation on downstream sub-LIMK1, at last inactivate Cofilin. Studies have shown that Rho, Rac pathway induces tumor cell invasion and metastasis by activated through the regulation of Actin rearrangements; So if blocking Rho, Rac pathway, then we can inhibition of tumor cell invasion and metastasis.
     This study focuses on the LIM Kinase 1 (LIMK1)’s activity change and effect in the Ca2+ mediated signaling pathway. We incubate MG63 cells with 5μM A23187 for 1,3,5,10-minute, then test P-LIMK1 (Thr508, on behalf of LIMK1 activity) level by Western Blot Detection; incubating MG63 cell respectively 0.5, 1, 2.5, 5μM concentrations for 10 min, detection LIMK1 activity through the P-cofilin phosphorylation level in vitro by kinase assay experiments; transfecting green fluorescent protein labeled SSH1L (YFP-SSH1L) into MG63 cells by liposome, immunofluorescence staining after 1μM of A23187 incubation. The results showed that the concentration of 5μM of A23187 induced P-LIMK1 show the trend of transient increase on MG63 cells in the initial (1 min) and then gradually decline; it reached the minimum when 10min; LIMIK1 level rise when the A23187 concentration is 1μM, then fall, reached to a minimum as 5μM; In addition, the distribution of SSH1L and F-actin from the cells were evenly became irregular aggregation, and cell morphology became irregular, by the A23187 induced of 1μM.
引文
[1]张治宇,多基因联合抑制骨肉瘤细胞S180的效应研究.中国博士学位论文全文数据库.
    [2]Witting JC,Bickel,priebatD, et al. Osteosarcoma: a multidisciplinary approach to diagosis and treatment. America Family physician, 2002, 65: 1123—1132.
    [3]郭伟,张志愿.口腔颌面部肿瘤基因治疗的进展[J].口腔颌面外科杂志,2001,11(增刊):4—6.
    [4]徐从高.癌—肿瘤学原理和实践[M].济南:山东科学技术出版社,2001.
    [5]Song SU, Boyce FM . Combination treatment for osteosarcoma with baculoviral vector mediated gene therapy (53) and chemotherapy(adriamycin) [J].Exp Mol Med,2001,33(1):46—53.
    [6]Densmore CL,kleinerman ES,Gautam A, et al.Growth suppression of established human osteosarcom lung metastases in mice by aerosl gene therapy with PEⅠ2p53 Complex[J]. Cancer Gene Ther, 2001, 8(9): 619—627.
    [7]Benjamin R, HelmanL, Meyers P, et al. A phaseⅠ∥Ⅱdose escalation and activity study of intravenous injections OCa P1 for subjects with refractory osteosarcoma metastatic to lung [J]. Human Gene Ther, 2001,12(12): 1591—1593.
    [8]Swarthout JT,Culver KW.Bystander2 mediated regression of osteoscaroma via retroviral transfer of the herpes simplex virus thymidine kinase and human interleukin 22 genes[J].Cancer Gene Ther,2000,7(2):187—196.
    [9]Lafleur EA, Jia SF, Worth LL, et al. Interleukin(IL)—12 and IL—12 gene transfer up—regulate Fas expression in human osteosarcoma and breast cancer cells[J].Cancer Res, 2001, 61(10): 4066—4071.
    [10]Gokoz,wnnder JS,Mousses S,et al.Comparision of p53 mutations in patients with localize osteosarcoma and osteosarcoma [J].Cancer, 2001,92(8):2181—2191.
    [11]Hasegwa T,Hirose T,Sekik, et al. Histological and immuno- histochemical diversites and proliferative activity and granding in osteosarcomas [J]. Cancer Detect Prev, 1997, 21(3): 280—287.
    [12]Longhi A,Benassi MS,Molendini L et al.Oncol Rep, 2001, 8(1): 131—136.
    [13] Grote HJ, Schneider-Stock R,Neuman W et,al.Virchows Arch, 2000, 436(5):494—497.
    [14]华凯,郭庆升,韩壮,吕刚,在骨肉瘤中P18蛋白表达的临床意义,中国医师杂志,2004,11(6):1565—1566
    [15]乔慧,丘钜世,张惠忠,等.单纯疱疹病毒胸腺激酶丙氧鸟苷系统对人骨肉瘤细胞杀伤作用的研究.中国病理生理杂志,2001,17:210—214
    [16]吕佳音,MDM2—siRNA靶向阻断对骨肉瘤抑制作用的实验研究.中国博士学位论文全文数据库.
    [17]E.M.Brown,G.Gamba, D.Riccardi et al.Cloning,expression and charcater- ization of an extracellular Ca2+ sensing receptor frombovine parathyroid,[J] Nature,1993,366,575-580
    [18]B.L.Black,J.E.Smith,Regulation of goblet cell differentiation by calcium in embryonic chick intestine,FASEB J.3(1989)2653–2659.
    [19]C.Nobre-Leitao,P.Chaves,P.Fidalgo,M.Cravo, A.Gouveia Oliveira, M.Ferra, F.Mira, Calcium regulation of colonic crypt cell kinetics:evidence for a direct effect in mice,Gastroenterology 109(1995)498–504.
    [20].Hobson SA,Wright J,Lee F,et al.Activation of the MAP kinase cascade by exogenous calcium-sensing receptor.Mol Cell Endocrinol 2003;200:189–98.
    [21].Chakrabarty S,Radjendirane V,Appelman H,et al.Extracellular calcium and calcium sensing receptor function in human colon carcinomas:promotion of E-cadherin expression and suppression of b-catenin/TCF activation.Cancer Res 2003;63:67–71.
    [22]E.Kallay,R.Thakker,M.Peterlik,H.Cross,Expression of a functionalcalcium- sensing receptor in colorectal cancer cells,Bone 27(2000)733.
    [23]Y.Sheinin,E.Kallay,F.Wrba,S.Kriwanek,M.Peterlik,H.Cross,Immunocytochemical localization of the extracellular calcium-sensing receptor in normal and malignant human large intestinal mucosa,J.Histochem.Cytochem. 48(2000)595– 601.
    [24]Russo J,Mills MJ,Moussalli MJ,et al.Influence of human breast development on the growth properties of primary cultures.In Vitro Cell Dev Biol 1989; 25:643–9.
    [25]VanHouten J,Dann P,McGeoch G,et al.The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport.J Clin Invest 2004;113:598–608.
    [26]Cheng I,Klingensmith ME,Chattopadhyay N,et al.Identification and localization of the extracellular calcium-sensing receptor in human breast.J Clin Endocrinol Metab 1998;83:703–7.
    [27]Sanders JL,Chattopadhyay N,Kifor O,et al.Extracellular calcium- sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines.Endoc- rinology 2000;141:4357–64.
    [28]McGrath CM,Soule HD.Calcium regulation of normal human mammary epithelial cell growth in culture.In Vitro 1984;20:652–62.
    [29]Anderson TJ,Page DC.Breast.In:McGee JOD,Isaacson PG,Wright NA, editors.Oxford textbook of pathology.Oxford:Oxford University Press;1992, p.1643–81.
    [30]Maki DD,Grossman RI.Patterns of disease spread in metastatic breast carcinoma:influence of estrogen and progesterone receptor status.AJNR Am J Neuroradiol 2000;21:1064–6.
    [31]Wedin R,Skoog L,Bauer HC.Proliferation rate,hormone receptor status and p53 expression in skeletal metastasis of breast carcinoma.Acta Oncol 2004; 43:460–6.
    [32]Cowley SM,Parker MG.A comparison of transcriptional activation by ER alpha and ER beta.J Steroid Biochem Mol Biol 1999;69:165–75.
    [33]Journe F,Dumon JC,Kheddoumi N,et al.Extracellular calcium downregulates estrogen receptor alpha and increases its transcriptional activity through calcium- sensing receptor in breast cancer cells.Bone 2004;35:479–88.
    [34]Yamaguchi T,Chattopadhyay N,Kifor O,et al.Extracellular calcium (Cao2t)-sensing receptor in a murine bone marrow-derived stromal cell line(ST2):potential mediator of the actions of Cao2ton the function of ST2 cells.Endocrinology 1998;139:3561–8.
    [35]Yamaguchi T,Chattopadhyay N,Kifor O,et al.Mouse osteoblastic cell line(MC3T3-E1)expresses extracellular calcium(Cao2t)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells.J Bone Miner Res 1998;13:1530–8.
    [36]Yamaguchi T,Chattopadhyay N,Kifor O,et al.Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line.Biochem Biophys Res Commun 2000;279:363–8.
    [37]Yano S,Macleod RJ,Chattopadhyay N,et al.Calcium-sensing receptor activation stimulates parathyroid hormone-related protein secretion in prostate cancer cells:role of epidermal growth factor receptor transactivation.Bone 2004; 35:664–72.
    [38]Sanders JL,Chattopadhyay N,Kifor O,et al.Extracellular calcium- sensing receptor(CASR)expression and its potential role in parathyroid hormone- related peptide(PTHrP)secretion in the H-500rat Leydig cell model of humoral hypercalcemia of malignancy.Biochem Biophys Res Commun 2000;269:427–32.
    [39]Powell GJ,Southby J,Danks JA,et al.Localisation of parathyroid hormone-related protein in breast cancer metastases:increased incidence in bone compared with other sites.Cancer Res 1991;51:3059–61.
    [40]Guise TA,Yin JJ,Thomas RJ,et al.Parathyroid hormone-relatedprotein(PTHrP)-(1e139)isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo.Bone 2002;30:670–6.
    [41]Kakonen SM,Selander KS,Chirgwin JM,et al.Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways.J Biol Chem 2002;277:24571–8.
    [42]Cheng SX,Geibel JP,Hebert SC.Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor. Gastroenterology 2004;126:148–58.
    [43]Kanatani M,Sugimoto T,Kanzawa M,et al.High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells.Biochem Biophys Res Commun 1999;261:144–8.
    [44]Means AR. Regulatory cascades involving calmodulin2dependent protein kinase[J ] . Mol Endo , 2000 ,14 (1) :4213.
    [45]Klee C,Vanaman T.Adv Protein Chem 1982;35:213–321.
    [46]Swindells MB,Ikura M.Nat Struct Biol 1996;3:501–4.
    [47]Weinstein H,Mehler EL.Annu Rev Physiol 1994;56:213–36.
    [48]Agell N,Aligue R,Alemany V,Castro A,Jaime M,Pujol MJ,Rius E, Serratosa J, Taules M,Bachs O.Cell Calcium 1998;23:115–21.
    [49]Cheung WY.Science 1980;207:19–27.
    [50]Lu KP,Means AR.Endocr Rev 1993;14:40–57.
    [51]Taules M,Rius E,Talaya D,Lopez GA,Bachs O,Agell N.J Biol Chem 1998;273:33279–86.
    [52]Means AR.Mol Endocrinol 2000;14:4–13.
    [53]Soderling TR.Trends Biochem Sci 1999;24:232–6.
    [54]Blumenthal DK,Takio K,Edelman AM,Charbonneau H,Titani K,Walsh KA,Krebs EG.Proc Natl Acad Sci USA 1985;82:3187–91.
    [55]Klee CB,Ren H,Wang X.J Biol Chem 1998;273:13367–70.
    [56]Thomas,A.P.et al.(1996)Spatial and temporal aspects of cellular calcium signaling.FASEB J.10,1505–1517
    [57]Luby-Phelps,K.et al.1995Ca2-regulated dynamic compartmentalization of calmodulin in living smooth muscle cells.[J] J.Biol. Chem. 1995,270, 21532–21538
    [58]Deisseroth,K.et al.(1998)Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons.Nature 392,198–202
    [59]Craske,M.et al.(1999)Hormone-induced secretory and nuclear translocation of calmodulin:oscillations of calmodulin concentration with the nucleus as an integrator.Proc.Natl.Acad.Sci.U.S.A.96,4426–4431
    [60]Liao,B.et al.(1999)Mechanism of Ca2-dependent nuclear accumulation of calmodulin.Proc.Natl.Acad.Sci.U.S.A.96,6217–6222
    [61]Hahn,K.et al.(1992)Patterns of elevated calcium and calmodulin activation in living cells.Nature 359,736–738
    [62]Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and Calm- odulin,Neus AgellOriol Bachsa,Cellular Signalling 14(2002)649–654
    [63]Hemenway CS , Heitman J .Caleineurin.Structure , function , and inhibition. Cell Bioehem BioPhys1999:30(1):115-51
    [64]IkuraM,osawaM,AmesJB.The role of calcium-binding proteins in the control of transcription:structure to function. Bioessays 2002:24(7):625-36.
    [65]KSR2 Is a Calcineurin Substrate that Promotes ERK Cascade Activation in Response to Calcium Signals,Michele K.Dougherty,1 Daniel A.Ritt,1 Ming Zhou,Molecular Cell 34,652–662,June 26,2009
    [66]Crabtree,G.R.and Olson,E.N.(2002)NFAT signalling:choreographing the social lives of cells.Cell 109(Suppl.),S67–S79.
    [67]Calcium-dependent expression of TNF-a in neural cells is mediated by the calcineurin/NFAT pathway Andrea Canellada, Eva Cano, Luc′Sa′nchez- Ruiloba, Mol.Cell.Neurosci. 31(2006) 692–701
    [68]The interaction between endogenous calcineurin and the plasma mem- brane calcium-dependent ATPase is isoform specific in breast cancer cells Marylouisa Holton ,Di Yang,Weiguang Wang et al
    [69]Padma,S.,Sowjanya,A.P.,Poli,U.R.,Jain,M.,Rao,B.and Ramakrishna, G.(2005) Downregulation of calcineurin activity in cervical carcinoma.Cancer Cell Int.5,7–14.
    [70]Beckerle,M.C.et al.(1987)Co-localization of calcium-dependent protease II and one of its substrates at sites of cell adhesion.Cell 51,569–577
    [71]Palecek,S.P.et al.(1999)Kinetic model for integrin-mediated adhesion release during cell migration.Ann.Biomed.Eng.27,219–235
    [72]Lauffenburger,D.A.and Horwitz,A.F.(1996)Cell migration:a physically integrated molecular process.Cell 84,359–369
    [73]Wells,A.et al.(1998)Epidermal growth factor receptor-mediated motility in fibroblasts.Microsc.Res.Technique 43,395–411
    [74]Klemke,R.L.et al.Regulation of cell motility by mitogen-activated protein kinase.J.Cell Biol.1997.137,481–492
    [75]Lee,J.et al.(1999)Regulation of cell movement is mediated by stretch-activated calcium channels.Nature 400,382–386
    [76]S.Kulkarni,T.C.Saido,K.Suzuki,J.E.Fox,Calpain mediates integrin- indu- ced signaling at a point upstream of Rho family members, J.Biol. Chem. 274 (1999)21265–21275.
    [77]N.Dourdin,A.K.Bhatt,P.Dutt,P.A.Greer,J.S.C.Arthur,J.S.Elce,A.Huttenlocher,Reduced cell migration and disruption of the actin cytoskeleton in calpain- deficient embryonic fibroblasts,J.Biol.Chem.276(2001)48382–48388.
    [78]Wilson DP, Susnjar M, Kiss E, Sutherland C, Walsh MP (August 2005). "Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ of MYPT1 at Thr-855, but not Thr-697". Biochem. J. 389 (Pt 3): 763–74.
    [79]A.J.Ridley,Rho family proteins:coordinating cell responses,Trends CellBiol.11(2001)471–477.
    [80]M.Fukata,S.Koruda,K.Fuji,T.Nakmura,I.Shoji,Y.Matsuura,K.Okawa,A.Iwamatsu,A.Kikuchi,K.Kaibuchi,Regulation of cross-linking of actin filaments by IQGAP1,a target for Cdc42,J.Biol.Chem.272(1997)29579–29583.
    [81]S.C.Mateer,A.E.McDaniel,V.Nicolas,G.M.Habermacher,M.J.Lin,D.A.Cromer,M.E.King,G.S.Bloom,The mechanism for regulation of the F-actin binding activity of IQGAP1 by calcium/calmodulin, J.Biol.Chem. 277 (2002) 12324–12333.
    [82]A.Huttenlocher,S.P.Paleck,Q.Li,W.Zhang,R.L.Mellgren,D.A.Lauffenberger,M.H.Ginsberg,A.F.Horwitz,Regulation of cell migration by the calcium- dependent protease calpain,J.Biol.Chem.272(1997)32719–32722.
    [83]Ham YM, Lim JH, Na HK,et al,Ginsenoside-Rh2-induced mitoc- hondrial depolarization and apoptosis are associated with reactive oxygen species and Ca2+-mediated c-Jun NH2-terminal kinase 1 activation in HeLa cells.[J]J Pharmacol Exp Ther. 2006 Dec;319(3):1276-85.
    [84]Williams GT,Smith CA.Molecular regulation of apoptosis:genetic controls on cell death.Cell 1993;74:777.
    [85]Thompson CB.Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456.
    [86]Green DR,Reed JC.Mitochondria and apoptosis.Science 1998;281:1309.
    [87]B.Antonsson,J.-C.Martinou,The Bcl-2 protein family,Exp.Cell Res. 256 (2000) 50–57.
    [88]H.G.Wang,N.Pathan,I.M.Ethell,S.Krajewski,Y.Yamaguchi,F.Shibasaki,F.McKeon,T.Bobo,T.F.Franke,J.C.Reed,Ca2+-induced apoptosis through calci- ne- urin dephosphorylation of BAD,Science 284(1999)339–343.
    [89]J.D.Robertson,S.Orrenius,B.Zhivotovsky, Review:nuclear events in apoptosis, J.Struct.Biol.129(2000)346–358.
    [90]F.Altznauer,S.Conus,A.Cavalli,G.Folkers,H.U.Simon, Calpain-1 regu- ates Bax and subsequent Smac-dependent caspase-3 activation in neutrophilapop-tosis,J.Biol.Chem.279(2004)5947–5957.
    [91]D.G.Breckenridge,M.Germain,J.P.Mathai,M.Nguyen,G.C.Shore,Regulation of apoptosis by endoplasmic reticulum pathways,Oncogene 22(2003) 8608– 8618.
    [92]R.V.Rao,H.M.Ellerby,D.E.Bredesen,Coupling endoplasmic reticulum to the cell death program,Cell Death Di?.11(2004)372–380.
    [93]T.Nakagawa,H.Zhu,N.Morishima,E.Li,J.Xu,B.A.Yankner,J.Yuan,Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta,Nature 403 (2000)98–103.
    [94]N.Morishima,K.Nakanishi,H.Takenouchi,T.Shibata,Y.Yasuhiko,An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12,J.Biol.Chem. 277 (2002)34287–34294.
    [95]C.R.Kahl,A.R.Means,Regulation of cell cycle progression by calcium/ calmodulin-dependent pathways,Endocr.Rev.24(2003)719–736.
    [96]]N.Takuwa,Z.Wei,M.Kumada,Y.Takuwa,Ca2+-dependent stimulation of retinoblastoma gene-product phosphorylation and p34cdc2 kinase activation in serum-stimulated human fibroblasts,J.Biol.Chem.268(1993)138–145.
    [97]A.L.Boynton,J.F.Whitfield,Different calcium requirements for prolifer- tion of conditionally and unconditionally tumorigenic mouse cells, Proc.Natl. Acad. Sci.U.S.A.73(1976)1651–1654.
    [98]E.Smythe,P.D.Smith,S.M.Jacob,J.Theobald,S.E.Moss,Endocytosis occurs independently of annexin VI in human A431 cells,J.Cell Biol. 124 (1994) 301–306.
    [99]J.Theobald,A.Hanby,K.Patel,S.E.Moss,Annexin VI has tumor -suppressor activity in human A431 squamous epithelial carcinoma- cells,Br.J.Cancer 71(1995)786–788.
    [100]N.Agell, O.Bachs, N.Rocamora, P.Villalonga, Modulation of the Ras/Raf/ MEK/ ERK pathway by Ca2+,and calmodulin, Cell.Signal.14(2002)649–654.
    [101]Commentary: The Year in Basic Science: Calmodulin Kinase Cascades Anthony R. Means Molecular Endocrinology 2008,22 (12): 2759-2765
    [102]Verdoni AM,Aoyama N,Ikeda A,Ikdas.Effect of destrin mutationson The gene expression profile in vivo.Physiol genomics.2008 Jun.12,34(1):9-21.
    [103]郭林林李学宝肌动蛋白解聚因子—丝切蛋白、肌动蛋白重塑蛋白质家系.命的化学2005年25卷3期.
    [104]郭林林李学宝肌动蛋白解聚因子—丝切蛋白、肌动蛋白重塑蛋白质家系.命的化学2005年25卷3期.
    [105]Pavlov D,Muhlrad A,et al.Actin filament severing by cofilin[J].J MolBiol, 2007,365(5),1350-1358.
    [106]Chen J and Chien KR.Complexity in sinplicity.monogenic disorders and compleCardiom yopathies[J].J Clin Znvest,1999,103:1483-1485.
    [107]Sebzda T,Saleh Y,et al.Actin content and actin polymerization in hepatoma Morris 5123 tumor bearing rats after treatment with cysteine protease inhibitor and vitamin E[J].J Exp Ther Oncol,2005,5(1):23-29
    [108]Amsellem V,Kryszke MH,et al.The actin cytoskeleton-associated protein zyxin acts as a tumor suppressor in Ewing tumor cells[J].Exp Cell Res,2005,304(2):443-456
    [109]Maciver S K, Hussey P J , et al . The ADFPcofilin family : actin2remodeling proteins[J] . Genome Biol ,2002 ,3 (5) : reviews 3007. 12 reviews 3007. 12
    [110]Verdoni AM,Aoyama N,Ikeda A,Ikdas.Effect of destrin mutations on The gene expression profile in vivo.Physiol genomics.2008 Jun.12,34(1):9-21.
    [111]BrownSS,Cooperationbetweenicrotubule-and-actin-basedmotoProteins [J]. AnnuRev Cell Dev Bio J 1999,15,63-80.
    [122]Aqnew B J ,Minamide L S ,Bamburg J R , et al , Reactivation ofphosphorylated actin depolymerizing factor and identification of the regulatorysite[J] . J Biol Chem ,1995 ,270(29) :17582217587
    [123]Dan C , Kelly A ,Bernard O ,Minden A , et al . Cytoskeletal changes regulated by the PAK4 serinePthreonine kinase are mediated by LIM kinase 1 and cofilin[J] . J Biol Chem ,2001 ,276 (34) :32115232121
    [124]Huang T Y, DerMardirossian C , Bokoch G M, et al . Cofilin phosphatases and regulation of actin dynamics [J].Curr Opin Cell Biol ,2006 ,18 (1) :26231
    [125]Kaji N ,Ohashi K,Shuin M, et al . Cell cycle2associated changes in slingshot phosphatase activity and roles in cytokinesis in animal cells [J].J Biol Chem , 2003 ,278(35) :33450233455.
    [126]宋慧娟,苏玉虹. CFL2基因研究进展[J].中国农学通报(SongHui2Juan ,Su Yu2Hong. Advances in the research of CFL2 gene[J] .Chin Agric Sci Bull) ,2006 ,22(2) :28230
    [127]Ghosh M, Song X, Mouneimne G, et al. Cofilin promotes actin polymerization and defines the direction of cell motility[J]. Science, 2004 ,304 (5671) :7432746
    [128]Yamaquchi H , Lorenz M, Kempiak S , et al . Molecular mechanisms of invadopodium formation : the role of the N2WASP2Arp2P3 complex pathway and cofilin [J]. J Cell Biol , 2005 , 168(3) :4412452
    [129]Yamaquchi H , Condeelis J . Regulation of the actin cytoskeleton in cancer cell migration and invasion[J].Biochim Biophys Acta,2007,1773 (5): 6422 652
    [130]Yap C T, Simpson T I , Pratt T, et al . The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concen tration2dependent manner [J].Cell Motil Cytoskeleton 2005,60 (3) : 153 2165
    [131]Delorme V,Anderson KL,et al.cofilin activity downstream of regulates cell Protrusion efficiency by organizing lamellipodium and lamella actin networks.2007 Nov.13(5):646-62.
    [132]N iwa R,Nagata-Ohashi K,Takeichi M ,et al. Control of actinreorganization by Slingshot ,a family ofPhoSP hatasesthat dePhos Phorylate ADF/cofilin.Cell,2002,108(2):233-46.
    [133]Ohta Y,Kousaka K,Nagata-Ohashi K,et al .Differential activities , subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin.GenesCells,2003;8 (10):811-24.
    [134]Nagata-Ohashi K,OhtaY,Goto K,et al.Apathway of neuregulin- induced activation of cofilin-phosphatase Slingshot and cofilin in lamelliPodia.J Cell Biol 2004:165(4):465-471
    [135]Wang, Y., Shibasaki, F., and Mizuno, K. Calcium signal-induced cofilin dephosphorylation is medicated by Slingshot via calcineurin. J. Biol. Chem. 2005;280:12683-12689.
    [136]BernardO, GaniatsasS, KannourakisG, eta.l Kiz-1, a proteinwith LIM zinc finger and kinase domains, is expressedmainly in neurons[J].CellGrowth Differ,1994, 5(11): 1159-1171.
    [137]Mizuno K, Okano I, Ohashi K, et a.l Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM /double zinc fingermotif[J].Oncogene,1994, 9(6): 1605-1612.
    [138]YangN, HiguchiO, MizunoK. Cytoplasmic localization ofLIM-ki-nase 1 is directed by a short sequence within the PDZ domain[J].ExpCellRes,1998, 241(1):242-252.
    [139]YangN, Mizuno K. Nuclear export ofLIM-kinase 1, mediated by two leucine-rich nuclear-export signalswithin the PDZ domain[J].Biochem J,1999, 338(3): 793-798
    [140]马艳华,史玲, L IM激酶与肿瘤,国际病理科学与临床杂志2009,29(6):490-493.
    [141]Scott RW, OlsonMF. L IM kinases: function, regulation and asso2 ciation with human disease [J]. J MolMed, 2007, 85 (6) : 555-568.
    [142]Foletta VC, MoussiN, Sarmiere PD, et al. L IM kinase 1, a key regulator of actin dynamics, is widely exp ressed in embryonic and adult tissues [J].Exp Cell Res, 2004, 294 (2) : 3922405.
    [143]GorovoyM, Niu J, Bernard O, et al. L IM kinase 1 coordinatesmi2 crotubule stability and actin polymerization in human endothelialcells [J].J Biol Chem, 2005, 280 (28) : 26533226542
    [144]Yoshioka K, Foletta V, Bernard O, et al. A role forL IM kinase in cancer invasion [J]. Proc Natl Acad Sci USA, 2003, 100 ( 12) :72472752.
    [145]Bagheri2Yarmand R, MazumdarA, Sahin AA, et al. L IM kinase 1 increases tumormetastasis of human breast cancer cells via regula2 tion of the urokinase2type p lasminogen activator system [J]. Int J Cancer, 2006, 118 (11) :270322710.
    [146]Lee YJ, Mazzatti DJ, Yun Z, et al. Inhibition of invasiveness of human lung cancer cell line H1299 by over2exp ression of cofilin[J]. Cell Biol Int, 2005, 29 (11):8772883.
    [147]Guo H, Gu F, LiW, et al. Reduction of p rotein kinase C zeta in2hibitsmigration and invasion of human glioblastoma cells [J]. JNeurochem, 2009, 109 (1) : 2032213..
    [148]Wang W, Eddy R, Condeelis J. The cofilin pathway in breastcancer invasion and metastasis [J]. Nat Rev Cancer, 2007, 7(6) : 4292440.
    [149]Scott GA, McClelland LA, Fricke AF, et al. Plexin C1, a recep2 tor for semaphorin 7a, inactivates cofilin and is a potential tumor supp ressor for melanoma p rogression [J]. J Invest Dermatol, 2009, 129 (4) : 9542963.
    [150]Suyama E, Wadhwa R, Kawasaki H, et al. L IM kinase22 targeting as a possible anti2metastasis therapy [J]. J Gene Med, 2004, 6(3) : 3572363
    [151]Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis [J]. Nat Rev Cancer, 2007, 7(6) : 4292440.
    [152]Soosairajah J, Maiti S, Wiggan O, et al. Interp lay between compo2 nents of a novel L IM kinase2slingshot phosphatase comp lex regu2 lates cofilin[J]. EMBO J, 2005, 24 (3) : 4732486
    [153]Giannone G, Dubin2ThalerBJ, RossierO, et al. Lamellipodial ac2 tin mechanically links myosin activity with adhesion2site formation[J]. Cell, 2007, 128 (3) : 5612575.
    [154]NishitaM, Tomizawa C, YamamotoM, et al. Spatial and temporal regulation of cofilin activity by L IM kinase and Slingshot is critical for directional cell migration [J]. J Cell Biol, 2005,171 (2) :3492359.
    [155]Soosairajah J, Maiti S, Wiggan O, et al. Interp lay between compo- 2nents of a novel L IM kinase2slingshot phosphatase comp lex regu2 lates cofilin [J]. EMBO J, 2005, 24 (3) : 4732486.
    [156]Ding Y, Milosavljevic T, Alahari SK. Nischarin inhibits L IM ki2 nase to regulate cofilin phosphorylation and cell invasion [J]. MolCell Biol, 2008, 28 (11) : 374223756.
    [157]Horita Y, Ohashi K, MukaiM, et al. Supp ression of the invasive capacity of rat ascites hepatoma cells by knockdown of Slingshot or L IM kinase [J]. J Biol Chem, 2008, 283 (10) : 601326021.
    [158]SanMartín A, LeeMY, WilliamsHC, et al. Dual regulation of co2 filin activity by LIM kinase and Slingshot21L phosphatase controlsp latelet 2derived growth factor2induced migration of human aortic smooth muscle cells [J]. Circ Res, 2008, 102 (4): 4322438.
    [159]AramburuJ,Rao A,Klee CB.Caleineurin:from structure to function. Curr ToP Cell Regul 2000:36:237-95.
    [160]SoderlingTR.The Ca-calmodulin-dePendent Protein kinase caseade. Trends Bioehem Sci1999:24(6):232-6.
    [161]Wang, Y., Shibasaki, F., and Mizuno, K. Calcium signal-induced cofilin dephosphorylation is medicated by Slingshot via calcineurin. J. Biol. Chem. 2005;280:12683-12689.
    [162]Van Sant C, Wang G, Anderson MG et al. Endothelin signaling in osteoblasts: global genome view and implication of the calcineurin/NFAT path- way. Mol Cancer Ther. 2007 ;6(1):253-61.
    [163]Qin L, Zhao D, Liu X etal. Down syndrome candidate region 1 isoform 1 mediates angiogenesis through the calcineurin-NFAT pathway. Mol Cancer Res. 2006 ;4(11):811-20.
    [164]Martinez- Martinez S, Redondo JM. Inhibitors of the calcineurin/ NFAT pathway. Curr Med Chem. 2004 ;11(8):997-1007.
    [165]Niwa R, Nagata-Ohashi K, Takeichi M, et al. Control of actin reorgani- zation by Slingshot, a family of phosphatases that dephosphorylate ADF /cofilin [J] . Cell, 2002, 108( 2) : 233- 246.
    [166]Hagemann D , Xiao RP. Dual site phospholamban phosphorylation and its physiological relevance in the heart [J] . Trends Cardiovasc Med , 2002, 12(2) :51256
    [167]Koloclziej SJ , Hucmon A , Waxham MN , et al . Three2dimension2 al reconstructions of calcium/ calmodulin2dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organiza2 tion for its structural core and functional domains [J].J Biol Chem , 2000 , 275 (19) :14354214359.
    [168]Soderling TR. CaM-kinases: modulators of synaptic plasticity [J]. Curr Opin Neurobiol 2000; 10 (3): 375-380.
    [169]Kennedy MB. Signal-processing machines at the postsynaptic density [J].Science 2000; 290 (5492): 750-754.
    [170]Malenka RC, Nicoll RA. Long-term potentiation--a decade of progress [J] Science 1999; 285 (5435): 1870-1874.
    [171]Wang, Y., Shibasaki, F., and Mizuno, K. Calcium signal-induced cofi- lin dephosphorylation is medicated by Slingshot via calcineurin. J. Biol. Chem. 2005;280:12683-12689.
    [172]Tokumitsu H, Enslen H, Soderling TR. Characterization of a Ca2 +/ calmodulin-dependent protein kinase cascade.Molecular cloning and expressionof calcium/calmodulin-dependent protein kinase kinase. J Biol Chem 1995,270 (33):19320–19324.
    [173]Niwa R, Nagata-Ohashi K, Takeichi M, et al. Control of actin reorgani- zation by Slingshot, a family of phosphatases that dephosphorylate ADF /cofilin [J] . Cell, 2002, 108( 2) : 233- 246.
    [174]Anderson ME , Braun AP,Wu Y, et al . KN293,an inhibitor ofmult- ifunc- tional Ca2 + / calmodulin2dependent protein kinase , de2creases early afterdepolarizations in rabbit heart [J]. J Pharmacol Exp Ther , 1998 ,287 (3):99621006.
    [175]Hagemann D , Kuschel M , Kuramochi T , et al . Frequency2en2 coding Thr17 phospholamban phosphorylation is independent of Ser16 phos- phorylation in cardiac myocytes [J].J Biol Chem ,2000 ,275 (29): 22532222536.
    [176]Li L , Chu G, Ginsburg KS , et al . Cardiac myocyte calcium transport in phospholamban knockout mouse : relaxation and en2 dogenous CaMKII effects[J] . Am J Physiol , 1998 ,274 (4 pt 2) : H13352H1347.
    [177]DeKoninck P , Schulman H. Sensitivity of CaM kinase II to the frequency of Ca oscillations [J ]. Science , 1998 ,279(5348) :2272230
    [178]Takahashi H,Funakoshi H,et al.LIM-kinase as a regulator of actindynamics in spermatogenesis[J].Cytogenet Genome Res,2003, 103(3-4): 290-298
    [179]San Martin A , Lee MY, Williams HC, et al. Dual regulation of cofilin activity By LIM kinase and slingshot phosphatase controls platelet- derived growth factor-Induced migration of hunman aortic smooth muscle cells. Circ Res , 2008 Feb.29,102(4);432-8.
    [180]Yang, N., Higuchi, O., Ohashi, K et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998;393: 809-812.
    [181]Ohashi K, Toshima J, Tajinda K et al. Molecular cloning of a chicken lung cDNA encoding a novel protein kinase with N-terminal two LIM/doublezinc finger motifs. J Biochem (Tokyo). 1994 Sep;116(3):636-42.
    [182]Okano I, Hiraoka J, Otera H et al. Identification and characterization of a novel family of serine/threonine kinases containing two N-terminal LIM motifs. J Biol Chem. 1995 Dec 29;270(52):31321-30.
    [183]Yamazaki D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization. Cancer Sci. 2005 Jul;96(7):379-86.
    [184]Salhia B, Rutten F, Nakada M et al. Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res. 2005; 1;65(19):8792-800.
    [185]Davila M,Frost AR,et al.LIM kinase 1 is essential for the invasive growth of prostate epithelial cells:implications in prostate cancer[J].J Biol Chem, 2003,278(38):36868-36875
    [186]Yoshioka K,Foletta V,et al.A role for LIM kinase in cancer invasion [J].Proc Natl Acad Sci U S A,2003,100(12):7247-7252
    [187]Yamazaki D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization. Cancer Sci. 2005;96(7):379-86.
    [188]Kamai T, Tsujii T, Arai K et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res. 2003; 9(7):2632-41.
    [189]Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K. MAP KAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J. 2006; 22;25(4):713-26.
    [190]de Grauuw ,Tijdens I, et al. Annexin A2 phosphorylation mediates cell scattering and branching morphogenesis via cofilin activation. Mol Cell Biol. 2008; 28(3);1029-40
    [191]Ding Y, Milosavljevic T, Alahari SK. Nisharin inhibits LIM kinase to regulate cofilin phosphorylation and cell Invasion. Mol Cell Biol . 2008 ; 28(11);3742-56.
    [192]Han L,Jakobs KH, et al.Direct stimulation of receptor-controlled phos-pholipase D1 by phosphor-cofilin.EMBO J.2007 Oct.3;26(19): 4189 -202.
    [193]Niwa R, Nagata-Ohashi K, Takeichi M, et al. control of actin reorganization by Slingshot,a family of phophataes that dephosphorylate ADF/ cofilin [J]. Cell,2002,108(2):33-246
    [194]Kousaka K, Kivonari H, et al. slingshot 3-dephosphorylates ADF/ cofilin but is dispensable for mouse development. Genesis ,2008 May; 46(5):246-55.
    [195]Nishita M, Tomizawa C, Yamamoto M, Horita Y, Ohashi K, Mizuno K. Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J Cell Biol. 2005 ; 24;171(2):349-59.
    [196]Juliana Soosairajah, Sankar Maiti, O’Neil Wiggan, Patrick Sarmiere, Nathalie Moussi, Boris Sarcevic, Rashmi Sampath, James R Bamburg and Ora Bernard. Interplay between components of a novel LIM kinase–slingshot phosphatase complex regulates cofilin. The EMBO Journal (2005) 24, 473–486.
    [197]extracellar calcium promotes the migration of breast cancer cells through the activation of the calcium sensing receptor,Zuzana Saidak,Cedric ni AM,Aoyama N,Ikeda A,Ikdas.Effect of destrin mutationson The gene expression profile in vivo.Physiol genomics.2008 Jun.12,34(1):9-21.
    [198]Finkbeiner S,Greenberg ME.Neuron 1996;16:233–6.
    [199]Grewal SS,York RD,Stork PJ.Curr Opin Neurobiol 1999;9:544–53.
    [200]Qui MS,Green SH.Neuron 1992;9:705–17.
    [201]Asai,A.,Qiu,J.,Narita,Y.,Chi,S.,Saito,N.,Shinoura,N.,Hamada,H.,Kuchino,Y.and kirino,T.(1999)High level calcineurin activity predisposes neuronal cells to apoptosis.J.Biol.Chem.274,34450–34458.
    [202]Wang Y, Shibasaki F, Mizuno K,et al Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin.J Biol Chem. 2005 Apr 1;280(13):12683-9.
    [203]Cuddapah VA, Sontheimer H.Molecular interaction and functionalregulation of ClC-3 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in human malignant glioma.J Biol Chem. 2010 Apr 9;285(15):11188-96.
    [204]Kim KW, Choi CH, Kim TH, et al.Silibinin inhibits glioma cell proliferation via Ca2+/ROS/MAPK-dependent mechanism in vitro and glioma tumor growth in vivo.Neurochem Res. 2009 Aug;34(8):1479-90.
    [205]Wondergem R, Bartley JW.Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration.J Biomed Sci. 2009 Sep 24;16:90.
    [206]Kang SS, Han KS,et al.Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival. Cancer Res. 2010 Feb 1;70(3):1173-83.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.