黄瓜果实表面光系统Ⅱ的光能吸收利用特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对日光温室黄瓜生产中产量不稳和卫生安全品质难以保证等问题,本研究以北方白黄瓜为试材,采用有色膜或不同透光率膜、LED灯照射、热激胁迫、授粉及水浸等处理黄瓜果实,测定了黄瓜果实大小、果实重量果皮叶绿素含量,同时利用叶绿素成像荧光仪(MINI-IMAGING-PAM)进行黄瓜果实表面叶绿素荧光动力学参数测定,分析探讨了光照、温度等环境因子及授粉等对黄瓜果实表面光系统Ⅱ光能吸收和利用的影响。
     1.与黄瓜叶片相比,黄瓜果实表面初始荧光F_o、最大荧光F_m、最大光化学效率F_v/F_m及吸光系数Abs.相应降低了8.81%、17.50%、2.83%和9.97%,但调节性能量耗散量子产量Y(NPQ)上升46.92%,非调节性能量耗散量子产量Y(NO)上升29.12%。棒状类型黄瓜果实与短粗类型相比,其Abs.较低,但光能转化效率高。
     2.采用透光率不同的淋膜袋和铝箔袋对黄瓜果实进行套袋处理,淋膜袋处理果实鲜果重显著增加果皮且叶绿素含量差异不显著,铝箔袋处理后果实鲜重增加,但果皮颜色变浅,叶绿素含量显著下降;F_m及F_v/F_m都随透光率的降低而明显降低,与不套袋的对照相比差异达到极显著水平;Y(NPQ)及Y(NO)都随透光程度的降低而升高,而实际量子产量Y(Ⅱ)随透光率的降低而降低。
     3.采用红光LED灯,对黄瓜果实进行光强处理,果实表面Abs.随着光照强度的增加而增加;当红光强度为0时,F_v/F_m最高,随光强增加而降低,当光强达到1000μmol·m~(-2)·s~(-1)时,迅速下降,但当光强达2000μmol·m~(-2)·s~(-1)后稳定;Y(Ⅱ)在光强为500μmol·m~(-2)·s~(-1)时最大,而后开始降低,2000μmol·m~(-2)·s~(-1)后稳定。
     4.用蓝、绿、红3种有色膜对日光温室北方白黄瓜果实进行套袋处理,蓝膜和绿膜套袋处理后第6d,黄瓜果实表面PSⅡF_o、F_m、F_v/F_m、Y(Ⅱ)和Y(NPQ)均显著高于红膜和对照;而叶绿素含量、平均光吸收A400-700均显著低于红膜和对照;可是果实光能利用率U以不套袋最高,蓝膜和红膜居中,绿膜最低。
     5.热激胁迫处理黄瓜果实发现,从49℃开始果实表面PSⅡF_v/F_m迅速下降,到58℃时降至0.1左右;Y(Ⅱ)比F_v/F_m对高温更敏感,43℃时即开始下降;43~46℃Y(NPQ)升高,Y(NO)变化不明显,当温度上升至46℃以上后,Y(NPQ)迅速降低,接近于零,Y(NO)升高,接近于1。
     6.授粉结实黄瓜与未授粉果实表面F_o及F_m差异不显著,F_v/F_m、Y(Ⅱ)及Y(NO)较未授粉果实降低,Y(NPQ)升高。水浸处理使黄瓜果实处于缺氧状态,F_o随着处理时间延长,表现出先降低后升高的趋势;F_m逐渐减小,呈现先快后慢的趋势;处理20h后, F_o和F_m稳定于0.115~0.125和0.180~0.195之间;F_v/F_m随处理时间延长而下降,24h后降低至0.316;在Y(NPQ)在处理初期上升,而后开始下降,后期以Y(NO)升高为主。
     7.低温贮藏处理黄瓜果实发现,处理果实与对照相比,F_o与F_m整体呈现下降趋势;144h以前与对照前期差异不大,稳定在0.7~0.8之间;,而后开始下降,312h后降低至0.3以下;处理期间Y(Ⅱ)呈阶梯型下降趋势,Y(NPQ)变化幅度较小,保持在0.1~0.2之间,整体高于对照,而Y(NO)低于对照。
According to the problem of yield flabby in greenhouse cucumber, the effects on photosystemⅡ(PSⅡ)light absorption and utilization of monochromatic plastic film bags, different light transmittance bags, LED lamp, temperature, pollination and water logging on the surface of cucumber fruit were studied on the different process of growth. The fresh weight of fruit and the content of chlorophyll of the surface of fruit were determined, and chlorophyll fluorescence kinetics parameters of cucumber fruit surface were measured by chlorophyll fluorescence spectrometer (MINI-IMAGING- PAM).
     1. Compared with blades, the initial fluorescence(F_o), maximal fluorescence(F_m), maximal photochemical (F_v/F_m), and Absorption (Abs.) were reduced at 8.81%,17.50%,2.83% and 9.97% accordingly on the surface of cucumber fruit.But quantum yield of regulated energy dissipation (Y(NPQ)) and quantum yield of uonregulated energy dissipation (Y(NO)) were higher than the blades at 46.92% and 29.12% respectively.The stick type cucumber fruit was lower than short-thick type at Abs.,but higher at light use efficiency of PSⅡ.
     2.The white laminating and aluminium foil had different light transmission .The fresh weigh of fruit under white laminating bags was higher than the control,while the content of chlorophyll of surface of cucumber fruit was not significant difference.Undr aluminium foil bags,the fruit weight was heavier than the control,but the content of chlorophyll was obviously reduced.The F_m and F_v/F_m of PSⅡwere droped with the reduction of the rate of light transmission obviously,and be inferior to the control significantly.The Y(NPQ) and Y(NO) raised with the light transimittance,and effective quantum yield(Y(Ⅱ)) was opposited.
     3.The red LED lamp was used to handle the cucumber fruit at light intensity. Abs.was increased with light intensity. When light intensity at 0,the F_v/F_m was highest,reduced with light intensity rising until the intensity rised to 1000μmol·m~(-2)·s~(~(-1)),and stability at 2000μmol·m~(-2)·s~(~(-1)).Y(Ⅱ) was highest at 500μmol·m~(-2)·s~(~(-1)),and stability at 2000μmol·m~(-2)·s~(~(-1)).
     4.Three monochromatic plastic film bags with different spectra(the maximum absorption peaks in blue area was shorted BPF, or in green was shorted GBF, or red area was shorted RPF) were applied to bag the cucumber fruit, At the sixth days after bagging, the fruit weight under BPF and GPF was higher than RPF and control. F_o, F_m, F_v/F_m, Y(Ⅱ) and Y(NPQ) of PSⅡof cucumber fruit treated with BPF and GPF were higher than other treatments. In contrary, chlorophyll contents and average absorption in the range of effective radiation(400-700nm) A400-700 was significantly higher under BPF and GPF than RPF and control. The efficiency of light energy utilization(UⅡ) of fruit was highest under control, the blue and red were center, and the green was lowest.
     5.After high temperature treatmented,the F_v/F_m of PSⅡof cucumber fruit was droped rapidly when the temperature rised to 49℃and droped to 0.1 at 58℃. Y(Ⅱ) was susceptibler than F_v/F_m and droped when the temperature rised to 43℃.When the temperature between 43℃to 46℃,the energy was dissipated by Y(NPQ).After46℃,the Y(NPQ )reduced to zero,and Y(NO) was raised to 1.
     6.The F_o and F_m was undifferentiated between the pollination fruit and not,but F_v/F_m and Y(Ⅱ) was higher on the not pollination fruit ,the Y(NPQ) was higher on the pollination fruit. The cucumber fruit was short of oxygen under water logging treatment. F_o with the processing time extend, showed the trend of first decreases increases, F_m was decrease gradually with the trend fast fistly and slow after.After 24 h of submergence F_v/F_m was reduced to 0.316.The energy was dissipated by Y(NPQ) at earlier stage and Y(NO) was elevated at last stage.
     7.The F_v/F_m of PSⅡof cucumber fruit was stability in between 0.7 ~ 0.8 in the earlier stage of stroing at low temperature.But F_o and F_m was reducing with the time after treatment.After 144 h,the F_v/F_m was fast setback and reduced to 0.3 at 312h.The Y(Ⅱ) was droped on ladder type,and Y(NPQ) was varies within a small range, between 0.1 to 0.2,but higher than the control.Y(NO)was lower than the control.
引文
[1]储钟稀,童哲,冯丽洁,等.不同光质对黄瓜叶片光合特性的影响[J].植物学报,1999,41(8): 867-870.
    [2]王永健,张海英,张峰,等.低温弱光对不同黄瓜品种幼苗光合作用的影响[J].园艺学报,2001,28(3): 230-234.
    [3]郭泳,李天来,黄广学,等.环境因素对番茄单叶净光合速率的影响[J].沈阳农业大学学报,1998,29(2): 127-131.
    [4]胡文海,喻景权.低温弱光对番茄叶片与光合作用和叶绿素荧光参数的影响[J].园艺学报,2001, 28(1): 41-46.
    [5]王志源,眭晓蕾,蒋健箴,等.弱光对甜椒不同品种光合特性的影响[J].园艺学报,1999,26(5):314-3.
    [6]高志奎,刘彦民,何俊萍,等.西葫芦光合作用特性[J].园艺学报,1996,23(3):305-306.
    [7]艾希珍,张振贤,王绍辉,等.强光胁迫下SOD对生姜叶片光抑制破坏的防御作用[J].园艺学报,2000,27(3): 198-201.
    [8]韩春丽,孙中海,王艳,等.不同光强对纽荷脐橙叶片PSⅡ功能和光能分配的影响[J].果树学报,2008,25(1): 40-44.
    [9] Terashima I, Funayama S, Sonoike K. The site of photoinhibition in leaves ofCucumis sativusL. at low temperatures is photosystemⅠ,not systemⅡ[J].Planta,1994,193: 300-306.
    [10] Sonoike K. Selective photoinhibition of photosystemⅠin isolated thylakoid membranes from cucumber and spinach[J].Plant Cell Physiology,1995,36: 825-830.
    [11] Demmig B, Bj rkman O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of Oevolution in leaves of higher plants[J].Planta, 1987.172: 171-184.
    [12]眭晓蕾,蒋健箴,王志源,等.弱光对甜椒不同品种光合特性的影响[J].园艺学报,1999,26(5): 314-318.
    [13]沈文云,马德华,侯锋,等.弱光处理对黄瓜叶绿体超微结构的影响[J].园艺学报,1995,22(4): 397-398.
    [14]马德华,庞金安,霍振荣,等.弱光对黄瓜幼苗光合及膜脂过氧化作用的影[J].河南农业大学学报,1998,32(1): 68-72.
    [15]杨广东,朱祝军,计玉妹.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养与肥料学报,2002,8(1): 115-118.
    [16]艾希珍,张振贤,何启伟,等.日光温室黄瓜不同叶位叶片光合作用研究[J].中国农业科学,2002,35(12): 1519-1524.
    [17]王梅,高志奎,黄瑞虹,等.茄子光系统Ⅱ的热胁迫特性[J].应用生态学报,2007,18(1): 63-68.
    [18] Smillie R M, Hetherington S E. A Screeningmethod for chilling tolerance using chlorophyll fluorescence in vivo∥Sybesma C. In " Advances in photosynthesis research" Vol.Ⅳ. New York: Academic Press, 1984,471-474.
    [19]杨小春.低温弱光对西葫芦幼苗叶绿素荧光参数的影响[J].甘肃农业科技,2006,12:10-12.
    [20]张素勤,程智慧,耿广东.低温胁迫对不同耐寒性茄子品种光合特性的影响[J].安徽农业科学,2007,35(27): 8435-8437.
    [21]任士福,王梅,高志奎,等.温度对银杏光系统II光抑制的影响[J].林业科学,2008,44(12): 28-34.
    [22] Havaux M, Davaud A. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with loss of photosystemⅡactivity. Preferential inactivation of photosystemⅠ[J].Photosynth Res,1994,40: 75-92.
    [23] Sonoike K, Terashima I. Mechanism of photosystemⅠphotoinhibition in leaves of Cucumis sativusL[J].Planta,1994,194: 287-293.
    [24]陈国祥,何兵,魏锦城,等.低温下强光胁迫对小麦叶片光系统I结构与功能的影响[J].植物生理学报,2000,26(4):337-342.
    [25] Tjus SE, Moller BL, Scheller HV. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperature[J]s.Plant Physiology, 1998,116: 755-764.
    [26] Cornic G, Bukhov NG, Wiese Cet al. Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3plant. Role of photosystem I-dependent proton pumping[J].Planta,2000,210: 468-477.
    [27] Blanke M M, Lenz F. Fruit photosynthesis[J].Plant Cell Environment, 1989,12: 31-46.
    [28] Blanke M M. Comparative SEM study of stomata on developing quince,apple,grape and tomato fruit[J].Angewandte Botanik,1986,60: 209-214.
    [29] Whiley A W,Schaffer B,Lara S P. Carbon dioxide exchange of developing avocado(Persea Americana Mill.)fruit[J]. Tree Physiol.,1992,11: 85-94.
    [30] Bean R C ,Porter G G, Barr B K. Photosynthesis and respiration in developing fruitⅢ. Variation in photosynthetic capacities during cilor change in ciyrus[J]. Plant Physiol, 1963,38: 285-290.
    [31] Bean R C,Todd G W. Photosynthesis and respiration in developing fruitⅠ,14CO2 uptake by young oranges in light and in dark[J].Plant Physiol.,1960,35: 425-429.
    [32] Laval-Martin D,Farineau J,Diamond J. Light verus dark carbon metabolism and photosynthetic activity in cherry tomato fruitⅠ.Occurrence of photosynthesis.Study of intermediates[J].Plant Physiology,1997,60: 872-876.
    [33] Clijsters H. On the effect of light on carbon dioxide in developing apple fruits[J].Progress in Photosynthsis Research,1969,1: 388-395.
    [34] Atkins C A,Kuo J,Pate J S,Flinn A M,Steele T W. Photosynthetic pod wall of Pea(Pisum sativum L.) [J].Plant Physiology,1977,60: 779-786.
    [35] Bain J M,Mercer F V. Organization resistance and the respiration climacteric[J].Austialin Journal of Biological Sciences,1964,17: 783-785.
    [36] Phan C T. Chloroplasts of the peel and internal tissues of apple fruits[J].Experimentia, 1973,29: 1555-1557.
    [37] Duffus C M, Nutbeam A R, Scragg P A. Photosynthesis in the immature cereal percarp in relation to grain growth[C].British plant Growth Regulator Group,Monograph,1985,12: 243-256.
    [38] Butbeam A R , Duffus C M. Evidence for C4 photosynthesis in barley pericarp tissue[J].Biochemical and biophysical Research Communications,1976,70: 1198-1203.
    [39] Goedheer J C. Fluorescenec in relation to photosynthesis[J]. Annual Review.of Plant Physiology,1972, 23: 87-112.
    [40] Krause G H, Weis E. Chlorophyll fluorescence as a tool in plant physiology[J]. Photosynthsis Research, 1984,5: 139-157.
    [41] Krause G H, Weise E. Chlorophyll fluorescence and photosynthesis: The basis[J]. Annual Review.of Plant Physiology and Plant Molecular Biology,1991,42: 313-349.
    [42] Van Kooten O. Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress[J]. Photosynthsis Research,1990,25: 147-150.
    [43] Krause G H, Weis E. The photosynthetic apparatus and chlorophyll fluorescence. An Introduce-tion[M]. In: Lichenthaler H K(ed). Application of chlorophll fluorescence, Kluwer Academic Publishers,1988: 3-11.
    [44] ]Mishra R K, Singhal G S. Effect of heat stress on intact wheat leaves and it recovery studied by fluorescence induction kinctics[M]. In: Baltscheffsky M(ed). Current Research in Photosynthesis , Kluwer Academic Publishers , Dordrecht/Boston/London ,1989:655-658.
    [45] Demmig B, AdamsⅢW W. Photoprotection and other responses of plants to high light stress[J]. Annual Review.of Plant Physiology and Plant Molecular Biology,1992,43: 599-626.
    [46] Papageorgiou G. Chlorophyll fluorescene: An intrinsic probe of photosynthesis[M].In: Govindjee (ed), Bioenergetics photosynthesis Academic Press, New York,1975:319-371.
    [47] Walker DA. Some aspects of the relationship between chlorophyll a fluorescence and photosynt- hetic carbon assimilation[M]. In: Lichtenthaler K(ed) , Application of chlorophyll fluorescence, Kluwer Academic Publisher, Dordrecht,1988: 13-20.
    [48]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4): 14-30.
    [49] Weis E, Berry J.Quantum efficiency of photosystemⅡin relation to energy-dependent quench-ing of chlorophyll fluorescence[J]. Biochimica Biophysica Acta,1987,894: 198-208.
    [50] Walker D A., Sivak M N., Prinsley R T., etal.Simultaneous measurement of oscillationsin oxygen evolution and chlorophyll a fluorescence in leaf pieces[J].Plant Physiology,1983,73: 542-549.
    [51] Laisk A, Walker DA. A mathematical model of electron transport. Thermodynamic necessity for photosystemⅡregulation:‘light stomata’[J]. Proceedings of The Royal Society of London, B237,1989: 417-444.
    [52] Bannister T T, Grice. Parallel time courses of O2 evolution and chlorophyll fluorescence [J]. Biochimica Biophysica Acta,1968,162: 555-580.
    [53] Barber J, Telfer A, Nicolson J. Evidence for divalent cation movement within isolated whole chloroplasts from studies with ionophore A23187[J]. Biochimica Biophysica Acta,1974(1): 161-165.
    [54] Schreiber,U.,Schliwa,U.,Bilger,W..Continuous recording of photochemical and nonphotochemical fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research,1986,10: 51-62.
    [55]温晓刚,林世青,匡廷云.高温胁迫对光系统异质性的影响[J].生物物理学报,1996,12(4): 714-718.
    [56] Strasser R J, Tsimilli-Michael M, Srivastava A. Analysis of the chlorophyll a fluoresecence transient[M].In: Papageorgiou G , Govindjee eds. Advance in Photosynthesis and Respiration. Netherlands: Kluwer Academic Publishers , 2004: 321-362.
    [57] Demmig B,Bj rkman O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of Oevolution in leaves of higher plants[J].Planta,1987,172: 171-184.
    [58] Demmig B,Winter K,Krüger A,et al. Photoinhibition anzeaxanthin formation in intact leaves.A possible role of the xanthophyll cycle in the dissipation of excess light energy[J].Plant Physiol,1987,84: 218-224.
    [59]路丙社,白志英,梁海永,等.阿月浑子叶片光合作用的光抑制研究[J].园艺学报,2002,29(4): 313-316.
    [60]孙山.苹果绿色果皮光合生理特性及果皮灼伤机制的研究[D].2009.
    [61]许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯1992,28(4):237-242.
    [62]李新国,孟庆伟,赵世杰.强光胁迫下银杏叶片的光抑制及其防御机制[J].林业科学,2004,40(5): 56-59.
    [63]郭凤鸣.弱光条件下化瓜的生长解析.吉林农业大学学报[J].1990,12(1):32-35.
    [64]李长缨,朱其杰.光强对黄瓜光合特性及亚适温下生长的影响[J].园艺学报,1997,24(1): 97-99.
    [65]刘卫琴,汪良驹,刘晖,等.遮荫对丰香草莓光合作用及叶绿素荧光特性的影响[J].果树学报,2006,23(2): 209-213.
    [66]郑勤,李霞.番茄苗期耐弱光特性及若干形态生理指标的测定[J].江苏农业科学,1999,(6): 51-53.
    [67]陈日远,关佩聪,翟英芬.凉爽纱覆盖对生菜产量、品质及生理效应的研究[J].华南农业大学学报,1994,15(2):82-87.
    [68] Kramer D.M.,Johnson G.,Kiirats O.,Edwards G.E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthsis Research. 2004,79(2): 209-218.
    [69] Demming B,Winter K,Kruger A,Czygan Fxanz-christian. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cyclein the dissipation of excess light energy[J]. Plant Physiol,1987,84: 218-222.
    [70]徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2005,38(2): 369-375.
    [71] Ichiro Terashima , Takashi Fujita , Takeshi Inoue , et al. Green light drives leaf photosynthesis more efficiently than red light in strong white light:Revisiting the enigmatic question of why leaves are green[J].Plant Cell Physiol,2009,50(4): 684–697.
    [72]高玉,高志奎,张晓慧,等.通过快速荧光动力学曲线探测白黄瓜光系统Ⅱ的热激胁迫效应[J].生态学报,2009,29(6): 3335-3341.
    [73]刘爱荣,陈双中,王淼博,等.高温胁迫对番茄幼苗光合作用和叶绿素银光参数的影响[J].西北农业学报,2010,19(5): 145-148.
    [74]陈新华,陈玮,姜闯道,等.光温交叉处理对小麦紫黄质脱环氧化酶活性及其热耗散能力的影响[J].植物生态学报,2008,32(5): 1015-1022.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.