3J33马氏体时效钢时效行为及晶粒细化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过真空熔炼制备了3J33马氏体时效钢,在研究3J33马氏体时效钢时效硬化行为的基础上,借助光学显微镜、扫描电镜、透射电镜以及X衍射等分析手段探索了3J33马氏体时效钢时效过程和循环相变晶粒细化过程中的组织演变规律;利用万能电子拉伸试验机、洛氏硬度仪和显微硬度仪对材料力学性能进行测试;对原有的循环相变晶粒细化工艺进行了优化,并对3J33马氏体时效钢表面机械研磨晶粒细化工艺进行了初步探索,为最终实现3J33马氏体时效钢组织纳米化并具有优良的综合性能提供依据。
     研究结果表明,3J33马氏体时效钢不同温度时效过程中表现出相似的时效硬化行为,时效不存在孕育期,普遍存在两个时效硬化峰;时效初期硬度增加极快,迅速达到第一个时效硬化峰,此时可观察到基体衍射斑点拉长,说明3J33马氏体时效钢时效初期发生了调幅分解;时效后期随着时效时间的延长,硬度的上升趋势缓慢,并逐渐形成第二个时效硬化峰,此时对应着析出相不断地析出并长大过程。
     3J33马氏体时效钢α′?γ等温循环相变细化晶粒工艺研究结果表明,3J33马氏体时效钢的再结晶温度为900℃;3J33马氏体时效钢900°C,15min ,5次循环细化工艺处理可获得良好的晶粒细化效果,晶粒最终尺寸可达8μm左右;循环细化并没有改变时效析出行为的本质,但可加速时效的动力学过程;材料经循环细化时效后,抗拉强度σb可达2048MPa,延伸率δ可达9.82%,表现出良好的综合力学性能。
     表面机械研磨(SMAT)的研究表明,经过60min SMAT处理后,试样表面产生厚度约为15μm的变形层,塑性变形程度随距离表面深度的增加而逐渐减弱;试样表面可形成500nm左右的亚晶粒,在亚晶粒内部和其边界处有高密度的位错、层错存在;试样最表面的显微硬度可以提高100HV,从试样表面到基体,显微硬度逐渐减小,直至到与基体持平。
3J33 maraging steel has been prepared by vacuum melting and the evolution of microstructures during aging and cycle phase transformation refining grain (CPTRG) are investigated by Optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The mechanical properties of 3J33 maraging steel are tested by tensile testing machine, rockwell hardness tester and micro-hardness tester. In order to achieve refining grain and good mechanical properties of 3J33 maraging steel, the process parameter of CPTRG was optimized and surface mechanical attrition treatment (SMAT) was explored.
     The results show that 3J33 maraging steel presents the similar aging behaviors at different temperature. Two aging peaks and no incubation period are found during aging process. At the initial aging stage, the hardness increases rapidly and reaches the first aging peak. The elongated diffraction patterns reveal that spinodal decomposition may be occur at the initial aging stage. At final aging stage, the hardness increase slowly and the second aging peak is formed with the increase of time.
     The results of 3J33 maraging steelα'-γCPTRG show that the recrystallization temperature was 900°C. The optimal grain refinement technology is 900°C, 15min four times’cyclic solution treatment and the grain size was decreased to about 8μm. CPTRG did not change the aging mechanism but increase the speed of aging. The good mechanical properties of 3J33 maraging steel, such asσb 2048MPa andδ9.82%, are obtained by the CPTRG and following aging treatment.
     The results of SMAT for 60min show that deformation layer of 15μm in depth were formed on the surface of sample. The plastic deformation becomes not more obvious with the increase of depth. The grain size of the surface is about 500nm, and the high density dislocations and stacking faults were found in the subgrain or on the boundary of the subgrain. The microhardness of surface increases 100HV, and the microhardness decrease gradually from surface to matrix until it becomes the same as matrix’s.
引文
1 R. F. Decker, J. T. Eash, A. J. Goldman. 18%Nickel Maraging Steels. Trans. ASM. 1962, 55 (1):58~63
    2姜越,尹钟大,朱景川.马氏体时效不锈钢的发展现状.特殊钢, 2003, 24(3):1~4
    3 W. H. Imrie. Maraging Steel in the British Aerospace Industry. Metal Forming. 1970(1, 2):41~47
    4 R. F. Decker, S. Loreen. Maraging Steels-the First 30 Years. WilsonR K. Marag- ing Steels-Recent Development and Applications. TMS-AIME. Warrendale. PA. 19 88:1~4
    5 J. C. Hamaker, A. M. Bayer. Applications of MaragingSteels. Cobalt. 1968, 3:3~4
    6魏振宇.马氏体时效钢的强度.国外金属材料. 1985, 1:1~3
    7 Tsuguaki Oki, Masatoshi Sudo, Tsutumi. Hiromori. Process for Producing Maraging Steel Cylinder for Uranium Enriching Centrifugal Separator and Cylinders Produced By. U. S. Pat No3989553. 1976:1~3
    8魏振宇.日本生产浓缩铀的离心机用材-马氏体时效钢.国外金属材料. 1981(1):19~20
    9 La-trobe. Catalogue on Vasco Max T-250 Maraging Steel. PA. USA . 1982:4~6
    10 S. Floreen. Cobalt Free Maraging Steel. U. S. Pat No4443254. 1984:1~6
    11浅山行昭,川濑嘉孝,冈田真树ほか.含クロム无コバルトマルエ-ジング钢の机械的性质.日本金属学会志. 1987, 51(1):76~80
    12 Asayama Yuiteru, Higuchi Kazuaki. High Strength Cobalt-free Maraging Steel. U. S. Pat No4579590. 1986:5~7
    13 G. Kim, S. Kim, S Lee. Microstructure and Mechanical Properties of a Cobaltfree Tungsten-bearing Maraging Steel. Mater. Sci. Eng. 1986, 79(1):133~140
    14 K. T. Tharian, D. Sivakumar, R. Ganesan. Development of New Nickel. Cobalt Free Maraging Steel. Mater. Sci. Tech. 1991, 7(12):1082~1100
    15 M.D Perkas. Structure Properties and Area of Use of High-strength Maraging Steels. Met Sci. 1986, 27(6):338~350
    16 W. Sha, A. Cerezo, G. . D. W. Smith. Phase Chemistry and Precipitation Reaction in Steel. Metall. Tran. 1993. 24A:1221~1232
    17尹钟大,须藤一等.日本金属学会志. 1983. 47(1): 48~60
    18李晓东. 18Ni马氏体时效钢调幅分解及后续时效过程的研究.哈尔滨工业大学博士论文. 1993: 1~117
    19尹钟大,郑明哲,李晓东. 10Ni合金调幅分解的穆斯堡尔谱研究.科学通报, 1991, 1: 28~30
    20 M. Vanderwalker. The Precipitation Sequence of Ni3Ti in Co Free Managing Steel. Metall Traps. 1987, 18A(7):1191~1194
    21 G. Thomas, I. Cheng , J. R. Mihalisim, Trans. ASM. 1968, 62:115~120
    22 R. Tewari, S. Mazumder, I. S. Batra. G. K. Dey, S. Banerjee. Precipitation in 18 wt% Ni Maraging Steel of Grade 350, Acta mater. 2000, 48: 1187~1200
    23 K. Stiller, M. Hattestrand, F. Danoix. Precipitation in 9Ni-12Cr-2Cu Maraging Steels. Acta mater. 1998, 46(17): 6063~6073
    24 G. Thomas, I. Chen, J. R.Mihalisin. Characterization of Aging-Induced Micro- Structural Changes in M250 Maraging Steel Trans. ASM 1968, 62:115~124
    25朱静,赵瑛伟,潘天喜. 18Ni(250)马氏体时效钢中的逆转变奥氏体的研究.钢铁. 1981, (8): 41~45
    26 M. Farooque, H. Ayub, A. Ulhaq. The Formation of Reverted Austenite in 18% Ni 350 Grade Maraging Steel. Journal of Materials Science. 1998, 33: 2927 ~2930
    27束德林.金属力学性能.北京机械工业出版社. 1990:1~40
    28 Y. Katz, H. Mathtas, S. Nadiv. The Mechanical Stability of Austenite in Maraging Steel. Metallurgical Transaction A. 1983, 14A(5): 801~807
    29 Y. Saito, N. Tsuji, H. Ustnomiya. Ultra-fine Grainedaluminium Produced by Accumulativeroll-Bonding(ARB)Process. Scrip. Mater. 1998, 39(9):1221~1227
    30 C. P. Chang, P. L. Sun, P. W. Kao. Deformation induced grain boundaries in a comm -ercially purealuminium. Acta Mater. 2000, 48(13):3377~3385
    31 V. V. Rybin. Large Plastic Strains and Fracure of Metals, Metallurgy. Moscow. 1986:15~32
    32 S. Yu. Mironov, G. A. Salishchev, M. M. Myshlyaev, R. Pippan. Evolution of Misorientation Distribution During Warm Forging of Commercial-Puritytitani um . Mater. Sci. Eng. A. 2006, 418(1~2):257~267
    33 D. H. Shin, B. C. Kim, Y. S. Kim, K. T. Park. Microstructural Evolution in a Commercial Low Carbon Steel by Equal Channel Angular Pressing. Acta. Mater. 2000, 48 (9):2 247~2255
    34 F. J. Humphreys, P. S. Bate. Measuring the Alinment of Low Angle Boundaries Formed During Deformation. Acta Mater. 2006, 54(3):817~829
    35张智民,李硕本.渗碳20CrMnTi温变形超细晶粒形成机制.塑性工程学报. 2002, 6:32~35
    36 X. Huang, N. Hansen. Flow Stress and Microstructures of Fine Grained Copper. Mater. Sci. Eng. 2007:387~389
    37 J. L. Ning, D. M. Jiang, X. G. Fan, Z. H. Lai, Qi. C. Meng, D. L. Wang. Mechanical Properties and Microstructures of Al-Mg-Mn-Zr Alloy Processed by Equalchannel Angular Pressing. at Elevated Temperature. Mater. Charac. 2008, 59(3):306~311
    38 A. Gholinia, F. J. Humphreys, P. B. Prangnell. Production of Ultra-fine Grain Microstructures in Al-Mg Alloy by Conventional Rolling. Acta Mater. 2002, 50 (18):4461~4476
    39 A. Belyakov, T. Sakai, H. Miura, K. T suzaki. Grain Refinement in Copper Under Large Strain Deformation. Phil. Mag. A. 2001, 81(11):2629~2643
    40 A. M. Wusatowska-Sarnek, H. Miura, T. Sakai. Nucleation Microtexture Deve- lopment Underdynamic Recrystallization of Copper, Mater. Sci. Eng. A, 2002, 3 23(1~2):77~186
    41徐洲. Fe-32Ni合金高温变形与再结晶行为.金属热处理. 1999, 6(6):3~6
    42 Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon. An Investigation of Micro structural Evolutionduring Equal-channel Angular Pressing. Acta Mater. 1997, 45(11): 4733~4741
    43 N. R. Tao, Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu and K. Lu. Acta Mater. 2002, 50: 4063~4105
    44 W. P. Tong, N. R. Tao, Z. B. Wang, J. Lu and K.Lu. science. 2003, 299:686~701
    45 Z. B. Wang , N. R. Tao, W.P.Tong, J.Lu and K.Lu. Acta Mater. 2003:25~70
    46刘刚.中国科学院金属研究所博士后研究工作报告. 2000:1~73
    47 X.Wu, N.Tao, Y. Hong, B. Xu, J. Lu and K. Lu. Acta Mater. 2002, 50: 2075 ~2103
    48 Z. B. Wang, Tao. N. R, W. P. Tong, J.Lu and K. Lu. Mater. Sci. Eng. 20 02 : 10 2 ~105
    49冯淦,石连捷,吕坚,卢柯.金属学报. 2000, 36(3):300~333
    50雍兴平.中国科学院金属研究所硕士论文. 2001:10~23
    51 K .Wang, Liu . G, Lu. J and Lu . K. Acta Mater. 2003:2~30
    52 Bay B, Hansen N, D. A. Hughes and Kuhlmann-Wilsdorf D. Acta Metal. Mater. 1992, 40:205~235
    53 J. S. Benjamin. Matal. Trans. 1970, l:2943~2956
    54 D. A. Hughes and Hansen. N. Phys. Rev. Lett. 2001, 87:135 ~178
    55 D. A. Huhges, Liu. Q, D. C. Chrzan and Hansen. N Acta Mater. 1997, 45: 105 ~117
    56 Liu. Q, Juul Jensen. D and Hansen. N. Acta Mater. 1998, 46:5819~5824
    57 D. A. Hughes and N. Hansen. Acta Mater. 2000, 48:2985~3004
    58 Hansen. N. Metall. Mater. Trans. 2001, 32A:2917~2928
    59尹钟大.马氏体时效钢的强韧性和形变热处理.哈尔滨工业大学出版社. 1983:3~7
    60河部义邦. 245Kg/mm2级マリI~ジ鋼の研究開発应用. 1980, 4(2):69~73
    61 F. J.Hum Pherys and M.Hatherly. Recrystallization and Realred Annealing Phen- omena. 1996:497~510
    62 Skaai. T. Thermonechanical Processing Of Steels. 2000:47~ 62
    63 S. J. Hales, T. R. Mcnelley and H. J. Mcqueen. Metal. Trans. 1991, A22:1037 ~1045
    64 Liu. Q, Huang X , Yao. M and Yang. J. Acta Metal. Mater. 1992, 40:753~768
    65 TusazkimT, Huang. X and Maki. T. Acta Mater. 1996, 44:4491~4512
    66 Saki. T and J. J. Jonas. Acta Metal. 1984, 32:189~215
    67 M. L. Bhatia. Prog. Maetr. Sci. 1997, 42:59~70
    68 A. Belyakov,T. Sakai, H. Miura and K.Tsuzaki. Phil. Mag. 2001, A81:26~29
    69 H. J. Fecht. Nanostructuct. Mater. 1995, 6:33~56
    70 R. Z. Valiv, Vanisenko. Yu. V, E. F. auch and Baudelet.B. Aeta Mater. 1996, 44: 4~8
    71张洪旺,刘刚,黑祖昆,吕坚,卢柯.表面机械研磨, ALSL304不锈钢表面纳米化. II晶粒细化机理明.表面金属学报. 2003, 39(4):347~356
    72刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状.中国表面工程. 2001, 14(3):45~63
    73 Liu. G, Wang. S. C, Lou. X. F, etal. Low Carbon Steel with Nanostructure Surface Layer Induced by High Energy Shot Peening. ScriPta. Mater. 2001, 44(8 ):17~91
    74李东,陈怀远,刘刚,卢柯,林泉洪. SS400钢对接接头表面纳米化及其对疲劳强度的影响.焊接学报. 2002, 23(2):15~17
    75李东,陈怀远,刘刚,卢柯. 55400钢焊接接头表层组织均一化及硬度均一化处理.金属学报. 2001, 37(4):98~101
    76 Tong W P, Tao N R, Wang Z B. Nitriding iron at Low Temperatures. Science. 2003, 299(5607):6~86
    77大连工学院《金属学及热处理》编写小组编.金属学及热处理.科学出版社. 1975: 6~9
    78李明伟. 18N(i2000MPa)马氏体时效钢强韧化工艺研究.工学硕士论文. 1997
    79徐滨士.纳米表面工程.北京化学工业出版社. 2004:373~377
    80徐恒钧,刘国勋.材料科学基础.北京工业大学出版社. 2001:376~385
    81卢柯,卢磊.金属纳米材料力学性能的研究进展.金属学报. 2000, 36(8):785~789
    82 S.Takeuchi. The Mechanism of the Inverse Hall-eteh Relation of Nanocrystals. Scripta mater. 2001, 44:1483~1487
    83雍兴平,刘刚,吕坚,卢柯.低碳钢表面纳米化处理及结构特征.金属学报. 2002, 8(2):157~160
    84张亨金.太原理工大学硕士研究生学位论文. 2006:45~66
    85 H. J. Rack, D. Kalish. Metall. Trans. 1971, 2:2~17
    86 V. K. Vasudevan, S. J. Kim, C. M. Wayman. A Computer-simulated Electron Diffraction Analysis of Precipitates in 18Ni(350) Maraging Steel Metall. Tran. 1990, 21A:26~55
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.