无线通信协议的建模与性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,随着通信手段的丰富和Internet的普遍应用,新业务层出不穷,促使通信技术飞速发展,在需求的强大激励和技术的有力支持下,通信领域经历了从窄带到宽带、从有线到无线、从固定到移动的巨大变化。
     通信领域里标准化极为重要。IEEE 802标准化工作组致力于接入网络的研究,其中无线接入网络主要有IEEE 802.11局域网、IEEE 802.15个域网、IEEE802.16城域网、IEEE 802.20广域网,另外IEEE 802.21工作组负责研究IEEE802系列接入网络之间的互操作问题。IEEE 802标准化工作与相应的协会和联盟相配合,促进规范的产业化。与IEEE 802.11工作组相对应的是Wi-Fi联盟,与IEEE 802.16相对应则是WiMAX论坛。
     IEEE 802.11属于无线局域网范畴,实现“最后100m”接入。作为接入网,无线局域网既可以接入核心网,作为固定网的无线延伸,也可以与具备高速性能及更大覆盖范围的移动技术相结合,作为2G和3G移动网的分组接入网。从市场来看,这是到目前为止最为成功的无线接入系统。Inter将其功能内嵌于笔记本电脑内,为这一技术的广泛应用提供了更大的便捷。
     IEEE 802.16属于无线城域网范畴,实现“最后一公里”接入。IEEE 802.16是在IEEE 802.11有了初步实践后,对新的需求进行了充分分析,并在IEEE 802.11技术上进行改进与增强而产生的。IEEE 802.16标准的发布有着重要的意义,它是第2代宽带无线接入系统产生的标志,并将成为宽带接入的主流系统。
     Ad Hoc网络是没有中心实体的自组织网络,依靠节点之间的相互协作在移动、复杂多变的无线环境中自行组网。移动Ad Hoc网络的特点是组网灵活性强、支持移动性、易于迅速展开、系统抗毁能力强。
     通过建立数学模型来分析通信协议的性能是研究协议的一个重要方法。本文给出IEEE 802.16在PMP的工作模式下非实时的和尽力服务的数据流竞争带宽的马尔科夫模型,分析了的带宽请求的延时与竞争窗口的大小、用户站的数量和每帧中的带宽请求时隙数以及最大的重传次数之间的关系。IEEE 802.16支持QoS,但没有给出具体实现方案,而是让商家根据不同的需要自行开发,我们在NS-2中实现了一个基于优先级的支持QoS的带宽调度算法并通过模拟验证。关于IEEE 802.11 MAC层的媒体接入控制机制在饱和条件下的模型已经有很多,本文给出了一个饱和条件下的闭队列模型和非饱和条件下的马尔科夫模型,计算了平均延时这一性能指标,并通过网络模拟验证了模型的有效性。针对局部拥塞可能导致路由协议的性能下降,我们对Ad Hoc网络中经典的AODV路由协议作了改进。
     本文的结构如下:
     在第一章里,我们简要介绍了Ad Hoc网络和IEEE 802.16、IEEE 802.11标准,以及广泛使用的网络模拟软件NS-2。在第二章,我们建立了IEEE 802.16在PMP模式下对非实时和尽力服务数据流竞争带宽的马尔科夫模型,对平均延时进行了分析,模拟结果表明模型是比较精确的。第三章里,给出了IEEE 802.16一个基于优先级的支持Qos的带宽调度算法,并在NS-2中编程实现了该算法。在第四章,我们给出了IEEE 802.11分布协调功能(DCF)在饱和条件下的闭队列模型,并给出了平均延时的计算公式。第五章里,研究的是IEEE 802.11分布协调功能(DCF)在非饱和条件的马尔科夫模型。在第六章,我们改进Ad Hoc网络的AODV路由协议,并通过模拟比较了改进后与改进前的性能。第七章是结论。
Over the past 20 years, with the means of communication to enrich and the universal application of the Internet, an endless stream of new business, a powerful incentive in the demand and the strong support of the technology, communications experience from narrow-band to broadband, from cable to wireless, from fixed to mobile of the tremendous .
     Standardization in the field of communication is extremely important. IEEE 802 Working Group to standardize access network research, LAN IEEE 802.11, IEEE 802.16 MAN, and WAN IEEE 802.20, and IEEE 802.21 . IEEE 802 standardization work with the corresponding association and the Union effort to promote the industrialization of norms. With the IEEE 802.11 Working Group corresponding to the Wi-Fi Alliance, corresponding with the IEEE 802.16 is WiMAX Forum.
     IEEE 802.11 wireless LAN area, to achieve the "final 100 m" Access. Wireless LAN can access the core network, fixed network as a wireless extension, and may also have a high-speed performance and greater coverage of mobile technology, as 2G and 3G mobile network packet access network. From a market perspective, this is by far the most successful wireless access system. Inter embedded it in laptops, providing greater convenience for the broad application of this technology.
     IEEE 802.16 wireless MAN areas, to achieve the "last mile" access. It is made after initial practice of IEEE 802.11 and base a full analysis on the new demand. The release of IEEE 802.16 standard is of important significance, it is the first second-generation broadband wireless access system to produce signs, and will become the mainstream broadband access system.
     Ad Hoc network is self-organizing wireless network in the complex and dynamic environment. Mobile Ad Hoc network is characterized by strong network flexibility to support mobile, easy to quickly start system and stronger resistance to destruction.
     Through the establishment of mathematical models to analyze the performance of communication protocol is an important method. In this paper, we give Markov model of the competitive bandwidth for IEEE 802.16 in PMP mode, analysis the relationship between the delay and competition window size, the number of users stations and the slot number in each frame . IEEE 802.16 support QoS, But it did not give concrete realization of the programme, to the different needs of businesses under their own development, we realize it in NS-2 and verified by simulation. There are a number of models On IEEE 802.11 MAC under saturated condition, this paper gives a closed queueing model for IEEE 802.11 under saturated condition and a Markov model for IEEE 802.11 MAC under non-saturated condition, calculate the average delay , the validity of the model is verified. Against local congestion could lead to decline in the performance of routing protocols, the classic AODV routing protocol in Ad Hoc networks was improved.
     This paper is structured as follows:
     In the first chapter, we briefly introduced the Ad Hoc networks and IEEE 802.16, IEEE 802.11 Standards, as well as network simulation software NS-2. In the second chapter, we have established a Markov model for IEEE 802.16 in PMP mode, simulation results show model is more accurate. Chapter III, we give a support Qos bandwidth scheduling algorithm for IEEE 802.16, and implemente it in NS-2. In the fourth chapter, we give a closed queuing model for IEEE 802.11 DCF under the saturated condition , and gives the formula for calculating the average delay. Chapter V, for IEEE 802.11 DCF under the non-saturated conditions, a Markov model is gived. In the sixth chapter, we have improved AODV routing protocols . Chapter VII is the conclusion.
引文
[1] Macker J, and Corson S. Mobile ad hoc networks(MANET). IETF Working Group Charter, http://www.ietf.org/html.charters/manet-charter.html, 1997.
    [2] Gwalani S, Belding-Royer M and Perkins C. AODV-PA: AODV with path accumulation. ICC '03, IEEE International Conference on Volume 1, 2003, 527 -531.
    [3] Zahary A, Ayesh A. Analytical study to detect threshold number of efficient routes in multipath AODV extensions. Computer Engineering & Systems. IC-CES'07, Nov. 2007 , 95 - 100.
    [4] Rendong Bai, Singhal M. DSR over AODV Routing for Mobile Ad Hoc Networks. Mobile Computing, IEEE Transactions on Volume 5, Oct. 2006 , 1403 - 1416.
    [5] Suhua Tang, Bing Zhang. A robust AODV protocol with local update. Communications, 2004 and the 5th International Symposium on Multi-Dimensional Mobile Communications Proceedings. The 2004 Joint Conference of the 10th Asia-Pacific Conference on Volume 1, 29 Aug.-1 Sept. 2004, 418 - 422.
    [6] Zheng Kai, Wang Neng, Liu Ai-fang. A new AODV based clustering routing protocol Wireless Communications Networking and Mobile Computing. Proceedings International Conference on Volume 2, Sept. 2005 , 728 - 731.
    [7] Moghim N. Hendessi F, Movehhedinia N. An improvement on ad-hoc wireless network routing based on AODV. Communication Systems, 2002. ICCS 2002. The 8th International Conference on Volume 2, Nov. 2002 , 1068 - 1070.
    [8] Hyun-Seok Lee, Nguyen Thi Thanh, Jung-Seok Heo. Load Balancing Route Discovery Method Based on AODV Strategic Technology. The 1st International Forum on 18-20 Oct. 2006, 374 - 377.
    [9] Jin-Man Kim, Jong-Wook Jang. AODV based Energy Efficient Routing Protocol for Maximum Lifetime in MANET. Telecommunications, 2006. AICT- ICIW '06. International Conference on Internet and Web Applications and Services/Advanced International Conference on 19-25 Feb. 2006, 77 -77.
    [10] Randhawa T, Richards J. Implementation of a kernel mode IPv6 AODV routing daemon to improve data throughput. Communications, 2005. ICC 2005. 2005 IEEE International Conference on Volume 5, 16-20 May 2005, 3073 - 3077.
    [11] Randhawa T, Richards J. Implementation of a kernel mode IPv6 AODV routing daemon to improve data throughput. Communications, 2005. ICC 2005. 2005 IEEE International Conference on Volume 5, May 2005 , 3073 - 3077.
    [12] Best P, Gundeti S, Pendse R. Self-learning ad-hoc routing protocol. Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th Volume 5, Oct. 2003 , 2824 - 2828.
    [14] Xiaofeng Zhong, Shunliang Mei, Youzheng Wang, Jing Wang. Stable enhancement for AODV routing protocol Personal. Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on Volume 1, Sept. 2003 , 201 - 205.
    [15] Wu Shaochuan, Tan Xuezhi, Jia Shilou. AOHR: AODV and OLSR Hybrid Routing Protocol for Mobile Ad Hoc Networks. Communications, Circuits and Systems Proceedings, 2006 International Conference on Volume 3, June 2006 , 1487 - 1491.
    [16] Hari Rangarajan, Garcia-Luna-Aceves J. Making on-demand routing protocols based on destination sequence numbers robust. Communications, 2005. ICC 2005. 2005 IEEE International Conference on Volume 5, May 2005 , 3068 - 3072.
    [17] Misra R, Mandal CR. Performance comparison of AODV/DSR on-demand routing protocols for ad hoc networks in constrained situation . Personal Wireless Communications, 2005. ICPWC 2005. 2005 IEEE International Conference on 23-25 Jan. 2005 , 86 - 89.
    [18] Pirzada A.A, Datta A, McDonald C. Trustworthy routing with the AODV protocol. Networking and Communication, 2004. INCC 2004. International Conference on 11-13 June 2004 , 19 - 24.
    [19] Xuefei Li, Cuthbert L. Stable node-disjoint multipath routing with low overhead in mobile ad hoc networks. Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings. The IEEE Computer Society's 12th Annual International Symposium on 4-8 Oct. 2004 , 184 - 191.
    [20] Bergamo P, Maniezzo D, Travasoni A, Giovanardi A, Mazzini G, Zorzi M. Performance investigation of distributed power control for AODV routing protocol. Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on Volume 1, 7-10 Sept. 2003 ,507-511.
    [21] Royer E.M, Perkins C.E. An implementation study of the AODV routing protocol. Wireless Communications and Networking Conference, 2000. WCNC. 2000 IEEE Volume 3, 23-28 Sept. 2000 , 1003 - 1008 .
    [22] Zhang Guoqing, Mu Dejun, Xu Zhong, Yang Weili. An Efficient Security Enhancement of AODV Protocol Control Conference. 2007. CCC 2007. Chinese July 26 2007-June 31 2007, 644 - 647.
    [23] Chaudhry S.R, Al-Khwildi A.N, Casey Y.K, Aldelou H. WiMob Proactive and Reactive Routing Protocol Simulation Comparison. Information and Communication Technologies, 2006. ICTTA '06. 2nd Volume 2, 24-28 April 2006, 2730 -2735.
    [24] Leiyuan Li, Chigan C. Token Routing: A Power Efficient Method for Securing AODV Routing Protocol. Networking, Sensing and Control, 2006. ICNSC '06. Proceedings of the 2006 IEEE International Conference on 23-25 April 2006 , 29 -34.
    [25] Tal Anker, Dolev D, Hod B. Cooperative and Reliable Packet-Forwarding on Top of AODV. Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006 4th International Symposium on 03-06 April 2006 ,1-10.
    [26] Chee-Wah Tan, Sanjay Kumar Bose. Modifying AODV for Efficient Power-Aware Routing in MANETs. TENCON 2005 IEEE Region 10 Nov. 2005, 1 - 6.
    [27] Gomez C, Catalan M, Mantecon X, Paradells J, Calveras A. Evaluating performance of real ad-hoc networks using AODV with hello message mechanism for maintaining local connectivity. Personal, Indoor and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International Symposium on Volume 2, 11-14 Sept. 2005 , 1327 - 1331.
    Kai Zeng, Kui Ren, Wenjing Lou. Geographic On-Demand Disjoint Multipath Routing in Wireless Ad Hoc Networks. Military Communications Conference, 2005. MILCOM 2005. IEEE 17-20 Oct. 2005 ,1-7.
    Jin-Man Kim, Jong-Wook Jang. A performance evaluate of improved AODV-based power-aware routing protocol in MANET. Enterprise networking and Computing in Healthcare Industry, 2005. HEALTHCOM 2005. Proceedings of 7th International Workshop on 23-25 June 2005 , 273 - 277.
    [30] Crisostomo S, Sargento S, Brandao P, Prior R. Improving AODV with preemptive local route repair. Wireless Ad-Hoc Networks, 2004 International Workshop on 31 May-3 June 2004 , 223 - 227.
    [31] Elshakankiri M, Damroury Y. A quality of service protocol for mobile ad hoc networks. Circuits and Systems, 2003. MWSCAS'03. Proceedings of the 46th IEEE International Midwest Symposium on Volume 1, 27-30 Dec. 2003, 490 -495.
    [32] Weichao Wang, Yi Lu, Bhargava B. On security study of two distance vector routing protocols for mobile ad hoc networks. Pervasive Computing and Communications, 2003. (PerCom 2003). Proceedings of the First IEEE International Conference on 23-26 March 2003, 179 - 186.
    [33] Fei Ye, Jingbo Dong, Zhisheng Niu. Exploit the capacity of unstable links in AODV-based ad hoc networks. Communications, 2006. APCC '06. Asia-Pacific Conference on Aug. 2006, 1-5.
    [34] Quddus G, Khan R, Iqbal R, Ahmed W. Finding a Stable Route Through AODV by Using Route Fragility Coefficient as Metric Networking and Services, 2006. ICNS '06. International conference on 2006, 107 - 107.
    [35] Imrich Chlamtac, Marco Conti, Jennifer Liu. Mobile ad hoc networking: imperatives and challenges. Ad hoc Networks, 2003, 1(1), 13-64.
    [36] Perkins C, Belding-Royer E, Das S. Ad hoc On-Deman Distance Vector Routing. http://www.ietf.org/rfc/rfc3561.txt 2002.
    [37] Mehran Abolhasan, Tadeusz Wysocki, Eryk Dutkiewicz. A review of routing protocols for mobile ad hoc networks. Ad hoc Networks, 2004, 2(1), 1-22.
    [38] Perkins C, Belding-Royer E, Das S. Ad hoc on-demand distance vector (AODV) routing, Internet Draft. http://www.ietf.org/internet-draft/draft-ietf-manet-aodv-ll.txt,IETF Internet Draft (work in progress), 2002
    [39] Hongqiang Zhai, Younggoo Kwon, Yuguang Fang. Performance analysis of IEEE 802.11 MAC protocols in wireless LANs. Wireless Communications and Mobile Computing Volume 4, Issue 8, 2004, 917-931
    [41] Chonggang Wang, Weiwen Tang. A probability-based algorithm to adjust contention window in IEEE 802.11 DCF. Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on Volume 1, 27-29 June 2004 , 418 - 422.
    [42] Nakjung Choi, Yongho Seok, Yanghee Choi, Sungmann Kim, Hanwook Jung. P-DCF: enhanced backoff scheme for the IEEE 802.11 DCF. Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st Volume 3, 30 May-1 June 2005 , 2067 - 2070.
    [43] Natkaniec M, Pach A.R. PUMA - a new channel access protocol for wireless LANs. Wireless Personal Multimedia Communications, 2002. The 5th International Symposium on Volume 3, 27-30 Oct. 2002 , 1351 - 1355.
    [44] Jun Liu, Wei Guo, Bai long Xiao, Fei Huang. RTS Threshold Adjustement Algorithm for IEEE 802.11 DCF. ITS Telecommunications Proceedings, 2006 6th International Conference on June 2006 , 654 - 658.
    [45] Li Ning. A Power-Consumption Analysis for 802.11DCF. Wireless Communications, Networking and Mobile Computing, 2006. WiCOM 2006. International Conference on 22-24 Sept. 2006 , 1 - 4 .
    [46] Li Ning, Xu Yuan, Xie Sheng-li. A power-saving protocol for ad hoc networks Wireless Communications, Networking and Mobile Computing, 2005. Proceedings. 2005 International Conference on Volume 2, 23-26 Sept. 2005 , 808 - 811
    [47] Xi Yong, Wei Ji-Bo, Zhuang Zhao-Wen. Throughput analysis of IEEE 802.11 DCF over correlated fading channel in MANET Wireless Communications. Networking and Mobile Computing, 2005. Proceedings. 2005 International Conference on Volume 2, 23-26 Sept. 2005 , 694 - 697.
    [48] Chonggang Wang, Weiwen Tang, Sohraby K, Bo Li. A simple mechanism on MAC layer to improve the performance of IEEE 802.11 DCF Broadband Networks, 2004. BroadNets 2004. Proceedings. First International Conference on 2004 , 365 -374.
    [49] Chonggang Wang, Bin Li, Bo Li, Sohraby K. An effective collision resolution mechanism for wireless LAN Computer Networks and Mobile Computing, 2003. ICCNMC 2003. 2003 International Conference on 20-23 Oct. 2003 , 18 - 25.
    [50] Chonggang Wang, Bo Li, Lemin Li. A new collision resolution mechanism to enhance the performance of IEEE 802.11 DCF. Vehicular Technology, IEEE Transactions on Volume 53, Issue 4, July 2004 , 1235 - 1246.
    [51] Fu-Yi Hung, Marsic I. Access Delay Analysis of IEEE 802.11 DCF in the Presence of Hidden Stations Global Telecommunications Conference, 2007. GLOBECOM '07. IEEE 26-30 Nov. 2007 , 2541 - 2545.
    [52] Siwamogsatham S. A novel smart-DCF scheme for high-speed WLANs Communications and Information Technologies. 2007. ISCIT '07. International Symposium on 17-19 Oct. 2007 , 1032 - 1037.
    [53] Jain-Shing Liu, Chun-Hung Richard Lin. Performance Improvements with a P-Persistent Enhanced DCF for WLANs Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd Volume 3, 2006 , 1151 - 1155.
    [54] Kamrok Lee, Jae Young Choi, Wook Hyun Kwon, Hong Seong Park. An Energy-efficient Contention-based MAC Protocol for Wireless Ad Hoc Networks Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd Volume 1, 2006 , 430 - 434.
    [55] Vu H, Sakurai T. Accurate delay distribution for IEEE 802.11 DCF. Communications Letters, IEEE Volume 10, Issue 4, Apr 2006 , 317 - 319.
    [56] Lixiang Xiong, Guoqiang Mao. Performance Analysis of IEEE 802.11 DCF with Data Rate Switching Communications Letters, IEEE Volume 11, Issue 9, September 2007 , 759 - 761.
    [57] Sakurai T, Vu H.L. MAC Access Delay of IEEE 802.11 DCF. Wireless Communications, IEEE Transactions on Volume 6, Issue 5, May 2007 , 1702 - 1710.
    [58] Da-Ren Guo, Kuochen Wang, Lung-Sheng Lee. Efficient Spatial Reuse in Multi-Radio, Multi-Hop Wireless Mesh Networks. Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th 22-25 April 2007 , 1076 - 1080 .
    [59] Tarun Joshi, Mukherjee A, Agrawal D. Analytical Modeling of the Link Delay Characteristics for IEEE 802.11 DCF Multi-Rate WLANs Electrical and Computer Engineering, 2006. CCECE '06. Canadian Conference on May 2006 , 2164 - 2167 .
    [60] Li Yun, Long Ke-Ping, Zhao Wei-Liang, Yang Feng-rui, Chen Qian-bin. DS-RWBO: a novel service differentiated backoff algorithm for IEEE 802.11 DCF. Communications, 2005. ICC 2005. 2005 IEEE International Conference on Volume 5, 16-20 May 2005 , 3479 - 3483.
    [61] Nishida Y. Enhancing 802.11 DCF MAC for TCP/IP communication. Wireless Communications and Networking Conference, 2005 IEEE Volume 3, 13-17 March 2005 , 1620 - 1625.
    [62] Nadecm T, Lucheng Ji, Agrawala A , Agre J. Location enhancement to IEEE 802.11 DCF. INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE Volume 1, 13-17 March 2005 , 651 - 663.
    [63] Hongqiang Zhai, Xiang Chen, Yuguang Fang. A call admission and rate control scheme for multimedia support over IEEE 802.11 wireless LANs. Quality of Service in Heterogeneous Wired/Wireless Networks, 2004. QSHINE 2004. First International Conference on 2004 , 76 - 83 .
    [64] Kawamura K, Inoue Y, Kubota S. A priority control method for wireless multi-hop access using IEEE 802.11 DCF mechanism Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on Volume 1, 5-8 Sept. 2004 , 520 - 524.
    [65] Nadeem T, Agrawala A. IEEE 802.11 DCF enhancements for noisy environments. Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on Volume 1, 5-8 Sept. 2004 , 93 - 97.
    [66] Ozdemir M, McDonald A. A queuing theoretic model for IEEE 802.11 DCF using RTS/CTS Local and Metropolitan Area Networks, 2004. LANMAN 2004. The 13th IEEE Workshop on 25-28 April 2004 , 33 - 38 .
    [67] Shaohu Yan, Yongning Zhuo, Shiqi Wu, Wei Guo. Priority backoff algorithm for IEEE 802.11 DCF. Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on Volume 1, 27-29 June 2004 , 423 - 427.
    [68] Ting-Chao Hou, Ling-Fan Tsao, Hsin-Chiao Liu. Analyzing the throughput of IEEE 802.11 DCF scheme with hidden nodes. Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th Volume 5, 6-9 Oct. 2003 , 2870 - 2874 .
    [69] Lopez Toledo A, Vercauteren T, Xiaodong Wang. Adaptive Optimization of IEEE 802.11 DCF Based on Bayesian Estimation of the Number of Competing Terminals Mobile Computing, IEEE Transactions on Volume 5, Issue 9, Sept. 2006 Page(s):1283 - 1296.
    [70] Ziouva E, Antonakopoulos T. CSMA/CA performance under high traffic conditions: throughput and delay analysis, Computer Communications, Vol 25, 2002, 313-321.
    [71] Liaw Y, Dadej A, Jayasuriya A. Performance analysis for the IEEE 802.11 DCF under limit load. Asia-Pacific Conference on Communications, Perth, Western Australia, October 2005, 759-763.
    [72] Pham P, Perreau S, Jayasuriya A. Performance analysis of the IEEE 802.11 DCF. 2005 Asia-Pacific Conference on Communications, Perth, Western Australia, October 2005, 764-768.
    [73] Ho T, Chen K. Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LAN. Proc IEEE PIMRC, Taipei, Taiwan, October 1996, 407-411.
    [74] Tay Y, Chua K. A capacity analysis for the IEEE 802.11 MAC protocol, Wirelee Networks, Vol. 7, No. 2, 2001, 159-171.
    [75] Chhaya H, Gupta S. Performance modeling of asynchronous data transfer methods of IEEE 802.11 MAC protocol, Wireless Networks, Vol. 3, No. 3, 1997, 217-234.
    [76] Bianchi G. Performance Analysis for the IEEE 802.11 distributed coordinated function. IEEE Journal on Selected Areas in Communications, Vol. 18, No. 3, March 2000, 535-547.
    [77] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE standard, 1999 Edition.
    [78] Li X, Kong PY, Chua. TCP performance in IEEE-802.11-based ad hoc networks with multiple wireless lossy links. IEEE TRANSACTIONS ON MOBILE COMPUTING , 2007, Vol. 6 , 1329-1342.
    [79] Peng J, Cheng L, Sikdar B. A wireless MAC protocol with collision detection . IEEE TRANSACTIONS ON MOBILE COMPUTING , 2007, Vol. 6 , 1357-1369
    [80] Chu WK, Tseng YC. Performance analysis of IEEE 802.11 DCF in a multi-rate WLAN. IEICE TRANSACTIONS ON COMMUNICATIONS, 2007, Vol. E90B, 2836-2844.
    [81] Babu AV, Jacob L. Fairness analysis of IEEE 802.11 multirate wireless LANs. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2007, Vol. 56 , 3073-3088.
    [82] Leung KK, Clark MV, McNair B. Outdoor IEEE 802.11 cellular networks: Radio, and MAC design and their performance. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2007 Vol. 56, 2673-2684.
    [83] Li F, Hafslund A, Hauge M. Does higher datarate perform better in IEEE 802.11-based multihop ad hoc networks? JOURNAL OF COMMUNICATIONS AND NETWORKS, 2007, Volume: 9, 282-295.
    [84] Hossain, Ekram. IEEE802.16/WiMAX-Based Broadband Wireless Networks: Protocol Engineering, Applications, and Services. Communication Networks and Services Research, 2007. CNSR '07. Fifth Annual Conference on May 2007 , 3 -4.
    [85] Wongthavarawat K, Ganz A. IEEE 802.16 based last mile broadband wireless military networks with quality of service support. Military Communications Conference, 2003. MILCOM 2003. IEEE Vol. 2, 13-16 Oct. 2003, 779 - 784.
    [86] Niyato D, Hossain E. Queue-aware uplink bandwidth allocation and rate control for polling service in IEEE 802.16 broadband wireless networks. Mobile Computing, IEEE Transactions on Volume 5, Issue 6, June 2006, 668 - 679.
    [86] Cicconetti C, Erta A, Lenzini L, Mingozzi E. Performance Evaluation of the IEEE 802.16 MAC for QoS Support. Mobile Computing, IEEE Transactions on Volume 6, Issue 1, Jan. 2007, 26 - 38.
    [87] Ben-Jye Chang, Yan-Ling Chen, Chien-Ming Chou. Adaptive Hierarchical Polling and Cost-Based Call Admission Control in IEEE 802.16 WiMAX Networks. Wireless Communications and Networking Conference, 2007. WCNC 2007. IEEE 11-15 March 2007, 1954 - 1958.
    [88] Yun Zhou, Yuguang Fang. Security of IEEE 802.16 in Mesh Mode. Military Communications Conference, 2006. MILCOM 2006 23-25 Oct. 2006, 1 - 6.
    [89] Seung-Eun Hong, Oh-Hyeong Kwon. Considerations for VoIP Services in IEEE 802.16 Broadband Wireless Access Systems. Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd Volume 3, 2006, 1226 - 1230.
    [90] Alavi H, Mojdeh M, Yazdani N. A Quality of Service Architecture for IEEE 802.16 Standards. Communications, 2005 Asia-Pacific Conference on 03-05 Oct. 2005, 249 - 253.
    [91] Hung-Yu Wei, Ganguly S, Izmailov R, Haas Z. Interference-aware IEEE 802.16 WiMax mesh networks. Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st Volume 5, 30 May-1 June 2005, 3102 - 3106.
    [92] Wang F, Ghosh A, Love R. IEEE 802.16e system performance: analysis and simulations. Personal, Indoor and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International Symposium on Volume 2, 11-14 Sept. 2005, 900 -904.
    [93] Cao M, Ma W, Zhang Q, Wang X. Analysis of IEEE 802.16 Mesh Mode Scheduler Performance Wireless Communications, IEEE Transactions on Volume 6, Issue 4, April 2007, 1455 - 1464.
    [94] Wang H, Li W, Agrawal D. Dynamic admission control and QoS for 802.16 wireless MAN. Wireless Telecommunications Symposium, 2005 April 28-30, 2005, 60 - 66.
    [95] Jee-young Song, Hyun-ho Choi, Hyun-dae Kim, Sang-wook Kwon. Performance comparison of 802.16d OFDMA, TD-CDMA, cdma2000 1xEV-DO and 802.11a WLAN on voice over IP service. Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st Volume 3, 30 May-1 June 2005, 1965 - 1969.
    [96] Xergias S, Passas N, Salkintzis A. Centralized Resource Allocation for Multimedia Traffic in IEEE 802.16 Mesh Networks. Proceedings of the IEEE Volume 96, Issue 1, Jan. 2008, 54 - 63.
    [97] Niyato D, Hossain E. Queue-aware uplink bandwidth allocation and rate control for polling service in IEEE 802.16 broadband wireless networks. Mobile Computing, IEEE Transactions on Volume 5, Issue 6, June 2006, 668 - 679.
    [98] Cicconetti C, Erta A, Lenzini L, Mingozzi E. Performance Evaluation of the IEEE 802.16 MAC for QoS Support. Mobile Computing, IEEE Transactions on Volume 6, Issue 1, Jan. 2007, 26 - 38.
    [99] Chen, David Teyao; On the Analysis of Using 802.16e WiMAX for Point-to-Point Wireless Backhaul. Radio and Wireless Symposium, 2007 IEEE 9-11 Jan. 2007, 507 - 510.
    [100] Bo Li, Yang Qin, Chor Ping Low, Choon Lim Gwee. A Survey on Mobile WiMAX [Wireless Broadband Access]. Communications Magazine, IEEE Volume 45, Issue 12, December 2007, 70-75.
    [101] Cicconetti C, Lenzini L, Mingozzi E, Eklund C. Quality of service support in IEEE 802.16 networks. Network, IEEE Volume 20, Issue 2, March-April 2006, 50 - 55.
    [102] Xiaoyu Fu, Wenchao Ma, Qian Zhang. The IEEE 802.16 and 802.11a Coexistence in the License-Exempt Band. Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE 11-15 March 2007, 1942 - 1947.
    [103] Han B, Tso F, Lin L, Jia W. Performance Evaluation of Scheduling in IEEE 802.16 Based Wireless Mesh Networks. Mobile Adhoc and Sensor Systems (MASS), 2006 IEEE International Conference on Oct. 2006, 789 - 794.
    [104] Hoymann C, Klagges K, Schinnenburg M. Multihop Communication in Relay Enhanced IEEE 802.16 Networks Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on Sept. 2006, 1-4.
    [105] Kim D, Ganz A. Fair and efficient multihop scheduling algorithm for IEEE 802.16 BWA systems. Broadband Networks, 2005 2nd International Conference on 3-7 Oct. 2005, 833 - 839.
    [106] Burbank J, Kash W. IEEE 802.16 broadband wireless technology and its application to the military problem space. Military Communications Conference, 2005. MILCOM 2005. IEEE 17-20 Oct. 2005, 1905 - 1911.
    [107]IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed Broadand Wireless Access Systems.IEEE Press,2004.
    [107]Jianhua He,Ken Guild,Kun Yang and Hsiao-Hwa Chen.Modeling Contention Based Bandwidth Request Scheme for IEEE 802.16 Networks,IEEE Communications Letters,vol.11,AUG 2007,698-700.
    [108]Cali F,Conti M,Gregori E.Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit.IEEE/ACM Trans.Networking,vol.8,Dec.2000,785-799.
    [109]陆文彦,贾维嘉,杜文峰等,IEEE 802.16竞争解决方案的性能分析,Journal of Software.vol.18,No.9,SEP 2007,2259-2269.
    [110]ns-2,http://www.isi.edu/nsnam/ns/
    [111]IEEE 802.16 model for NS-2,http://www.antd.nist.gov/seamlessandsecure /download.html
    [111]金纯,陈林星,杨吉云.IEEE 802.11无线局域网.北京,电子工业出版社,2004.
    [112]彭木根,王文博.下一代宽带无线通信系统—OFDM与WiMAX.北京,机工业出版社,2007.
    [113]陈林星,曾曦,曹毅.移动Ad Hoc网络—自组织分组无线网络技术.北京,电子工业出版社,2006.
    [114]张智江,李正茂,王兵,张云勇.宽带无线接入系统WiMAX及工程建设.北京,人民邮电出版社,2007.
    [115]唐雄燕,李健宇,张辉,王彬.宽带无线接入技术与应用.北京,电子工业出版社,2006.
    [116]陈林星,曾曦,曹毅.移动Ad Hoc网络—自组织分组无线网络技术.北京,电子工业出版社,2006.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.