非定常自由来流对模型动态气动特性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对战斗机性能要求的不断提高,过失速机动能力已经成为下一代战斗机的重要性能指标之一。虽然关于过失速机动飞行中非定常气动力的研究已进行多年,但是过去的研究,主要集中在飞行姿态快速变化产生的非定常气动力上。然而,战斗机在完成过失速机动飞行时,飞行速度也将产生较大变化,因此在研究战斗机过失速机动飞行中的动态气动特性时,考虑飞行速度变化产生的影响是十分必要的。
     本文在南航非定常风洞内,以NACA0012翼型和三角翼模型为研究对象,借助动态气动力测量技术、动态压力测量技术、流场显示和PIV测量技术,对非定常自由来流中的二维翼型动态气动特性,非定常自由来流中的静态三角翼气动特性,以及非定常自由来流与三角翼俯仰运动耦合作用下的动态气动特性等,进行了详细和系统的实验研究。分析了来流速度脉动对气动特性产生的影响,分别讨论了对气动特性产生影响的物理机制。应用拓扑分析方法,分析了非定常自由来流下的三角翼空间流场瞬时流线拓扑结构。最后,对实验获得的非定常气动力数据进行了建模,分析了考虑非定常自由来流影响的非定常气动力数据对过失速机动飞行特性产生的影响。
     非定常自由来流对静态二维翼型气动特性的影响研究表明,来流风速以短周期脉动时,升力系数随来流速度的减小而增加,来流风速以长周期脉动时,升力系数则减小。这与翼型前缘形成的分离涡随来流速度变化在翼面上驻留的时间有关。翼型俯仰运动与非定常自由来流耦合运动下的动态气动特性研究结果表明,耦合运动下的升力系数的迟滞回线比单独俯仰运动时扩大,最大升力系数的值比单独俯仰运动时增加。来流风速的影响作用,在模型静态失速攻角前后表现的最为明显,这是因为来流风速的减速使得模型动态运动过程中产生的前缘涡从翼型上的脱落过程进一步减缓。
     非定常自由来流对静态三角翼模型气动特性的影响研究表明,来流减速和加速过程对三角翼背风面空间流场结构和强度产生的影响,是导致三角翼模型气动特性产生变化的主要原因。对三角翼上流动结构影响最显著的,是当前缘涡在翼面上发生破碎以后。而对于小攻角下的附着流动以及很大攻角下的完全分离流动,三角翼上的流动结构变化则表现的不明显。通过对非定常自由来流变化过程中,翼面横截面内的瞬时流线拓扑结构的分析表明,随着来流风速的减小,三角翼上的涡的破碎位置向下游移动,而来流风速的加速过程又使涡的破碎位置提前。横截面内的流动拓扑结构的变化可以大致判断前缘集中涡的破碎位置变化。
     三角翼模型单独俯仰运动的实验研究表明,并不是在所有情况下模型的俯仰运动都会产生明显的动态迟滞特性。产生较大动态迟滞特性的运动,是模型上的流动经历了多种流动形态变化的运动,特别是在模型静态失速攻角前后范围内的运动,此时减缩频率的影响也最明显。
     来流风速脉动与三角翼模型俯仰运动耦合作用的实验研究表明,在小攻角附着流动和很大攻角完全分离流动的情况下,模型俯仰与来流脉动的耦合作用对模型气动特性的影响并不是很明显。而当模型动态运动经历较大流态变化时,特别是在模型静态失速攻角前后,来流风速脉动使气动特性的迟滞回环进一步扩大,并增大了模型的最大升力系数,推迟了动态失速攻角的出现。流动显示和PIV测量结果说明,模型上仰运动时,来流风速的减速过程对前缘涡的破碎起到进一步的推迟作用,而来流风速的加速过程则促进了前缘涡的破碎。
     非定常气动力数学模型的研究表明,不论是模糊逻辑模型还是基于模糊聚类分析的模糊神经网络模型,对于多变量输入输出系统来说都是比较好的建模方法,有较强的预测能力。而模糊聚类分析方法则很好地解决了模型的结构辨识问题,提高了计算速度。过失速机动中70迎角定直飞行的仿真计算表明,考虑来流非定常变化的非定常气动力数据,对战斗机的飞行特性和飞行控制律都产生了明显的影响,因此在新一代战斗机的设计、研制中,必须加以考虑。
Post-stall maneuverability has been one of the important characteristics of the future fighters. The unsteady aerodynamics about the post-stall maneuvering aircrafts has been studied for many years, but the most investigations mainly focus on the unsteady aerodynamics caused by the attitude angle changes of the aircrafts. However, the changes of the fighter velocity are also very large, when the aircrafts perform the post-stall maneuver. It is necessary to research the effects of the variable free-stream in the study of dynamic aerodynamics of the maneuvering aircrafts.
     In this thesis, the unsteady wind tunnel at NUAA provides a unique experimental apparatus to study the effects of oscillating free stream. The unsteady aerodynamic responses of the stationary or dynamic NACA0012 airfoil and the stationary or dynamic delta wing in the oscillating free stream have been investigated through the measurements of the aerodynamic forces and the dynamic pressure distributions, the flow visualization and Particle Image Velocimetry (PIV) measurements. The effects of frequencies and amplitudes of velocity perturbation are discussed. The physical mechanisms behind those changes are analyzed. Topological features of the instantaneous cross-flow streamlines patterns of delta wing are studied. Finally, the unsteady aerodynamics models are established using the wind tunnel test data. The effects of oscillating free-stream on the performances of maneuvering aircraft are also presented.
     The test results of the stationary airfoil in oscillating free stream show that, in the short period of oscillating free-stream, the lift coefficients increase with decelerating. For the long period, the lift coefficients decrease with decelerating contrarily. These facts are related with the time scale of the vortex convection from the leading edge to the trailing edge and the externally time scale of velocity oscillating. The test data of the dynamic airfoil in oscillating free stream show that, the hysteresis loops of lift in coupled motion are enlarged. The maximum lift coefficients are increased compared with the model pitching alone. The effects of oscillating free-stream appear significantly at the static stall angle of attack around, because the process of the leading-edge vortex convected from the leading edge becomes slowly when the free-stream velocity decelerates.
     The test results of the stationary delta wing in oscillating free-stream indicate that, the flow field structures of delta wing are altered by the oscillating free-stream and the vortex strength is increased. These changes will result in the variety of aerodynamics correspondingly. The change of vortex structure is mostly obvious when the vortex burst at the leeward of the delta wing. But when the flow attach or separate completely at the upper surface, the effects of oscillating free-stream on the structure is not obvious. PIV measurements of the instantaneous flowfield indicate that the crossflow streamline topologies can be used to identify the positions of vortex breakdown. The instantaneous streamline topologies also show that, during flow deceleration, the vortex breakdown positions move downstream, while move upstream during flow acceleration.
     For delta wing pitching alone, it is found that dynamic hysteresis characteristics are not always clear. When the pitching motion of the model goes through the different flow condition with different time scales, especially when the model goes through the static stall angle of attack, the aerodynamic hysteresis loops arise obviously. For this case, the reduced frequency will act an important role for aerodynamic hysteresis phenomena.
     The experimental results of the pitching delta wing in oscillating free stream show that, the effects of oscillating free-stream are not important at the small angle of attack and at the angle of attack that the upper surface flow has already separated completely. But when the pitching motion of delta wing has the different flow patterns with different time scales, the effects of oscillating velocity appear very strong. The hysteresis loops enlarge further than those in the steady free-stream. The maximum lift coefficients are increased and the dynamic stall angles of attack are delayed. The flow visualizations and PIV measurements indicate that the vortex breakdown are postponed during the decelerating cycle and advanced during the accelerating.
     Finally, a Fuzzy Logic Model (FLM) and a Fuzzy Neural Network (FNN) model based on fuzzy clustering are developed. The simulating results show that these two models are both better methods to identify the unsteady aerodynamics with multi variables. Meanwhile, the fuzzy clustering method is a best method to design fuzzy neural network structures. The calculating process using FNN can be speeded up. The performances of flying at 70 degree angle of attack are calculated using unsteady aerodynamics of oscillating free-stream. The results indicate that unsteady aerodynamics is very important for the flight performance and controller design. This means that we must consider the effects of oscillating free-stream in the design of future supermaneuverability fighters.
引文
[1] Herbst W. B., Furture Fighter Technologies, J. Aircraft, 1980, 17(8): P561-566.
    [2] Herbst W. B., Dynamics of Aircraft Combat, J. Aircraft, 1983, 20(7): P594-598.
    [3] Robinson M. R. and Herbst W. B., The X-31A and Advanced Highly Maneuverable Aircraft, ICAS-90-04, 1990.
    [4] Alcorn C. W., Croom M. A., Francis M. S., The X-31 Aircraft: Advances in Aircraft Agility and Performance, Prog. Aerospace Sci., 1996, 32: P377-413.
    [5] Richard G., Holger F. and Richard H., Tactical Utility of the X-31A Using Post Stall Technologies. ICAS-96-3.7.5, 1996.
    [6] Kolano E., Flying the Flanker, Flight Journal, http://www.flightjournal.com/articles/Su27/Su27_5.asp .
    [7] Carr L. W., McAlister K. W. and McCroskey W. J., Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiments, NASA TN D-8382, 1977.
    [8] McCroskey W. J., Unsteady Airfoils, Annual Review of Fluid Mechanics, 1982, 14: P285-311.
    [9] Gad-el-Hak M., Unsteady Separation on Lifting Surfaces, Applied Mechanics Review, 1987, 40(4): P441-452.
    [10] Ericsson L. E. and Reding J. P., Fluid Dynamics of Unsteady Separated Flow Part Ⅱ Lifting Surfaces, Progress in Aerospace Sciences, 1987, 24: P249-356.
    [11] Doligalski T. L., Smith C. R. and Walker J. D. A., Vortex Interaction with Walls, Annual Review of Fluid Mechanics, 1994, 26: P573-616.
    [12] Ham N. D. and Garelick M. S., Dynamic Stall Considerations in Helicopter Rotors, J. Am. Hel., 1968, 13(2): P40-50.
    [13] Ham N. D., Aerodynamic Loading on a Two-Dimensional Airfoil during Dynamic Stall, AIAA Journal, 1968, 6(10): P1927-1934.
    [14] Liiva J., Unsteady Aerodynamic and Stall Effects on Helicopter Rotor Blade Airfoil Sections, Journal of Aircraft, 1969, 6(1): P46-51.
    [15] McCrosky W. J. and Philippe J. J., Usteady Viscous Flow on Oscillating Airfoils, AIAA Journal, 1975, 13(1): P71-79.
    [16] McCrosky W. J., Carr L. W. and McAlister K. W., Dynamic Stall Experiments on Oscillating Airfoils, AIAA Journal, 1976, 14(1): P57-63.
    [17] McAlister K. W. and Carr L. W. and McCrosky W. J., Dynamic Stall Experiments on the NACA 0012 Airfoil, NASA TP-1100, 1978.
    [18] McAlister K. W. and Carr L. W., Water Tunnel Visualizations of Dynamic Stall, Journal of FluidEngineering, 1979, 101: P376-380.
    [19] McCroskey W. J., McAlister K. W., Carr L. W., An Experimental Study of Dynamic Stall on Advanced Airfoil Section, NASA TM-84245, 1982.
    [20] Walker J. M., Helin H. E. and Strickland J. H., An Experimental Investigation of an Airfoil Undergoing Large-Amplitude Pitching Motions, AIAA Journal, 1985, 23(8): P1141-1142.
    [21] Helin H. E. and Walker J. M., Interrelated Effects of Pitch Rate and Pivot Point on Airfoil Dynamic Stall, AIAA 85-0130, 1985.
    [22] Walker J. M., Helin H. E. and Strickland J. H., An Experimental Investigation of an Airfoil Undergoing Large Amplitude Pitching Motions, AIAA 85-039, 1985.
    [23] Walker J. M., Helin H. E. and Chou D. C., Unsteady Surface Pressure Measurements on a Pitching Airfoil, AIAA 85-0532, 1985.
    [24] Graham G. M. and Strickland J. H., An Experimental Investigation of an Airfoil Pitching at Moderate to High Rates to Large Angles of Attack, AIAA 86-0008, 1986.
    [25] Strickland J. H. and Graham G. M., Dynamic Stall Interception Correlation for Airfoils Undergoing Constant Pitch Rate Motions, AIAA Journal, 1986, 24(4): P678-680.
    [26] Jumper E. J., Schreck S. J. and Dimmick R. L., Lift-Curve Characteristics for an Airfoil Pitching at Constant Rate, Journal of Aircraft, 1987, 24(10): P680-687.
    [27] Lorber P. F. and Carta F. O., Airfoil Dynamic Stall at Constant Pitch Rate and High Reynolds Number, Journal of Aircraft, 1988, 25(6): P548-556.
    [28] Chandrasekhara M. S. and Brydges B. E., Amplitude Effects on Dynamic Stall of an Oscillating Airfoil, AIAA 90-0575, 1990.
    [29] Acharya M. and Metwally M. H., Evolution of the Unsteady Pressure Field and Vorticity Production at the Surface of a Pitching Airfoil, AIAA 90-1472, 1990.
    [30] Koochesfahani M. M. and Smiljanovski V., Initial Acceleration Effects on Flow Evolution around Airfoils Pitching to High Angles of Attack, AIAA Journal, 1993, 31(8): P1529-1531.
    [31] Gendrich C. P. and Koochesfahani M. M. and Visbal M. R., Effects of Initial Acceleration on the Flow Field Development Around Rapidly Pitching Airfoils, J. Fluids Eng., 1995, 117(3): P45-49.
    [32] Karim M. A. and Acharya M., Development of the Dynamic-Stall Vortex over a Pitching Airfoil, Bull. Am. Phy. Soc., 1991, 36.
    [33] Reda D. C., Observations of Dynamic Stall Phenomena Using Liquid Crystal Coatings, AIAA Journal, 1991, 29(2): P308-310.
    [34] Shih C., Lourenco L., Van Dommelen L., Unsteady Flow Past an Airfoil Pitching at a Constant Rate. AIAA Journal, 1992, 30(5): P1153-1161.
    [35] Schreck S. J. and Helin H. E., Unsteady Vortex Dynamics and Surface Pressure Topologies on a PitchingWing, AIAA 93-0435, 1993.
    [36] Schreck S. J., Faller W. E. and Helin H. E., Pitch Rate and Reynolds Number Effects on Unsteady Boundary Layer Transition and Separation, AIAA 94-2256, 1994.
    [37] Schreck S. J., Faller W. E. and Helin H. E., Pitch Rate and Reynolds Number Effects on Unsteady Boundary-Layer Transition and Separation, Journal of Aircraft, 1998, 35(1): P46-52.
    [38] Crisler W., Krothapalli A. and Lourenco L, PIV Investigation of High Speed Flow over a Pitching Airfoil, AIAA 94-0533, 1994.
    [39] Raffel M., Kompenhans J. and Wemert P., Investigation of the Unsteady Flow Velocity Field above an Airfoil Pitching under Deep Dynamic Stall Conditions, Exp. Fluids, 1995, 19(2): P103-111.
    [40] Chandrasekhara M. S. and Carr L. W., Flow Visualization Studies of the Mach Number Effects on Dynamic Stall of an Oscillating Airfoil, Journal of Aircraft, 1990, 27(6): P516-522.
    [41] Chandrasekhara M. S., Ahmed S. and Carr L. W., Schlieren Studies of Compressibility Effects on Dynamic Stall of Transiently Pitching Airfoils, Journal of Aircraft, 1993, 30(2): P213-220.
    [42] Chandrasekhara M. S., Wilder M. C. and Carr L. W., Reynolds Number Influence on 2-D Compressible Dynamic Stall, AIAA 96-0073, 1996.
    [43] Chandrasekhara M. S., Wilder M. C. and Carr L. W., Boundary-Layer-Tripping Studies of Compressible Dynamic Stall Flow, AIAA Journal, 1996, 34(1): P96-103.
    [44] Chandrasekhara M. S., Wilder M. C. and Carr L. W., Competing Mechanisms of Compressible Dynamic Stall, AIAA Journal, 1998, 36(3): P387-393.
    [45] Wilder M. C., Chandrasekhara M. S. and Carr L. W., Tansition Effects on Compressible Dynamic Stall of Transiently Pitching Airfoils, AIAA 93-2978, 1993.
    [46] Carr L. W., Chandrasekhara M. S. and Brock N. J., Quantitative Study of Unsteady Compressible Flow on an Oscillating Airfoi, Journal of Aircraft, 1994, 31(4): P892-898.
    [47] Wu J. C., Wang C. M. and Tuncer I. H., Unsteady Aerodynamics of Rapidly Pitched Airfoils, AIAA 86-1105, 1986.
    [48] Francis M. S. and Keesee J. E., Airfoils Dynamics Stall Performance with Large-Amplitude Motions, AIAA Journal, 1985, 23(11): P653-659.
    [49] Visbal M. R. and Shang J. S., Numerical Investigation of the Flow Structure around a Rapidly Pitching Airfoil, AIAA 87-1424, 1987.
    [50] Visbal M. R., Effect of Compressibility on Dynamic Stall of a Pitching Airfoil, AIAA 88-0132, 1988.
    [51] Visbal M. R. and Shang J. S., Investigation of the Flow Structure around a Rapidly Pitching Airfoil, AIAA Journal, 1989, 27(8): P1044-1051.
    [52] Visbal M. R., On the Formation and Control of the Dynamic Stall Vortex on a Pitching Airfoil, AIAA 91-0006, 1991.
    [53] Gendrich C. P., Koochesfahani M. M. and Visbal M. R., The Visual and Vortical Signature of Leading Edge Separation, Bull. Am. Phy. Soc., 1992, 37(8).
    [54] Srinivasan G. R., Ekaterinaris J. A. and McCroskey W. J., Dynamic Stall of an Oscillating Wing Part Ⅰ: Evaluation of Turbulence Models, AIAA 93-3403, 1993.
    [55] Yang H. Q., Numerical Simulation of Dynamic Stall at High Reynolds Numbers, AIAA 94-0286,1994.
    [56] Ghosh Choudhuri P., Knight D. D. and Visbal M. R., Two-Dimensional Unsteady Leading-Edge Separation on a Pitching Airfoil, AIAA Journal, 1994, 32(4): P673-681.
    [57] Ekaterinaris J. A. and Menter F. R., Computaiton of Oscillating Airfoil Flows with One- and Two-Equation Turbulence Models, AIAA Journal, 1994, 32(12): P2359-2365.
    [58] Gendrich C. P., Koochesfahani M. M. and Visbal M. R, Effects of Initial Acceleration on the Flow Field Development around Rapidly Pitching Airfoils, J. Fluids Eng., 1995, 117(3): P45-49.
    [59] Ekaterinaris J. A., Numerical Investigation of Dynamic Stall of an Oscillating Wing, AIAA 95-0781, 1995.
    [60] Van Dyken R. D., Ekatrinaris J. A., Chandrasekhara M. S., Analysis of Compressible Light Dynamic Stall Flow at Transitional Reynolds Numbers, AIAA Journal, 1996, 34(7): P1420-1427.
    [61] Ko S. and McCroskey W. J., Computations of Unsteady Separating Flows over an Oscillating Airfoil, AIAA Journal, 1997, 35(7): P1235-1238.
    [62] McAlister K. W., Pucci S. L., McCroskey W. J., An Experimental Study of Dynamic Stall on Advanced Airfoil Sections, Column 2: Pressure and Force Data, NASA TM-84254, 1982.
    [63] Ekatrinaris J. A. and Chandrasekhara M. S., Numerical Investigaiton of Passive and Active Controls of Unsteady Compressible Flow, AIAA 2000-4417, 2000.
    [64] Rennie R. M. and Jumper E. J., Dynamic Leading-Edge Flap Scheduling, AIAA 95-1904, 1995.
    [65] Chandrasekhara M. S., Wilder M. C. and Carr L. W., Unatedy Stall Control Using Dynamically Deforming airfoils, AIAA 97-2236, 1997.
    [66] Geissler W. and Sobieczky H., Unsteady Flow Control on Rotor Airfoils, AIAA 95-1890, 1995.
    [67] Metwaly M. H., Investigation and Control of the Unsteady Flow Field over a Pitching Airfoil, PhD. Thesis, MMAE Dept., Illinois Institute of Technology, Chicago, 1990.
    [68] Karim M. A. and Acharya M., Suppression of Dynamic-Stall Vortices over Pitching Airfoils by Leading-Edge Suction, AIAA Journal, 1994, 32(8): P1647-1655.
    [69] Alrefai M. and Acharya M., Controlled Leading-Edge Suction for the Management of Unsteady Separation over Pitching Airfoils, AIAA Journal, 1996, 34(11): P2327-2336.
    [70] Kawthar-Ali M. H. and Acharya M.. Artificial Neural Networks for Suppression of the Dynamic-Stall Vortex over Pitching Airfoils, AIAA 96-0540, 1996.
    [71] Yu Y. H., Lee S., McAlister K. W., Dynamic Stall Control for Advanced Rotorcraft Application, AIAAJournal, 1995, 33(2): P289-295.
    [72] Towne M. C. and Buter T. A., Numerical Study of Alternate Forms of Dynamic-Stall-Vortex Suppression, Journal of Aircraft, 1995, 32(6): P1405-1407.
    [73] Freymuth P., Jackson S. and Bank W., Toward Dynamic Separation Without Dynamic Stall, Experiments in Fluids, 1989, 7: P187-196.
    [74] Chandrasekhara M. S., Wilder M. C. and Carr L. W., Control of Flow Separation using Adaptive Airfoils, AIAA 97-0655, 1997.
    [75] Wygnanski L., Boundary Layer and Flow Control by Periodic Addition of Momentum, AIAA 97-2117, 1997.
    [76] Jones R. T., Wing Plan Form for High Speed Flight, NACA Report No.863, 1947.
    [77] Hank I-Hung Lin, Vortex Breakdown over Delta Wings in an Unsteady Free Stream, PhD. Thesis, University of Southern California, Los Angeles, 1998.
    [78] Michael V. OL, The passage toward Stall of Nonslender Delta Wings at Low Reynolds Number, PhD. Thesis, California Institute of Technology, Pasadena, 2001.
    [79] Peckham D. H., Low-Speed Wind-Tunnel Tests on a Series of Uncambered Slender Pointed Wings with Sharp Edges, Aeronautical Research Council, R.&M. No. 3186, 1958.
    [80] Fink P. T. and Taylor J., Some Early Experiments on Vortex Separation, Aeronautical Research Council, R.&M. No. 3489, 1967.
    [81] Payne F. M., Ng T. T., Nelson R. C., Visualization and Wake Surveys of Vortical Flow over a Delta Wing, AIAA Journal, 1988, 26(2): P137-143.
    [82] Gad-el-Hak M. and Blackwelder R. F., Control of the Discrete Vortices from a Delta Wing, AIAA Journal, 1987, 25: P1042-1049.
    [83] Polhamus E. C., Predictions of Vortex-Lift Characteristics by a Leading Edge Suction Analogy, Journal of Aircraft, 1971, 8(4): P193-199.
    [84] Campbell J. F., Augmentation of Vortex Lift by Spanwise Blowing, Journal of Aircraft, 1976, 13(9): P727-732.
    [85] Peckham D. H. and Atkinson S. A., Preliminary Results of Low Speed Wind Tunnel Tests on a Gothic Wing of Aspect Ration 1.0, Aeronautical Research Council, CP 508, 1957.
    [86] Lambourne N. C. and Bryer D. W., Some Measurements in Vortex Flow Generated by Sharp Leading Edge Having 65 Degree Sweep, Aeronautical Research Council, CP 477, 1960.
    [87] Elle B. J., An Investigation at Low Speed of the Flow Near the Apex of the Delta Wings with Sharp Leading Edges, Aeronautical Research Council, R.&M. No.3176, 1961.
    [88] Hummel D., Study of the Flow Around Sharp-Edged Slender Delta Wings with Large Angle of Attack, NASA TT F-15, 107, 1973.
    [89] Faler J. H. and Leibovich S., An Experimental Map of the Internal Structure of a Vortex Breakdown, Journal of Fluid Mechanics, 1978, 86, part 2, P313-335.
    [90] Nelson R. C. and Visser K. D., Breaking Down the Delta Wing Vortex, AGARD-CP-494, Paper 21, 1991.
    [91] Elsenaar A. and Hoeijimakers H. W. M., An Experimental Study of the Flow over a Sharp-Edged Delta Wing at Subsonic and Transonic Speeds, AGARD-CP-494, Paper 15, 1991.
    [92] Towfighi J. and Rockwell D., Instantaneous Structure of Vortex Breakdown on a Delta Wing via Particle Image Velocimetry, AIAA Journal, 1993, 31(6): P1160-1162.
    [93] Huang X. Z., Sun Y. Z. and Hanff E. S., Further Investigation of Leading Edge Vortex Breakdown over Delta Wings, AIAA 97-2263, 1997.
    [94] Hoeijimakers H. W. M. and Vaatstra W., A Higher Order Panel Method Applied to Vortex Sheet Roll-Up, AIAA Journal, 1983, 21(4): P516-523.
    [95] Gordon R. and Rom J., Calculation of Nonlinear Subsonic Characteristics of Wings with Thickness and Camber at High Incidence, AIAA Journal, 1985, 23(6): P817-825.
    [96] Kandil O. A. and Yates E. C., Computation of Transonic Vortex Flow Past Delta Wings-Integral Equation Approach, AIAA Journal, 1986, 24(11): P1729-1736.
    [97] Krause E., Menne s. and Liu C. H., Initiation of Breakdown in Slender Compressible Vortices, 10th International Conference on Numerical Methods in Fluid Dynamics, Beijing, 1986.
    [98] Beran P. S., Numerical Simulations of Trailing Vortex Bursting, AIAA 87-1313, 1987.
    [99] Agrawal S., Barnett R. M. And Robinson B. A., Investigation of Vortex Breakdown on a Delta Wing using Euler and Navier-Stokes Equations, AGARD-CP-494, Paper 24, 1991.
    [100] Kandil O. A., Kandil H. A. and Liu C. H., Supersonic Vortex Breakdown over a Delta Wing in Transonic Flow, AIAA 93-3472, 1993.
    [101] Visbal M. R., Computational and Physical Aspects of Vortex Breakdown, AIAA 95-0585, 1995.
    [102] 张立,王良益, 大迎角三角翼旋涡运动及其破碎特性的数值研究, 南京航空航天大学学报, 1994, 26(4): P442-449.
    [103] 葛立新,李椿萱, 旋涡破裂引起的流动非定常特性, 航空学报, 1998, 19(5): P553-555.
    [104] 周伟江,马汉东,白鹏, 起始攻角附近三角翼涡破裂的演化特性研究, 力学学报, 2002, 34(2): P270-277.
    [105] 祝立国,吕志咏, 绕三角翼流动中的非定常现象研究, 北京航空航天大学学报, 2003, 29(11): P1033-1037.
    [106] 吕志咏,祝立国, 三角翼涡破裂形态研究, 中国航空学报(英文版), 2003, 17(1): P13-16.
    [107] 祝立国,吕志咏, 破裂涡流中非定常现象与频率特性实验研究, 航空学报, 2005, 26(2):P139-143.
    [108] 徐燕,王晋军,郭辉, 三角翼涡破裂非定常特性实验研究, 空气动力学学报, 2005, 23(2):P200-203.
    [109] Lowson M. V. and Riley A. J., Vortex Breakdown Control by Delta Wing Geometry, Journal of Aircraft, 1995, 32(4): P832-838.
    [110] Earnshaw P. B. and Lawford J. A., Low-Speed Wind Tunnel Experiments on a Series of Sharp-Edged Delta Wings, Aeronautical Research Council, R.&M. No.3424, 1964.
    [111] Roos F. W. and Kegelman J. T., Recent Explorations of Leading-Edge-Vortex Flowfields, NASA CP 3149, p157-172, 1990.
    [112] McKernan J. F. and Nelson R. C., An Investigation of the Breakdown of the Leading Edge Vortices on a Delta Wing at High Angles of Attack, AIAA 83-2114, 1983.
    [113] Harvey L. K., Some Measurements on a Yawed Slender Delta Wing with Leading-Edge Separation, Aeronautical Research Council, R.&M. No.3160, 1958.
    [114] Ericsson L. E. and Reding J. P., Approximate Nonlinear Slender Wing Aerodynamics, Journal of Aircraft, 1977, 14(12): P1197-1204.
    [115] Lee M. and Ho C. M., Lift Force of Delta Wings, Applied Mechanics Review, 1990, 43(9): P209-221.
    [116] Huang X. Z. and Hanff E. S., Prediction of Leading Edge Vortex Breakdown on a Delta Wing Oscillating in Roll, AIAA 92-2677, 1992.
    [117] Bartlett G. E. and Vidal R. J., Experimental Investigation of Influence of Edge Shape on the Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Speeds, Journal Aero. Sci., 1955, 22: P517-533.
    [118] Peake D. J., On Issues Concerning Flow Separation and Vortical Flows in Three Dimensions, AGARD-CP-342, 1983.
    [119] Erickson G. E., Water-Tunnel Studies of Leading Edge Vortices, Journal of Aircraft, 1982, 19(6): P442-448.
    [120] Lee M., Shih C. and Ho C. M., Response of a Delta Wing in Steady and Unsteady Flow, Proc. Forum on Unsteady Flow Separation. ASME 1987 Fluids Engineering Conference, 52: P19-24.
    [121] Atta R. and Rockwell D., Hysteresis of Vortex Development and Breakdown on an Oscillating Delta Wing, AIAA Journal, 1987, 25(11): P1512-1513.
    [122] Wedemeyer E., Vortex Breakdown, AGARD-LS-121, Paper 9, 1982.
    [123] Jarrah Mohammand-Ameen M., Low-Speed Wind Tunnel Investigation of Flow about Delta Wings Oscillating in Pitch to Very High Angles of Attack, AIAA 89-0295, 1989.
    [124] Hummel D., On the Vortex Formation over a Slender Wing at Large Angles of Incidence, AGARD-CP-247, Paper 15, 1979.
    [125] Woodgate L., Measurements of the Pitching-Moment Derivatives on a Sharp Edged Delta Wing in Incompressible Flow, Aeronautic Research Council, R.&M., No.3379, 1963.
    [126] Lambourne N. C. and Bryer D. W., The Bursting of Leading Edge Vortices – Some Observations andDiscussion of the Phenomenon, Aeronautical Research Council, R.&M. No.3282, 1962.
    [127] Lowson M. V., Some Experiments with Vortex Breakdown, Journal of the Royal Aeronautical Society, 1964, 68: P343-346.
    [128] Gad-el-Hak M., Ho C. M. and Blackwelder R. F., A Visual Study of a Delta Wing in Steady and Unsteady Motion, Proceedings of the Workshop on Unsteady Separated Flows, Colorado Springs, 1983.
    [129] Gad-el-Hak M. and Ho C. M., The Pitching Delta Wing, AIAA Journal, 1985, 23(11): P1660-1665.
    [130] Wolffelt K. W., Investigation of the Movement of Vortex Burst Position with Dynamically Changing Angle of Attack for a Schematic Delta Wing in a Water Tunnel with Correlation to Similar in Wind Tunnel, AGARD CPP-413, 1986.
    [131] Atta R. and Rockwell D. Leading-Edge Vortices Due to Low Reynolds Number Flow Past a Pitching Delta Wing, AIAA Journal, 1990, 28(6): P995-1004.
    [132] Brandon J. M. and Shah G. H., Effect of Large Amplitude Pitch Motions on the Unsteady Aerodynamic Characteristics of Flat Plate Wings, AIAA 88-4331, 1988.
    [133] Brandon J. M. and Shah G. H., Unsteady Aerodynamic Characteristics of a Fighter Model Undergoing Large Amplitude Pitching at High Angles of Attack, AIAA 90-0309, 1990.
    [134] Jarrah M. A. M., Visualization of the Flow about a Delta Wing Maneuvering in Pitch to Very High Angles of Attack, International Symposium on Nonsteady Fluid Dynamics, 1990.
    [135] LeMay S. P., Batill S. M. and Nelson R. C., Vortex Dynamics on a Pitching Delta Wing, Journal of Aircraft, 1990, 27: P131-138.
    [136] Thompson S. A., Batill S. M. and Nelson R. C., Unsteady Surface Pressure Distributions on a Delta Wing Undergoing Large Amplitude Pitching Motions, AIAA 90-0311,1990.
    [137] Thompson S. A., Batill S. M. and Nelson R. C., Delta Wing Surface Pressure for High Angle of Attack Maneuvers, AIAA 90-2813-CP, 1990.
    [138] Ashley H., Katz J., Jarrah M. A., Survey of Research on Unsteady Aerodynamic Loading of Delta Wing, Journal of Fluids and Structures, 1991, 15: P363-390.
    [139] Thompson S. A., The Unsteady Aerodynamics of a Delta Wing Undergoing Large Amplitude Pitching Motions, PhD Thesis, University of Notre Dame, 1992.
    [140] Hebbar S. K., Platzer M. F., Vortex Breakdown Studies of a Canard-Configured X-31A-like Fighter Aircraft Model, Journal of Aircraft, 1993, 30(3): P405-408.
    [141] Rediniotis O. K., Klute S. M., Hoang N. T., Dynamic Pitch-up of a Delta Wing, AIAA Journal, 1994, 32(4): P716-725.
    [142] Gursul I. and Yang H., Vortex Breakdown over a Pitching Delta Wing, AIAA 94-0536, 1994.
    [143] Lin J. C. and Rockwell D., Transient Structure of Vortex Breakdown on a Delta Wing, AIAA Journal, 1995, 33(1): P6-12.
    [144] Ericsson L. E., Delta Wing Vortex Dynamics in High Rate Oscillations in Pitch. AIAA 97-0327, 1997.
    [145] Frderick H. L. and Fan Y. G., Unsteady Aerodynamic Characteristic of an Aircraft in Harmonic Pitch Osillations, AIAA 98-4457, 1998.
    [146] Brandon J. M., Dynamic Stall Effects and Application to High Performance Aircraft, AGARD-R-776.
    [147] Jupp M. L., Coton F. N., Green R. B., An Analysis of a Pitching Delta Wing Using High Resolution Pressure Measurement, AIAA 98-2743, 1998.
    [148] Coton F. N., Jupp M. L. and Green R. B., Analysis of Unsteady Pressure Signals on a Pitching Delta Wing, AIAA Journal, 2001, 39(9): P1750-1757.
    [149] Matthew Menke and Ismet Gursul, Nonlinear Response of Vortex Breakdown over a Pitching Delta Wing, Journal of Aircraft, 1999, 36(3): P496-500.
    [150] 吴根兴, 丁克勤, 过失速非定常空气动力实验技术, 气动实验与测量控制, 1994,8(4): P67-71.
    [151] 吴根兴,丁克勤,三角翼过失速非定常空气动力特性研究,南京航空航天大学学报, 1994,26(4): P435-441.
    [152] 唐敏中,李周复,于文勇等,三角翼低速动态大攻角气动特性试验研究, 空气动力学学报, 1994, 12(4): P367-374.
    [153] 李京伯,章子林, 快速俯仰三角翼的非定常空气动力实验研究, 实验力学, 1994, 9(3): P253-261.
    [154] 于欣芝,杨永年,巫泽, 机翼动态气动特性实验研究, 航空学报, 1996, 17(5): P524-528.
    [155] 唐敏中,王铁,张伟等, 翼面动态压力测量, 气动实验与测量控制, 1996, 10(2): P53-58.
    [156] 李京伯,张庆利, 俯仰振荡三角翼前缘涡破碎的流动显示, 实验力学, 1997, 12(1): P119-125.
    [157] Lu Z. Y. and Yang X. F., Study on Flow Patterns and Aerodynamic Characteristics for a Series of Oscillating Delta Wing, AIAA 98-4355, 1998.
    [158] 洪金森,傅光明,王强, 低速振荡三角翼气动特性研究, 流体力学实验与测量, 1998, 12(1): P38-43.
    [159] 吕志咏,杨晓峰, 动态三角翼的气动特性及参数影响分析, 航空学报, 1998, 19(1): P6-12.
    [160] 连淇祥, 空气动力学动态实验技术的一些进展和问题, 流体力学实验与测量, 1998, 12(1): P1-7.
    [161] 张永存,张祖庚,王志川, 亚音速三角翼俯仰振动涡结构及升力特性研究, 空气动力学学报, 1999, 17(2): P224-229.
    [162] 吕志咏,杨晓峰, 俯仰三角翼的流态及结构, 空气动力学学报, 1999, 17(2): P183-188.
    [163] 秦燕华,黄军辉, 三角翼俯仰振荡中若干参数影响的实验研究, 空气动力学学报, 2000, 18(3): P315-323.
    [164] 黄达,李志强,吴根兴, 飞机平尾偏转对大迎角动态气动特性的影响, 航空学报, 2001, 22(3): P198-201.
    [165] 郑世华,徐永长, 压缩性对大振幅俯仰振荡三角翼动态特性影响的试验研究, 流体力学实验与测量, 2002, 16(4): P75-80.
    [166] 白涛,吕志咏,杨晓峰, 动态三角翼的非定常气动特性和压力分布相关研究, 流体力学实验与测量, 2004, 18(2): P38-42.
    [167] Kandil O. A. and Chuang H. A., Computation of Vortex-Dominated Flow for a Delta Wing Undergoing Pitching Oscillation, AIAA Journal, 1990, 28(9): P1589-1595.
    [168] Visbal M. R. and Gordnier R. E., Parametric Effects on Vortex Breakdown over a Pitching Delta Wing, AIAA 94-0538, 1994.
    [169] Visbal M. R., Onset of Vortex Breakdown above a Pitching Delta Wing, AIAA Journal, 1994, 32(8): P1568-1575.
    [170] Visbal M. R. and Gordnier R. E., Pitch Rate and Pitch-Axis Location Effects on Vortex Breakdown Onset, Journal of Aircraft, 1995, 32(5): P929-935.
    [171] Kandil O. A. and Kandil H. A., Pitching Oscillation of a 65-degree Delta Wing in Transonic Vortex-Breakdown Flow, AIAA 94-1426, 1994.
    [172] Kandil O. A. and Abdelhamid Y. A., Computation and Validation of Delta Wing Pitching Up to 90 Amplitude, AIAA 97-3573, 1997.
    [173] Arther M. T., Brandsma F., Ceresola N., Time Accurate Euler Calculations of Vortical Flow on a Delta Wing in Pitching Motion, AIAA 99-3110, 1999.
    [174] Moigne Y. L. and Rizzi A., CFD Simulations of a Delta Wing in High-Alpha Pitch Oscillations, AIAA 2001-0862, 2001.
    [175] 周伟江,李峰,汪翼云, 三角翼跨声速动态失速与涡破裂特性研究, 航空学报, 1996, 17(6): P671-677.
    [176] 高正红, 振荡三角翼非定常气动特性的数值模拟, 西北工业大学学报, 1997, 15(3): P408-412.
    [177] 杨国伟,庄礼贤, 大迎角振动三角翼跨声速粘性绕流数值分析, 空气动力学学报, 1998, 16(4): P447-453.
    [178] 高正红, 绕振动机翼非定常气动力迟滞特性的模拟研究, 应用数学和力学, 1999, 20(8): P835-846.
    [179] 杨立芝,高正红, 绕三角翼纵向俯仰大迎角气动特性计算研究, 航空学报, 2003, 24(5): P414-416.
    [180] Lourenco L., Shih C., Van Dommelen, Trust-induced Effects on a Pitching–up Delta Wing Flow Field, ADA309944, 1994.
    [181] Moreira J. and Johari H., Delta Wing Vortex Manipulation Using Pulsed and Steady Blowing During Ramp Pitching, AIAA 95-1817-CP, 1995.
    [182] Abdelhamid Y. A., Large Amplitude Pitching of Supermaneuver Delta Wing Include Flow Control, PhDThesis, Old Dominion University, 1999.
    [183] 黄达,吴根兴, 边条翼作俯仰运动时翼面吹气的作用, 空气动力学学报, 1997, 15(3): P305-310.
    [184] 黄达,吴根兴, 翼面吹气对过失速非定常翼面涡的影响, 南京航空航天大学学报, 1997, 29(3): P321-325.
    [185] 忻鼎定,余光志,袁礼, 大后掠翼大迎角定常与非定常俯仰气动特性及其控制, 航空学报, 1997, 18(2): P129-134.
    [186] 姜裕标,黄勇,孙海生等, 非定常气动力及控制技术风洞试验研究, 2003 空气动力学前沿研究论文集,2003。
    [187] Pierce G. A., Kunz D. L. and Malone J. B., The Effect of Varying Freestream Velocity on Airfoil Dynamic Stall Characteristics, Journal of the American Helicopter Society, 1978, 23(2): P27-33.
    [188] Shih C., Mario L. and Ho C. M., Control of Separated Flow on a Symmetric Airfoil, Bangalore India IUTAM Conference, 1987.
    [189] Gursul I. and Ho C. M., High Aerodynamic Loads on an Airfoil Submerged in an Unsteady Stream, AIAA Journal, 1992, 30(4): P117-119.
    [190] Gursul I., Hank L. and Ho C. M., Effects of Time Scales on Lift of Airfoils in an Unsteady Stream, AIAA Journal, 1994, 32(4): P797-801.
    [191] Ho C. M., Gursul I. and Shih C., Unsteady Separation Process and Vorticity Balance on Unsteady Airfoils, NASA CP-3144, 1990.
    [192] Shih C. and Ho C. M., Vorticity Balance and Time Scales of a Two-Dimensional Airfoil in an Unsteady Free Stream, Physics of Fluids, 1994, 6(2): P710-723.
    [193] Babinsky H. and Fernie R. M., NACA0012 Aerofoil in an Oscillating Transonic Freestream, AIAA 2002-0115, 2002.
    [194] Freymuth P., Finaish F. and Bank W., Further Visualizaiton of Combined Wing Tip and Starting Vortex Systems, AIAA Journal, 1987, 25(9): P1153-1159.
    [195] Gursul I., Lin H. and Ho C. M., Vorticity Dynamics of 2-D and 3-D Wings in Unsteady Free Stream, AIAA 91-0010, 1991.
    [196] Gursul I. and Ho C. M., Vortex Breakdown over Delta Wings in Unsteady Free Stream, AIAA 93-0555, 1993.
    [197] Gursul I. and Ho C. M., Vortex Breakdown over Delta Wings in Unsteady Freestream, AIAA Journal, 1994, 32(2): P433-436.
    [198] Heron I. and Myose R. Y., Development of a Dynamic Pitch and Unsteady Freestream Delta Wing Mount for a Water Tunnel, AIAA 2003-3527, 2003.
    [199] Rennie R. M. and Jumper E. J., Experimental Measurements of Dynamic Control Surface Effectiveness, AIAA 94-0504, 1994.
    [200] 杜功焕,朱哲民,龚秀芬, 声学基础, 南京大学出版社, 2003: P279-293.
    [201] 范洁川等, 近代流动显示技术, 国防工业出版社, 2002: P94-110; P125-152.
    [202] PIV Hardware Operations Manual, TSI Incorporated, 1997.
    [203] 李志强,吴根兴, 数字滤波器在非定常气动实验数据处理中的应用, 流体力学实验与测量, 1998, 12(2): P84-87.
    [204] 孙鑫, 结冰对二元翼型气动特性实验研究, 南京航空航天大学硕士论文, 2004。
    [205] Isogai K., Shinmoto Y. and Watanabe Y., Effects of Dynamic Stall on Propulsive Efficiency and Thrust of Flapping Airfoil, AIAA Journal, 1999, 37(10): P1145-1151。
    [206] Jones K. D. and Platzer M. F., Numerical Computation of Flapping-Wing Propulsion and Power Extraction, AIAA 97-0826, 1997.
    [207] Jones K. D., Dohring C. M. and Platzer M. F., Experimental and Computational Investigation of the Knoller-Betz Effect, AIAA Journal, 1998, 36(7): P1240-1246.
    [208] Anderson J. M., Streitlien K., Barrett D. S., Oscillating Foils of High Propulsive Efficiency, Journal of Fluid Mechanics, 1998, 360: P41-72.
    [209] Lai J. C. S. and Platzer M. F., Jet Characteristics of a Plunging Airfoil, AIAA Journal, 1999, 37(12): P1529-1537.
    [210] Lewin G. C. and Haj-Hariri H., Modelling Thrust Generation of a Two-Dimensional Heaving Airfoil in a Viscous Flow, Journal of Fluid Mechanics, 2003, 492: P339-362.
    [211] Rockwell D., Three-Dimensional Flow Structure on Delta Wings at High Angle-Of-Attack: Experimental Concepts and Issues, AIAA 93-0550, 1993.
    [212] Tobak M. and Peake D. J., Topology of Three-Dimensional Separated Flows, Ann. Rev. Fluid Mech., 1982, 14: P61-85.
    [213] Perry A. E. and Chong M. S., A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts, Ann. Rev. Fluid Mech., 1987, 19: P125-155.
    [214] 张涵信, 分离流和涡运动横截面流态的拓扑, 空气动力学学报, 1997, 15(1): P1-12.
    [215] Visbal M. R. and Gordnier R. E., Crossflow Topology of Vortical Flows, AIAA Journal, 1994, 32(5): P1085-1087.
    [216] Visbal M. R., Structure of Vortex Breakdown on a Pitching Delta Wing, AIAA 93-0434,1993.
    [217] Magness C., Robinson O. and Rockwell D., Instantaneous Topology of the Unsteady Leading-Edge Vortex at High Angle of Attack, AIAA Journal, 31(8): P1384-1391.
    [218] Cipolla K. M. and Rockwell D., Instantaneous Crossflow Topology on a Delta Wing in Presence of Vortex Breakdown, Journal of Aircraft, 1998, 35(2): P218-223.
    [219] Ozgoren M., Sahin B. and Rockwell D., Vortex Structure on a Delta Wing at High Angle of Attack, AIAA Journal, 2002, 40(2): P285-292.
    [220] 李椿萱,葛立新, 绕三角翼旋涡流动的数值模拟, 空气动力学学报, 1998, 16(1): P132-139.
    [221] 周伟江,白鹏,马汉东, 三角翼非定常旋涡运动横截面拓扑结构研究, 空气动力学学报, 2003, 21(2): P157-163.
    [222] 高浩, 下一代战斗机设计中的几个飞行力学问题, 飞行力学, 1996, 14(1): P1-9.
    [223] Etkins B., Dynamics of Flight-Stability and Control, John Wiley and Sons, Inc., N.Y., 1958.
    [224] Tobak M. and Pearson W. E., A Study of Nonlinear Longitudinal Dynamic Stability, NASA TR R-209, 1964.
    [225] Tobak M. and Schiff L. B., On the Formulation of the Aerodynamic Characteristics in Aircraft Dynamics, NASA TR R-456, 1976.
    [226] Tobak M., Chapman G. T. and Schiff L. B., Mathematical Modeling of The Aerodynamic Characteristics in Flight Dynamics, NASA TM-85880, 1984.
    [227] Tobak, M. and Chapman G. T., Modeling Aerodynamic Discontinuities and the Onset of Chaos in Flight Dynamic Systems, NASA-TM-89420, 1986.
    [228] Chapman G. T. and Yates L. A., Nonlinear Aerodynamic Parameter Estimation and Model Structure Identification, AIAA 92-4502, 1992.
    [229] Gupta N. K. and Iliff K. W., Identification of Aerodynamic Indicial Functions Using Flight Data, AIAA 82-1375, 1982.
    [230] Katz J. and Schiff L. B., Modeling Aerodynamic Responses to Aircraft Maneuvers - A Numerical Validation, Journal of Aircraft, 1986, 23(1): P .
    [231] Jenkins J. E., Simplification of Nonlinear Indicial Response Models: Assessment for The Two-dimensional Airfoil Case, Journal of Aircraft, 1991, 28(2): P.
    [232] Hsia H. A., Myatt J. H. and Jenkins J. E., Nonlinear and Unsteady Aerodynamic Response of A Rolling 65-Degree Delta Wing, AIAA 93-3682, 1993.
    [233] Goman M. and Khrabrov A., State-Space Representation of Aerodynamic Characteristics of an Aircraft at High Angles of Attack, Journal of Aircraft, 1994, 31(5): P1109-1115.
    [234] Chin S. and Lan C. E., Fourier Functional Analysis for Unsteady Aerodynamic Modeling, AIAA Journal, 1992, 30(9): P2259-2266.
    [235] Bisplinghoff R. L., Ashley H. and Halfman R. L., Aeroelasticity, Addison-Wesly Publishing Company, Cambridge, Mass., 1955.
    [236] Lin G. F. and Lan C. E., A Generalized Dynamic Aerodynamic Coefficient Model for Flight Dynamics Application, AIAA 97-3643, 1997.
    [237] Wang Z. J. and Lan C. E., Fuzzy Logic Modeling of Nonlinear Unsteady Aerodynamics, AIAA 98-4351, 1998.
    [238] Zadeh L. A., Fuzzy Sets, Information and Control, 1965, 8: P338-353.
    [239] 朱剑英, 现代高等工程应用数学, 南京航空航天大学, 1999.
    [240] 丛爽, 神经网络、模糊系统及其在运动控制中的应用, 中国科学技术大学出版社, 2001.
    [241] 张乃尧,阎平凡, 神经网络与模糊控制, 清华大学出版社, 1998.
    [242] Gomez-Skarmeta A. F., Delgado M. and Vila M. A., About the Use of Fuzzy Clustering Techniques for Fuzzy Models Identification, Fuzzy Sets and Systems, 1990, 106: P179-188.
    [243] Bezdek J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
    [244] 马广富,王宏伟,王司, 基于模糊神经网络的系统模糊建模方法, 哈尔滨工业大学学报, 1999, 31(5): P79-85.
    [245] 史志伟, 大迎角非定常空气动力模型辨识与动导数仿真实验, 南京航空航天大学硕士论文, 1998.
    [246] 尹江辉, 过失速机动与智能控制技术研究, 南京航空航天大学博士论文, 2000.
    [247] 王福军, 计算流动动力学分析-CFD 软件原理与应用, 清华大学出版社, 2004.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.