二(全氟辛基磺酸)二茂锆催化的羧酸酯化、酯交换反应及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,许多文献报道了茂金属的全氟甲基磺酸盐配合物Cp_2M (OTf)_2 (Cp = C_5H_5; M = Ti, Zr, OTf= OSO_2CF_3)能有效地催化许多碳-碳键形成的反应。但是这些配合物对空气不稳定。2009年,本实验室课题组设计合成了对水和空气都稳定的化合物二(全氟辛基磺酸)二茂锆,并且其在糖基化反应以及羧酸与酸酐的酰化反应中表现出很好的Lewis酸催化活性。
     羧酸与醇的直接酯化反应和羧酸酯与醇的酯交换反应是制备化学及药物中间体的重要反应。然而,这些反应都是平衡反应,为了使平衡向产物方向移动,必须使一种反应物过量或蒸馏出反应产生的产物。传统的硫酸催化的酯化反应具有毒性、腐蚀性、污染环境和产率低等不足。
     因此,本论文选择二(全氟辛基磺酸)二茂锆(Cp_2 Zr (OSO3C8F17)_2)作催化剂,并研究了在无溶剂条件下,其催化的羧酸与醇的直接酯化、羧酸酯与醇的酯交换反应以及应用于生物柴油的制备。
     研究表明:在无溶剂条件下,催化量的二(全氟辛基磺酸)二茂锆就能有效地催化羧酸与等当量的醇的直接酯化反应。脂肪酸与芳香醇酯化反应的产率达95%以上,芳香羧酸与脂肪醇酯化反应产率一般达90%以上,长链脂肪酸酯的产率也很高,达到85%。并且催化剂可以重复使用,循环使用4次后,催化剂的活性只有少量的下降。且发现有水存在下(水量达200 mol%),对酯化反应没有影响。本反应具有无溶剂、无副反应、绿色环保、催化剂可以重复使用、反应物比例为1:1等特点,符合绿色化学的要求。
     无溶剂条件下,催化量的二(全氟辛基磺酸)二茂锆也能有效地催化羧酸酯与等当量的醇的酯交换反应。芳香醇与羧酸酯的酯交换反应的产率一般达到90%以上,脂肪醇的反应活性略低于芳香醇。催化剂对C-Br和C=C没有影响。该反应具有反应条件温和、产率高、无溶剂、操作简单等优点。
     生物柴油的生产方法主要是催化剂作用下的动植物油与低分子醇的酯交换反应。本论文研究了在二(全氟辛基磺酸)二茂锆催化下,运用茶油与甲醇或乙醇的酯交换反应来制备生物柴油。研究表明:茶油与醇的摩尔比、催化剂的用量以及温度对反应有很大的影响。在温度是醇的沸点、压强为大气压、催化剂的用量是6 mol% (相对于茶油)和醇做溶剂的条件下,脂肪酸酯的产率最高(达到90%以上)。且催化剂可以通过沉淀和用石油醚洗涤来回收,循环使用10次以上,催化活性只有少量的下降。
Presently, many documents have shown that the metallocene bis (triflate) s complexes of titanium and zirconium Cp_2M (OTf)_2 (Cp = C_5H_5; M = Ti, Zr, OTf= OSO_2CF_3) can efficiently accelerated various carbon–carbon bond forming reactions. But the complexes are air-sensitive. In 2009, our research group has synthetized air and water stable zirconocene bis(perfluorooctanesulfonate)s Cp_2Zr(OPf)_2(OPf=OSO_2C_8F_(17)), which has shown high Lewis acidity in glycation and acylation of carboxylic acids and alcohols.
     Direct esterification between carboxylic acids and alcohols and transesterification of carboxylic ether and alcohols are fundamental transformations in preparation of chemical and pharmaceutical important intermediates. However, these reactions are equilibria. We should excessively use one reactant or remove the product to bias the equilibrium to the benefit of the product side. There are some disadvantages such as toxicity, causticity, environmental unfriendly and low yield in traditional esterification catalyzed by sulfuric acid.
     So we studied the esterification between carboxylic acids and alcohols, transesterification between carboxylic ether and alcohols, and it’s application in biodiesel synthesis, using zirconocene bis(perfluorooctanesulfonate)s Cp_2Zr(OPf)_2 as a catalyst under solvent-free condition.
     Catalytic amount of zirconocene bis(perfluorooctanesulfonate)s can efficiently promote esterification of carboxylic acids with equimolar amounts alcohols under solvent-free condition. The yield of the reaction of fatty acids with aromatic alcohols is more than 95%, compared to 90% of the reaction of aromatic acids with fatty alcohols. And the yield of long chain fatty acids esters is 85%. The catalyst can be reused 4 times with little loss of activity. What’s more, our study shows that water (≤200 mol%) has no effect to the esterification. This reaction, under solvent-free, having no side reactions, being environment-friendly and reusable catalyst, agrees with demand of Green Chemistry.
     Catalytic amount of zirconocene bis(perfluorooctanesulfonate)s can efficiently promote transesterification of carboxylic ether with equimolar amounts alcohols under solvent-free condition. Generally, the yields of the reaction of carboxylic ether with alcohols are more than 90%. The reactive acidity of fatty alcohols is a little lower than aromatic alcohols. And the catalyst make no difference to the C-Br and C=C bond. This reaction has many advantages such as mild reaction condition, high yield, solvent-free, simplicity of operator and so on.
     The main synthetic approaches have been used for biodiesel production that is transesterfication of Vegetable oils or animal fats with a low molecular weight alcohol using a catalyst. In our study, we make biodiesel by transesterification of teaseed oil with methanol or ethanol using zirconocene bis(perfluorooctanesulfonate)s as a catalyst. The effect on reaction is the mole ratio of teaseed oil and alcohol, the amount of catalyst, and temperature. When the reaction temperature is the alcohol’s boiling temperature, the pressure is atmospheric pressure, the amount of catalyst is 6 mol% (relative to vegetable oil), and methanol or ethanol is solvent, the yield is the highest (more than 90%). Significatively, the catalyst can be purified by precipitate and washed by petroleum ether, and can be reused more than 10 times with little loss of activity.
引文
[1] Oter. J, Niibo. Y, Tatsumi. N, et al. Organotin Phosphate Condensates as a Catalyst of Selective Ring-Opening of Oxiranes by Alcohols. Journal of Organic Chemistry, 1988, 53(2): 275-178.
    [2] J. Kredel. Einfluss von Lewis-S?uren Auf Das Endo-Exo-Verhaltnis Bei Diels-Alder-Additionen Des Cyclopentadiens. Tetrahedron Letters, 1966, 7(7): 731-736.
    [3] G. A. Olah. Friedel-Crafts and Related Reaction. Interscience, New York: 1964, Vol.111, Part1.
    [4] a. Teruaki Mukaiyama, Kazuo Banno, Koichi Narasaka. New Cross-Aldol Reactions. Reactions of Silyl Enol Ethers with Carbonyl Compounds Activated by Titanium Tertrachloride. Journal of the American Chemical Society, 1974, 96 (24): 7503–7509. b. Shu Kobayashi, Iwao Hachiya. Lanthanide Triflates as Water-Tolerant Lewis Acids. Activation of Commercial Formaldehyde Solution and Use in the Aldol Reaction of Silyl Enol Ethers with Aldehydes in Aqueous Media. Journal of Organic Chemisty, 1994, 59 (13): 3590–3596. c. Lubineau A. Water-Promoted Organic Reactions: Aldol Reaction: under Neutral Conditions. Journal of Organic Chemisty, 1986, 51(11): 2142-2144. d. Andre Lubineau, and Elsa Meyer. Water-Promoted Organic Reactions. Aldol Reaction of Silyl Enol Ethers with Carbonyl Compounds under Atmospheric Pressure and Neutral Conditions. Tetrahedron, 1988, 44(19): 6065-6070.
    [5] T. W. Greene, P. G. Wuts. Protective Groups in Organic Synthesis, 3rd ed. Wiley, New York, 1999, p. 149 and p. 373
    [6] a. Frank J. S and Julius A. N. Organic Reactions with Boron Fluoride.1 XII. The Preparation of Esters of Aromatic Acids. Journal of the American Chemical Society, 1936, 58(2): 271-272. b. Kadaba, Pankaja, K. A Convenient Method of Esterification of Unsaturated Organic Acids Using a Boron Trifluoride Etherate-Alcohol Reagent. Synthesis, 1971, 06: 316-317. c. J. L. Marshall, K. C. Erickson, T. K. Folsom. The Esterification of Carboxylic Acids Using a Boron Trifluoride-Etherate-Alcohol Reagent. Tetrahedron Letters, 1970, 11(46): 4011-4012.d. Jean-N?el Bertho, Vincent Ferrières, Daniel Plusquellec. A New Synthesis of D-Glycosiduronates from Unprotected D-Uronic Acids. Journal of the Chemical Society, Chemical Communications, 1995, 13: 1391-1393.
    [7] Christopher A D, Thomas A B. Esterification of Carboxylic Acids with Boron Trichloride. Tetrahedron Letters, 2001, 42 (24): 3959-3961.
    [8] Kazuaki Ishihara, Suguru Ohara, Hisashi Yamamoto. 3,4,5-Trifluorobenzene- boronic Acid as an Extremely Active Amidation Catalyst. Journal of Organic Chemisty, 1996, 61(13): 4196-4197.
    [9] E. C. Blossey, L. M. Turner, D. C. Neckers. Polymer Protected Reagents: (Ⅱ) Esterifications with P- AlCl3. Tetrahedron Letters, 1973, 14(21): 1823-1826.
    [10] N. N. Karade, S. G. Shirodkar, R. A. Potrekar, et al. An Exceedingly Efficient and Chemoselective Esterification with Activated Alcohols Using AlCl3/NaI/CH3CN System. Synthetic Communications, 2004, 34(3): 391-396.
    [11] H. N. Roy, A. H. Al Mamun. Regiospecific Phenyl Esterification to Some Organic Acids Catalyzed by Combined Lewis Acids. Synthetic Communications, 2006, 36 (20): 2975-2981.
    [12] Chernova, I. K., Filimonova, E. I., Bychkov, B. N. Synthesis of 2-Hydroxymethyl-2-oleyloxymethyl-1,3-propanediyldioleate-(Ⅲ)(via ZnO-Catalyzed Esterification of Pentaerythrite (I) with Oleic Acid(Obtained from Tall Oil)). Izv. Vyssh. U. Zaved, Khim. Khim. Tekhnol, 1996, 39: 117-118.
    [13] G. Bartoli, J. Boeglin, M. Bosco, et al. Highly Efficient Solvent-Free Condensation of Carboxylic Acids with Alcohols Catalysed by Zinc Perchlorate Hexahydrate, Zn (ClO4)2 6H2O. Advanced Synthesis & Catalysis. 347, 1: 33-38.
    [14] Marzieh Shekarriz, Sohrab Taghipoor, Ali Asghar Khalili, et al. Esterification of Carboxylic Acids with Alcohols under Microwave Irradiation in the Presence of Zinc Triflate. Journal of Chemical Research, Synopses, 2003, 04: 172-173.
    [15] Chan Sik Cho, Dong Tak Kim, Heung Jin Choi, et al. Catalytic Activity of Tin (Ⅱ) Chloride in Esterification of Carboxylic Acids with Alcohols. Bulletin of the Korean Society, 2002, 23(4): 539-540.
    [16] a. Kosta Steliou, A., Szczygielska Nowosielska, A., Favre, M. A. Poupart, Stephen Hanessian. Reagents for Organic Synthesis: Use of Organostannyl Oxides as Catalytic Neutral Esterification Agents in the Preparation of Macrolides. Journal of the American Chemical Society, 1980, 102(25): 7578-7579.b. Kosta Steliou, Marc Andre Poupart. Reagents for Organic Synthesis. Part 3. Tin-Mediated Esterification in Macrolide Synthesis. Journal of the American Chemical Society, 1983, 105 (24): 7130-7138.
    [17] a. Junzo Otera, Toru Yano, Yasuyuki Himeno, et al. A Novel Template Effect of Distannoxane in Macrolactonization ofω-Hydroxy Carboxylic Acids. Tetrahedron Letters, 1986, 27(37): 4501-4504. b. Junzo Otera, Nobuhisa Danoh, Hitosi Nozaki. Novel Template Effects of Distannoxane Catalysts in Highly Efficient Transesterification and Esterificati- on. Journal of Organic Chemisty, 1991, 56 (18): 5307-5311.
    [18] Chien-Tien Chen and Yogesh S. Munot. Direct Atom-Efficient Esterification between Carboxylic Acids and Alcohols Catalyzed by Amphoteric, Water-Tolerant TiO(acac)2. Journal of Organic Chemisty, 2005, 70 (21): 8625-8627.
    [19] a. Majid M. Heravi, Farahnaz K. Behbahani, Rahim H. Shoar, et al. Catalytic Acetylation of Alcohols and Phenols with Ferric Perchlorate in Acetic Acid. Catalysis Communications, 2006, 7(3): 136-139. b. Baldev Kumar, Harish Kumar, Anupma Parmar. A Facile Conversion of Halides. Alcohols and Olefins to Esters Usihg Iron (Ⅲ) Perchlorate. Synthetic Communications, 1992, 22(7): 1087-1094.
    [20] a. Gui-Sheng Zhang. Fe_2(SO_4)_3·xH_2O Catalytic Esterification of Aliphatic Carboxylic Acids with Alcohols. Synthetic Communications, 1998, 28(7): 1159-1162. b. Qi-hai Xu, Wan-yi Liu, Bao-hua Chen, et al. An Improved Method for the Esterification of Aromatic Acids with Ethanol and Methanol. Synthetic Communications, 2001, 31(14): 2113-2117.
    [21] Sharma, G. V. M., Mahalingam, A. K., Nagarajan, M., et al. Facile Acetylation of Alcohols, Ethers and Ketals with Catalytic FeCl3 in AcOH. Synlett, 1999, 08: 1200-1202.
    [22] Tse-Lok Ho. Copper Ion-Promoted Esterifications. Synthetic Communications, 1989, 19(16): 2897-2898.
    [23] N. Iranpoor, H. Firouzabadi, M. A. Zolfigol. Selective Acetylation of Primary Alcohols: Acetyl and Formyl Transfer Reactions with Copper (Ⅱ) Salts. Synthetic Communications, 1998, 28(11): 1923-1934.
    [24] Jie Ma, Heng Jiang, Hong Gong. Efficient Esterification of Aliphatic Carboxylic Acids Catalyzed by Copper Methanesulfonate. Organic Preparationsand Procedures International, 2005, 37(1): 87-92.
    [25] a. Kazuaki Ishihara, Suguru Ohara, Hisashi Yamamoto. Direct Condensation of Carboxylic Acids with Alcohols Catalyzed by Hafnium (IV) Salts. Science, 2000, 290(5495): 1140-1142. b. Ishihara, K., Nakayama, M., Ohara, S., et al. A Green Method for the Selective Esterification of Primary Alcohols in the Presence of Secondary Alcohols or Aromatic Alcohols. Synlett, 2001, 07: 1117-1120. c. Ishihara, K., Nakayama, M., Ohara, S., et al. Direct Ester Condensation from a 1:1 Mixture of Carboxylic Acids and Alcohols Catalyzed by Hafnium(IV) or Zirconium(IV) Salts. Tetrahedron, 2002, 58(41): 8179-8188.
    [26] a. Kshudiram Mantri, Kenichi Komura, Yoshihiro Sugi. Efficient Esterification of Long Chain Aliphatic Carboxylic Acids with Alcohols over ZrOCl2·8H2O Catalyst. Synthesis, 2005, 12: 1939-1944. b. Nakayama, M., Sato, A., Ishihara, K., et al. Water-Tolerant and Reusable Catalysts for Direct Ester Condensation between Equimolar Amounts of Carboxylic Acids and Alcohols. Advanced Synthesis & Catalysis, 2004, 346(11): 1275-1279.
    [27] a. Yuka Nakamura, Toshikatsu Maki, Xiaowei Wang, et al. Iron (Ⅲ)–Zirconium (IV) Combined Salt Immobilized on N-(Polystyrylbutyl) pyridinium Triflylimide as a Reusable Catalyst for a Dehydrative Esterification Reaction. Advanced Synthesis & Catalysis, 2006, 348(12-13): 1505-1510. b. Sato, A., Nakamura, Y., Maki, T., et al. Zr(IV), -Fe(Ⅲ), -Ga(Ⅲ), and -Sn(IV) Binary Metal Complexes as Synergistic and Reusable Esterification Catalysts. Advanced Synthesis & Catalysis, 2005, 347(10): 1337-1340.
    [28] Tomoko Mineno and Hisao Kansui. High Yielding Methyl Esterification Catalyzed by Indium (Ⅲ) Chloride. Chemical & Pharmaceutical Bulletin, 2006, 54(6): 918-919.
    [29] Nag, P., Bohra, R., Mehrotra, R. C. Dioxomolybdenum (VI) Complexes as Catalytic Neutral Esterification Agents. Journal of Chemical Research, Synopses, 2002, 86-88.
    [30] Ram, R. N. and Charles, I. Selective Esterification of Aliphatic Nonconjugated Carboxylic Acids in the Presence of Aromatic or Conjugated Carboxylic Acids Catalysed by NiCl2.6H2O. Tetrahedron, 1997, 53(21): 7335-7340.
    [31] a. Chandrasekhar, S., Sultana, S. S., Narsihmulu, C.,et al. Direct Condensation of Carboxylic Acids with Polyethylene Glycols Catalyzed bySc(OTf)3, Tetrahedron Letters, 2002, 43(46): 8335-8337. b. Takasu, A., Oishi, Y., Iio, Y., et al. Synthesis of Aliphatic Polyesters by Direct Polyesterification of Dicarboxylic Acids with Diols under Mild Conditions Catalyzed by Reusable Rare-Earth Triflate. Macromolecules, 2003, 36(6): 1772-1774.
    [32] a. Kazuaki Ishihara, Manabu Kubota, Hideki Kurihara, et al. Scandium Trifluoromethanesulfonate as an Extremely Active Acylation Catalyst. Journal of the American Chemical Society, 1995, 117(15): 4413-4414. b. Kazuaki Ishihara, Manabu Kubota, Hideki Kurihara, et al. Scandium Trifluoromethanesulfonate as an Extremely Active Lewis Acid Catalyst in Acylation of Alcohols with Acid Anhydrides and Mixed Anhydrides. Journal of Organic Chemisty, 1996, 61(14): 4560-4567.
    [33] Ishihara Kazuaki, Kubota Manabu, Yamamoto Hisashi. A New Scandium Complex as an Extremely Active Acylation Catalyst. Synlett, 1996, 03: 265-266.
    [34] a. Orita, A., Tanahashi, C., Kakuda, A., et al. Highly Efficient and Versatile Acylation of Alcohols with Bi (OTf) 3 as Catalyst. Angewandte Chemie International Edition, 2000, 39 (16): 2877-2879. b. Akihiro Orita, Chiaki Tanahashi, Atsushi Kakuda, et al. Highly Powerful and Practical Acylation of Alcohols with Acid Anhydride Catalyzed by Bi (OTf) 3. Journal of Organic Chemisty, 2001, 66(26): 8926-8934.
    [35] Masahiro Ohshima and Teruaki Mukaiyama. Highly Efficient Asymmetric Esterification of Cyclic meso-Dicarboxylic Anhydrides Catalyzed by Diphenylboryl Triflate. Chemistry Letters, 1987, 16(2): 377-380.
    [36] Chen, C. T., Kuo, J. H., Li, C. H., et al. Catalytic Nucleophilic Acyl Substitution of Anhydrides by Amphoteric Vanadyl Triflate. Organic Letters, 2001, 3(23): 3729-3732.
    [37] Chauhan, K. K., Frost, C. G., Love, I., et al. Indium Triflate: An Efficient Catalyst for Acylation Reactions. Synlett, 1999, 11: 1743-1744.
    [38] Saravanan, P. and Singh, V. K. An Efficient Method for Acylation Reactions. Tetrahedron Letters, 1999, 40(13): 2611-2614.
    [39] Nishikido, J., Nakajima, H., Saeki, T., et al. Lanthanide Perfluoroalkylsulfonylamide Catalysts for Fluorous Phase Organic Synthesis. Synlett, 1998, 12: 1347-1348.
    [40] a. Mikami, K., Mikami, Y., Matsumoto, Y., et al. Lewis Acid Catalysis byLanthanide Complexes with Tris(perfluorooctanesulfonyl)methide Ponytails in Fluorous Recyclable Phase. Tetrahedron Letters, 2001, 42(2): 289-292. b. Mikami, K., Mikami, Y., Matsuzawa, H., et al. Lanthanide Catalysts with Tris(perfluorooctanesulfonyl)methide and Bis(perfluorooctanesulfonyl)amide Ponytails: Ecyclable Lewis Acid Catalysts in Fluorous Phases or as Solids. Tetrahedron, 2002, 58 (20): 4015-4021.
    [41] Nie, J., Zhao, Z., Xu, J., et al. Lanthanide Bis [bis (1,1,1,3,3,3-hexafluoro-2-propoxy) sulfonyl amide as a Novel Effective Acylation Catalyst, Journal of Chemical Research, Synopses, 1999, 160-161.
    [42] Nakae Yasuyuk, Kusaki Ikuko, Sato Tsuneo. Lithium Perchlorate Catalyzed Acetylation of Alcohols under Mild Reaction Conditions. Synlett, 2001, 10: 1584-1586.
    [43] Bartoli, G., Bosco, M., Dalpozzo, R., et al. Mg (ClO_4)_2 as a Powerful Catalyst for the Acylation of Alcohols under Solvent-Free Conditions. Synlett, 2003, 01: 39-42.
    [44] Bartoli, G., Bosco, M., Dalpozzo, R., et al. Zn (ClO_4)_2·6H_2O as a Powerful Catalyst for a Practical Acylation of Alcohols with Acid Anhydrides. European Journal of Organic Chemistry, 2003, 23: 4611- 4617.
    [45] Chakraborti, A. K. and Gulhane, R. Bismuth Oxide Perchlorate as a Highly Efficient Catalyst for Heteroatom Acylation under Solvent-Free ConditionsShivani Synlett, 2003, 1805-1808.
    [46] Ahmad, S. and Iqbal, J. A New Acylation Catalyst. Journal of the Chemical Society, Chemical Communications, 1987, 2: 114-115.
    [47] Salavati-Niasari, M., Khosousi, T. and Hydarzadeh, S. Highly Selective Esterifi cation of tert-Butanol by Acetic Acid Anhydride over Alumina-Supported InCl3, GaCl3, FeCl3, ZnCl2, CuCl2, NiCl2, CoCl2 and MnCl2 Catalysts. Journal of Molecular Catalysis A: Chemical, 2005, 235(1-2): 150-153.
    [48] Seebach, D., Hungerbuhler, E., Naef, R., et al. Titanate-Mediated Transesterific ations with Functionalized Substrates. Synthesis, 1982, 02: 138-141.
    [49] Schnurrenberger, P., Züger, M. and Seebach, D. Herstellung von Methylestern durch Umesterung funktionalisierter Substrate mit Titals?ureesternals Katalysatoren. Helvetica Chimica Acta, 1982, 65(4): 1197-1201.
    [50] Valizadeh, H. and Shockravi, A. An Efficient Procedure for the Synthesis of Coumarin Derivatives Using TiCl_4 as Catalyst under Solvent-Free Conditions. Tetrahedron Letters, 2005, 46(20): 3501-3503.
    [51] Otera, J., Yano, T., Kawabata, A., et al. Novel Distannoxane-catalyzed Transesterification and a New Entry toα,β-Unsaturated Carboxylic Acids. Tetrahedron Letters, 1986, 27(21): 2383-2386.
    [52] a. Orita, A., Mitsutome, A. and Otera, J. Distannoxane-Catalyzed Highly Selective Acylation of Alcohols. Journal of Organic Chemistry, 1998, 63(8): 2420-2421. b. Orita, A., Sakamoto, K., Hamada, Y., et al. Mild and Practical Acylation of Alcohols with Esters or Acetic Anhydride under Distannoxane Catalysis. Tetrahedron, 1999, 55(10): 2899-2910.
    [53] Okano, T., Miyamoto, K. and Kiji, J. Transesterification Catalyzed by Lanthanoid tri-2-Propoxides. Chemistry Letters, 1995, 246.
    [54] Nelson, S. G., Wan, Z., Peelen, T. J., et al. Catalyzed Acyl halide-aldehyde Cyclocondensations. New Insights into the Design of Catalytic Cross aldol Reactions. Tetrahedron Letters, 1999, 40(36): 6535-6539.
    [55] Kumar, B., Kumar, H. and Parmar, A. Iron (Ⅲ) Perchlorate: A Reagent for Transesterification. Indian J. Chem., Sect. B, 1993, 32: 292- 293.
    [56] Hanamoto, T., Sugimoto, Y., Yokoyama, Y., et al. Ytterbium (Ⅲ) Triflate-Catalyzed Selective Methanolysis of Methoxyacetates: A New Deprotective Method. Journal of Organic Chemistry, 1996, 61(13): 4491-4492.
    [57] Vedejs, E. and Cshen, X. Kinetic Resolution of Secondary Alcohols. Enantioselective Acylation Mediated by a Chiral (Dimethylamino) pyridine Derivative. Journal of the American Chemical Society, 1996, 118(7): 1809-1810.
    [58] Zhao, H., Pendri, A. and Greenwald, R. B. General Procedure for Acylation of 3°Alcohols: Scandium Triflate/DMAP Reagent. Journal of Organic Chemistry, 1998, 63(21): 7559-7562.
    [59] Greenwood, N. N., Earnshaw, A. Chemistry of the Elements, 2nd ed. Butterworth-Heinemann: Oxford, 1998: 954.
    [60] Farnworth, F., Jones, S. L. and Mcalipine, I. Specialty Inorganic Chemicals. Special publication No.40, Royal society of Chemistry: London, 1980.
    [61] Manriquez J A, Becraw J E. Perparation of a Dinitrogen Complex of Bis (pentamet-yleyclopentadienyl) Zirconium Isolation and Protonation Leading to Stoichiometric Reduction of Dinitrogen of Hydrazine. Journal of the American Chemical Society, 1974, 96(19): 6229-6230.
    [62] Amir H. Hoveyda, Zhongmin Xu, James P. Morken, et al. StereoselectiveZirconium-Catalyzed Ethylmagnesation of Homoallylic Alcohols and Ethers. The Influence of Internal Lewis Bases on Substrate Reactivity. Journal of the American Chemical Society, 1991, 113(23): 8950-8952.
    [63] Suzuki N, Kondakov D Y, Takahashi T. Zirconium-Catalyzed Highly Regioselecti Vecarbon-Carbon Bond Formation Reactions. Journal of the American Chemical Society, 1993, 115(18): 8485-8486.
    [64] Kazuya Fujita, Hideki Yorimitsu, Hiroshi Shinokubo, et al. Conversion of Acid Chloride into Homoallylic Alcohol via Allylic C-H Bond Activation of Alkene with a Zirconocene Complex. Journal of the American Chemical Society, 2001, 123(48): 12115-12116.
    [65] Tamotsu Takahashi, Yuanhong Liu, Chanjuan Xi, et al. Grignard Reagent Mediated Reaction of Cp_2Zr (Ⅱ)-ethylene Complex with Imines. Chemical Communications, 2001, 37(1): 31–32.
    [66] Vincent Gandon, Philippe Bertus, Jan Szymoniak. Conversion of Imines into C, N-Dimagnesiated Compounds and Trapping with Electrophiles. One-Pot Access to 1-Azaspirocyclic Framework. Synthesis, 2002, 2002(8): 1115–1120.
    [67] Sebastien Gagneur, Jean-Luc Montchamp, and Ei-Ichi Negishi. Ethylzincation of Monosubstituted Alkenes Catalyzed by EtMgBr-Cl_2ZrCp_2 and Palladium-Catalyzed Cross Coupling of the Resultant Diisoalkylzinc Derivatives. Organometallics, 2000, 2(19): 2417-2419.
    [68] Tamotsu Takahashi, Chanjuan Xi, Yasuyuki Ura, et al. Metallo-Esterification of Alkynes: Reaction of Alkynes with Cp_2ZrEt_2 and Chloroformate. Journal of the American Chemical Society, 2000, 122(13): 3228-3229.
    [69] Judith de Armas and Amir H. Hoveyda. Zr-Catalyzed Electrophilic Carbomagnesation of Aryl Olefins. Mechanism-Based Control of Zr-Mg Ligand Exchange. Organic Letters, 2001, 3(13): 2097-2100.
    [70] Jun Terao, Kazushi Torii, Koyu Saito, et al. Zirconocene-Catalyzed Silylation of Alkenes with Chlorosilanes. Angewandte Chemie International Edition, 1998, 37(19): 2653-2656.
    [71] Vincent Gandon and Jan Szymoniak. A One-Pot Access to Cyclopropanes from Allylic Ethers via Hydrozirconation-Deoxygenative Ring Formation. Chemical Communications. 2002, 38(12): 1308–1309.
    [72] Tamotsu Takahashi, Baojian Shen, Kiyohiko Nakajima, et al. A Convenient One-Pot Procedure to Arylcyclobutenes from Arylacetylenes. Journal of Organic Chemisty, 1999, 64(23): 8706-8708.
    [73] Richard R. CesatiⅢ, Judith de Armas, Amir H. Hoveyda. Olefins Turned Alkylating Agents: Diastereoselective Intramolecular Zr-Catalyzed Olefin Alkylations. Organic Letters, 2002, 4(3): 395-398.
    [74] Ken-Ichi Morita, Yutaka Nishiyama, Yasutaka Ishii. Selective Dimerization of Aldehydes to Esters Catalyzed by Zirconocene and Hafnocene Complexes. Organometallics, 1993, 12(9): 3748-3752.
    [75] Ping Zhong, Zhi-Xing Xiong, Xian Huang. A Stereoselective Synthetic Route to (Z)-α-Stannyl-α,β-Unsaturated Esters. Synthetic Communications, 2001, 31(2): 311-316.
    [76]黎小武,陈四海,许新华.应用硒插入C - Zn键合成硒代酯.合成化学, 2007, 15(3): 327-329.
    [77] Ping Zhong, Zhi-Xing Xiong, Xian Huan. A Stereoselective Synthetic Route to (E)-α,β-Unsaturated Selenoesters. Synthetic Communications, 2000, 30(5): 887-893.
    [78] Ping Zhong, Meng-Ping Guo, Xian Huang. Stereoselective Synthetic of (E)-2-Alkyl-1-Silylvinyl Sulfoxides via Hydrozirconation of Alkyl Silyl Acetylenes. Synthetic Communications, 2001, 31(4): 615– 619.
    [79] Ping Zhong, Zhi-Xing Xiong, Xian Huang. A Stereoselective Synthetic Route To (Z)-α-Stannyl-α,β-Unsaturated Aldehydes. Synthetic Communications, 2000, 30(19): 3535-3541.
    [80] Ping Zhong, Xian Huang, Meng Ping-Guo. Hydrozirconation of Alkynyl Sulfoxides: the Reactions of Zirconated Vinyl Sulfoxide Intermediates. Tetrahedron, 2000, 56(45): 8921-8925.
    [81] Cenac N, Zablcoka M, Skouronska A, et al. Ring Opening of Lactones and Anhydrides Induced by [Cp_2ZrHCl]n. Journal of Organic Chemistry, 1996, 61(2): 796- 798.
    [82] Dufour N, Caminade A M, Majoral J P, et al. Hydro- and Carbozirconation of Multiple Bonded Low Coordinated Phosphorus Species. Organometallics, 1992, 11(3): 113-137.
    [83] Donald W. H., Thomas F. B., Jeffrey S. HydrozirconationⅢ. Stereospecific and Regioselective Functionalization of Alkylacetylenes via Vinylzirconium (IV) Intermediates. Journal of the American Chemical Society, 1975, 97(3): 679-680.
    [84] Sandro Gambarotta, Sauro Strologo, Carlo Floriani, et al. Stepwise Reduction of Carbon Dioxide to Formaldehyde and Methanol: Reactions of CarbonDioxide and Carbon Dioxide Like Molecules with Hydridochlorobis (cyclopentadienyl) Zirconium (IV). Journal of the American Chemical Society, 1985, 107(22): 6278-6282.
    [85]桂祖桐.聚乙烯树脂及其应用.北京:化学工业出版社, 2002.
    [86]姜丽巍,刘德深,邢伟.茂锆金属催化剂催化乙烯聚合研究.弹性体. 2007, l7 (5): 45-48.
    [87] Sinn H, Kaminsky W, Vollemer H, et al.“Living Polymers”on Polymerization with Extremely Productive Ziegler Catalysts. Angewandte Chemie International Edition in English, 1980, 19(5): 390-392.
    [88] Petra C, Mohring N, Coville J. Homogeneous Group 4 Metallocene Ziegler-Natta Catalyst: the Influence of Cyclopentadienyl-Ring Substituents. Journal of Organometallic Chemistry, 1994, 479(1-2): 1-29.
    [89]张玉良,钱明星,何仁. (η5-4,7-Me_2-Ind)_2Zr(CH_2Ph)_2/烷氧基铝催化乙烯齐聚的研究.分子催化, 2001, 15(8): 295-298.
    [90] He Ren. Linear Oligomerization of Ethylene Catalyzed by Zirconium/Aluminu System for Preparing Linear Lower Carbonl-Olefins, in proc.int.cont.petrefin. Petrochem processed. Tetrahedron Letters, 1991, 12(3): 1412-1417.
    [91] Yasushi S, Yoshikazu N. ZrCl_4-TEA-EASC Three Component Catalyst for the Oligomerization Cocatalysts and Additives. Molecular Catalysis, 2002, 187(24): 283 -294.
    [92] Swarts, F. Sur l'acide fluoroacétique. Bull. Soc. Chim. France, 1896, 15(3): 1134-1135.
    [93] Josef F., Emily F. S. 9α-Fluoro Derivatives of Cortisone and Hydrocortisone. Journal of the American Chemical Society, 1954, 76 (5): 1455–1456.
    [94] John A. M., Kathleen H. Synthesis of Potential Anticancer Agents. X. 2-Fluoroadenosine. Journal of the American Chemical Society, 1957, 79 (16): 4559.
    [95] Horvath I T, Rabai J. Facile Catalyst Separation without Water: Fluorous Biphase Hydyoformylation of Olefins. Sciences, 1994, 266(1): 72-75.
    [96] Cavazzini M, Montanari F, Pozzi G, et al. Perfluorocarbon-Soluble Catalysts and Reagents and the Application of FBS (fluorous biphase system) to Organic Synthesis. Journal of Fluorine Chemistry, 1994, 94(2): 183-193.
    [97] a. Juliette J J, Horv?th I T, Gladysz J A. Trasition Metal Catalysis in Fluoreus Media: Pratical Application of a New Immobilization Principle to Rhodium- Catalyzed Hydroboration. Angewandte Chemie International Edition, 1997,36(15): 1610-1611. b. Juliette J J, Rutherford D, Horvath I, et a1. Transition Metal Catalysis in Fluorous Media: Pratical Application of a New Immobilization Principle to Rhodium-Catalyzed Hydroboration of Alkenes and Alkynes. Journal of the American Chemical Society, 1999, 121(12): 2696-2704.
    [98] Dinh L V, Gladysz J A. Transition Metal Catalysis in Fluorous Media: Extension of a New Immobilization Principle to Biphasic and Monophasic Rhodium-Catalyzed Hydrosilylations of Ketones and Enones. Tetrahedron Letters, 1999, 40(51): 8995-8 998.
    [99] Dirk Menche, Jorma Hassfeld, Jun Li, et al. Total Synthesis of Archazolid. Journal of the American Chemical Society, 2007, 129(19): 6100-6101.
    [100] Johanne Moineau, Gianluca Pozzi, Silvio Quici, et al. Palladium-Catalyzed Heck Reaction in Perfluorinated Solvents. Tetrahedron Letters, 1999, 40(43): 7683-7686.
    [101] Jiannan Xiang, Akihiro Orita, and Junzo Otera. Fluorous Biphasic Esterification Directed towards Ultimate Atom Efficiency. Angewandte Chemie International Edition, 2002, 41(21): 4117-4119.
    [102]易文斌,蔡春.全氟辛基磺酸稀土金属盐催化氟两相酯化反应.有机化学. 2005, 25(11): 1434-1436.
    [103] Jiannan Xiang, Shinji Toyoshima, Akihiro Orita, et al. A Practical and Green Chemical Process: Fluoroalkyldistannoxane-Catalyzed Biphasic Transesterifica tion. Angewandte Chemie International Edition, 2001, 40(19): 2670-2672.
    [104] Rocaboy C, Gladysz J A. Syntheses Oxidations, and Palladium Complexes of Fhorous Dialkyl Sulfides: New Precursors to Highly Active Catalysts for the Suzuki Coupling. Tetrahedron, 2002, 58(20): 4007-4014.
    [105] a. Nakamura Y, Takeuchi S, Okumura K, et al. Recyclable Fluorus Chiral Ligands and Catalysts: Asymmetric Addition of Diethylzinc to Aromatic Aldehydes Catalyzed by Fluomus BINOL-Ti Complexes. Tetrahedron, 2002, 58(20):3963-3969. b. Gladysz J A, Wende M, Meier R. Fluorous Catalysis without Fluorous Solvents: A Friendlier Catalyst Recovery/Recycling Protocol Based upon Thermomorphic Properties and Liquid/Solidphase Separation. Journal of the American Chemical Society, 2001, 123(46): 11490-11491.
    [106] Mikami K, Matsuzawa H. Lanthanide Catalysts with Tris (perflurooctanesulfonyl) methide and Bis (perfluorooctanesulfonyl) amidePonytails: Recyclable Lewis Acid Catalysts in Fluorous Phases or as Solids. Tetrahedron Letters, 2002, 58(20): 4015- 4021.
    [107] Shi M, Cui S C. Friedel-Crafts Reaction Catalyzed by Perfluorinated Rare Earth Metal. Journal of Fluorine Chemistry, 2002, 116(2): 143-147.
    [108] Haddleton D M, Jackson S G, Bon S A F. Copper (I)-Mediated Living Radical Polymerization under Fluorons Biphasic Conditions. Journal of the American Chemical Society, 2000, 122(7): 1542-1543.
    [109] a. Nakanmura Y, Takeuchi S, Ohgo Y, et al. Preparation of a Fluorous Chiral BINOL Derivative and Application to an Asymmetric Protonation Reaction. Tetrahedron, 2000, 56(3): 351-356. b. Betzemeier B, Knochel P. Palladium-Catalyzed Cross-Coupling of Organozin c Bromides with Aryl Iodides in Perfluorinated Solvents. Angewandte Chemie International Edition in English, 1997, 36(23): 2623-2624.
    [110] K. Suzuki, L. Hintermann, S. Yamanoi. in: I. Marek (Ed.), Titanium and Zirconium in Organic Synthesis. Wiley, Weinheim, 2002: 282.
    [111] a. Gerrit A. Luinstra. Synthesis and Reactivity of Titanocene and Zirconocene Triflates. Journal of Organometallic Chemistry, 1996, 517(1-2): 209-215. b. U. Thewalt and H. P. Klein. Strukturchemie Titan-OrganischerVerbindungen: Die Struktur von bis (π-cyclopentadienyl) bis(trifluormetha nsulfonato)-Titan (IV). Zeitschrift für Kristallographie, 1980, 153(3-4): 307-315.
    [112] Keith, T., Hollis, N., Robinson, P., et al. Homogeneous Catalysis. [TiCp_2 (CF_3SO_3)_2] and [ZrCp_2 (CF_3SO_3)_2THF], Fast and Efficient Catalysts for the Mukaiyama Cross-Aldol Reaction. Tehahedron Letters, 1992, 33(43): 6423-6426.
    [113] Hollis T K, Robinson N P, John W. Use of the [Cp_2Zr (CF3SO3)2] Catalyst for the Sakurai Reaction of Allylic Silanes with Orthoesters, Acetals, Ketals and Carbonyl Compounds. Tetrahedron Letters, 1993, 34(27): 4309-4312.
    [114] a. T. Hanamoto, Y. Sugimoto, Y. Z. Jin, et al. Scandium (Ⅲ) Perfluorooctanesulfonate [Sc (OPf) 3]: A Novel Catalyst for the Hetero Diels–Alder Reaction of Aldehydes with Non-Activated Dienes. Bulletin of the Chemical Society of Japan, 1997, 70(6): 1421-1426. b. M. Shi, S. C. Cui, Y. H. Liu. Mannich-Type Reaction of (1-Methoxy-2-Methylpropenyloxy) Trimethylsilane with Arylaldehydes and Aromatic Amines Catalyzed by Perfluorinated Rare Earth Metal Salts inFluorous. Tetrahedron, 2005, 61(21): 4965-4970. c. O. Yamazaki, X. Hao, A. Yoshida, et al. Fluorous Reverse-Phase Silica Gel-Supported Lewis Acids as Recyclable Catalysts in Water. Tetrahedron Letters, 2003, 44(49): 8791-8795. d. X. Hao, A. Yoshida, J. Nishikido. Metal bis (perfluorooctanesulfonyl) Amides as Highly Efficient Lewis Acid Catalysts for Fluorous Biphase Organic. Journal of Fluorine Chemistry, 2006, 127(2): 193-199.
    [115] De Lie An, Zhihong Peng, Akihiro Orita, et al. Organotin Perfluorooctanesulfonates as Air-Stable Lewis Acid Catalysts: Synthesis, Characterization, and Catalysis. Chem. Eur. J., 2006, 12: 1642-1647.
    [116] Renhua Qiu, Guoping Zhang, Xinhua Xu. Metallocene Bis (per-uoroalkanesulfonate) s as Air-Stable Cationic Lewis Acids. Journal of Organometallic Chemistry, 2009, 694(9-10): 1524–1528.
    [117] Renhua Qiu, Yuyang Zhu, Xinhua Xu. Zirconocene Bis (per-uorooctanesulfonate) s-Catalyzed Acylation of Alcohols, Phenols, Thiols, and Amines under Solvent-Free Conditions. Catalysis Communications, 2009, 45(10): 1889–1892.
    [118]陈洁,蒋剑春徐俊明.催化酯化反应中固体酸催化剂研究进展.精细石油化工进展. 2009, 10(3): 32-37.
    [119] a. Atsushi K, Tsutomu Y, Kozo T. The Effect of Preparation Method on the Acidic Catalytic Properties of Iron Oxide. Journal of Catalysis, 1983, 83(1): 99-106. b. Toshio O. Water-tolerant Solid Acid Catalysts. Chemical Reviews, 2002, 102(10): 3641-3666.
    [120] a.张琦,常杰,王铁军,等.固体酸催化剂SO4/SiO2-TiO2的制备及其催化酯化性能.催化学报, 2006, 27(11): 1033-1038. b. Zhang Qi, Chang Jie, Wang Tiejun, et al. Upgrading Bio-oil over Different Solid Catalysts. Energy& Fuels, 2006, 20(6): 2717-2720.
    [121]吕剑,杨建明,寇联岗.芳基苯酯类化合物的合成方法. C N 923793. 2007.
    [122]汤晓君. Al-β沸石催化合成乙酸辛酯.齐齐哈尔大学学报:自然科学版, 2008, 24(2): 37-39.
    [123]李露,于世涛,刘福胜,等. SO_4~(2-)促进的中孔含锆分子筛催化合成乙酸松油酯的研究.分子催化, 2003, 17(5): 326-329.
    [124]曹小华,陶春元,吴海英,等.固载型杂多酸PW12/ SiO_2催化合成乙酸异戊酯的研究.江西化工, 2002, (4): 95-97.
    [125] J. H. Shen, H. Wang, H. C. Liu, et al. Brφnsted Acidic Ionic Liquids as Dual Catalyst and Solvent for Environmentally Friendly Synthesis of Chalcone. Journal of Molecular Catalysis A: Chemical, 2008, 280(1-2): 24-28.
    [126]王世伟,高保娇,高学超,等.固载化冠醚二苯并-18-冠-6在苯甲酸丁酯合成反应中的相转移催化作用.物理化学学报, 2010, 26(4): 927-932.
    [127] H. Yamada, T. Sugai, H. Ohta, et al. Simple Synthesis of (R)-5-Hexadecanolide. Agricultural and Biological Chemistry, 1990, 54(6): 1579- 1580.
    [128] Rosu R, Yasui M, Iwasaki Y, et al. Enzymatic Synthesis of Symmetrical 1, 3-Diacylglycerols by Direct Esterification of Glycerol in Solvent-Free System. Journal of the American Oil Chemists' Society, 1999, 76 (7): 839-843.
    [129]张熊禄,余开辉,范小林. DM-130大孔树脂固定脂肪酶催化松香酯化反应的研究.林业科技, 2006, 31(1): 44-46.
    [130]王丽琼,张正波,李小永. Yb(NTf_2)_3催化苯甲酸酯化反应.应用化学, 2003, 20(3): 219-221.
    [131] Ishihara K, Lubota M, Kurihara H, et al. Scandium Trifluoromethane Sulfonate as an Extremely Active Lewis Acid Catalyst in Scylation if Alcohols with Acid Anhydrides and Mixed Anhydrides. Journal of Organic Chemistry, 1996, (61): 4560-4 567.
    [132] a. J. Otera. Transesterification. Chemistry Research, 1993, 93(4): 1449-1470. b. B. M. Trost. The Atom Economy-a Search for Synthetic Efficiency. Science, 1991, 254(5037), 1471-1477.
    [133]李明生.用甲醇镁作催化剂的酯交换合成甲基丙烯酸(N,N-二乙基氨基)乙酯.涂料工业. 1984, 19(1): 1-3.
    [134] a. Freedman B, Pryde E H. Variable Affecting the Yields of Fatty Acid Esters from Transesterifred Vegetable Oils. Journal of the American Oil Chemists' Society, 1984, 61(1): 1683-1689. b. Edgar L, Liu Y J. Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research, 2005, 44(1): 5353-5363.
    [135]翟德伟,乐英红,华伟明,等. Al_2O_3掺杂SO_4~(2-) /SnO_2固体酸催化剂上的酯化和酯交换反应.物理化学学报. 2010, 26(7): 1867-1872.
    [136]史芸.钼钛固体酸催化剂催化酯交换合成草酸二苯酯: [天津大学].天津:天津大学, 2008, 52-66.
    [137] S. Gryglewicz. Rapeseed Oil Methyl Esters Preparation Using Heterogeneous Catalysts. Bioresource Technology, 1999, 70(3): 249–253.
    [138]许慎敏,陈慧,梁宝臣,等. MCM-41负载碱金属对其酯交换反应催化活性的影响.石油学报(石油加工),增刊(2008): 223-225.
    [139]常雁红,杨彩虹,李文彬.固体碱用于合成碳酸二甲酯的催化性能.精细石油化工, 2001, 5: 22-25.
    [140]于琴琴,王庶,白荣献,等. Zn/Al水滑石催化碳酸二甲酯与苯酚酯交换反应的研究.高等学校化学学报, 2008, 26(8): 1502-1506.
    [141] Franco M, Franco R. Process for the Preparation of Polycarbonate Diols with a High Molecular Weight. US, 6384178[P]. 2002205207.
    [142]高俊杰,姚洁,梅花,等.钛酸酯催化碳酸二甲酯与苯酚的酯交换反应.催化学报, 2001, 22(4): 405-407.
    [143]李光吉,廖启金,宗敏华,等.非水相中酶催化葡甘聚糖的酯交换反应.东理工大学学报(自然科学版), 2006, 32(6): 666-671.
    [144]高静,姜艳军,马丽,等.混合溶剂中酶促合成维生素A乳酸.分子催化, 2006, 20(4): 346-350.
    [145] Edward Crabber. Biodiesel Production from Crude Palm Oil and Evaluation of Butanol Extraction and Fuel Properties. Process Biochemistry. 2001, 37(1): 65-71.
    [146] Freedman B, Pryde E H, Mounts T L. Variables Affectiing the Yields of Fatty Esters from Transesterified Vegetable Oils. Journal of the American Oil Chemists' Society, 1984, 61(11): 1638-1643.
    [147] Dorado M P, Ballesteros E, Lopez F J, et al. Kinetic Parameters Affectiing the Akali-Catalyzed Transesterification Process of Used Olive Oil. Energy and Fuels, 2004, 18(1): 77-83.
    [148]吴芹,陈和,韩明汉,等.高活性离子液体催化棉籽油酯交换制备生物柴油.催化学报, 2006, 27(4): 294-296.
    [149]曹宏远,曹维良,张敬畅.固体酸Zr(SO4)2·4H2O催化制备生物柴油.北京化工大学学报, 2005, 32(6): 61-63.
    [150] Satoshi Furuta, Hiromi Matsuhashi, Kazushi Arata. Biodiesel Fuel Production with Solid Superacid Catalysis in Fixed Bed Reactor under Atmospheric Pressure. Catalysis Communications, 2004, 40(5): 721–723.
    [151] Dora E, Lopez, James G, et al, David A Brace. Transesterification of Triacetin with Methanol on Solid Acid and Base Catalysts. Applied Catalysis A: General, 2005, 32(6): 97-105.
    [152] Galen S, Mohanprasad A D, Eric J D, et al. Transesterification of Soybean oil with Zeolite and Metal Catalysts. Applied Catalysis A: General, 2004, 257(2): 214-223.
    [153] Wei Du, Yuanyuan Xu, Dehua Liu, et al. Comparative Study on Lipase-Catalyzed Transformation of Soybean Oil for Biodiesel Production with Different Acyl Acceptors. Journal of Molecular Catalysis B: Enzymatic, 2004, 30(3-4): 125–129.
    [154] Yuyuan Xu. A Novel Enzymatic Route for Biediesel Production from Renewable Oils in a Solvent-Free Medium. Biotechnology Letters, 2003, 25(15): 1239-1241.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.