磁性Fe_3O_4与荧光Y_2O_3:Eu~(3+)复合的双功能材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合材料在现代科学技术中起到了重要的作用,而结合磁性和荧光性能于一体的多功能纳米复合材料在生物技术和纳米药物方面具有潜在的应用。在本文中,我们以磁性Fe3O4为核,掺杂稀土的Y2O3荧光粉作为壳,主要以SiO2作为耦合剂,通过溶剂热法和共沉淀法制备一系列的磁性荧光双功能复合物。简单解释了这种双功能复合物在磁场下作用不同时间对荧光性质的影响。尝试以C和TiO2为耦合剂,探讨耦合剂对磁性荧光性能的影响。我们也讨论了单激活剂Eu3+和双激活剂Eu3+,Tb3+对双功能的影响,并给出了Tb3+离子的能量传递给Eu3+离子可能的机理。为了拓宽这种双功能复合物的应用,我们还通过采用牺牲模板的方法制备了中空介孔结构的磁性荧光纳米复合物,这种复合物有大的比表面积,良好的磁性和荧光性质。具体工作如下:
     通过溶剂热法合成多功能的Fe3O4@SiO2@Y2O3:Eu3+纳米复合材料具有良好的核壳结构,各种表征技术证明了Fe3O4@SiO2@Y2O3:Eu3+纳米复合材料的磁性和荧光性能比Fe3O4@Y2O3:Eu3+好。核心表面的二氧化硅包覆层是三明治结构材料的基础,对改善磁性和荧光性质起到重要作用。样品在磁场下放置不同时间后,发光强度随时间的增加而增强,3小时后逐渐下降。复合物具有可调的光学性能,好的磁响应能力和稳定性。
     我们成功合成了结合磁性和发光性能的Fe3O4@SiO2/C/TiO2@Y2O3:Eu3+纳米复合材料。Y2O3:Eu3+荧光粉可以很容易在偶联剂涂层后的四氧化三铁微球表面生长。对比三种不同耦合剂的纳米复合材料,活性炭层因为有键的作用,易于组合两种不同结晶结构的材料,综合磁性和荧光性能Fe3O4@C@Y2O3:Eu3+比其他两种复合物好些。而Fe3O4@SiO2@Y2O3:Eu3+的生物相容性更好些。不同耦合剂的复合物都具有好的磁响应性,独特的发光特性和乙醇溶解性高的优点。
     碳作为牺牲模板,二氧化硅作为偶联剂,CTAB为结构导向剂,我们通过一个多步法合成了多功能的Fe3O4@HM-SiO2@Y2O3:Eu3+纳米复合材料。该材料显示了典型的有序中孔的特征,并且具有单分散的球形形态,光滑的表面和狭窄的粒度分布。此外,多功能纳米复合材料显示Eu3+的5D0-7F1-4的特征发射。磁性测量表明样品的顺磁特性。我们还比较了实心的Fe3O4@SiO2@Y2O3:Eu3+和中空介孔Fe3O4@HM-SiO2@Y2O3:Eu3+的磁性和荧光性能。
     良好分散的Fe3O4@SiO2@Y2O3:Eu3+,Tb3+核壳结构纳米复合材料由简单的两步共沉淀方法合成。X射线衍射图谱表明,四氧化三铁核心具有良好的面心立方结构,SiO2层是无定形的,Y2O3层为立方晶系。纳米复合材料紫外线照射后,荧光光谱显示,在610nm处强烈的发射峰对应Eu3+的电偶极5D0-7F2跃迁,并在545nm处对应铽的5D4-7F5跃迁。我们从激发光谱中推测,存在从Tb3+到Eu3+离子的能量传递过程。
Nanocomposites have been playing important roles in modern science andtechnology.Dual-functional nanocomposites combined with magnetism andluminescence have potential applications in bio-and nano-technology drugs.In thisarticle, we synthesis a series of magnetic fluorescent compound through chemicalcoprecipition, where Fe3O4, Y2O3doped with rare-earth and SiO2were fabricated asmagnetic cores, shells and coupling agents.We tried to explain the influence ofdifferent interacting time to the fluorescence in the magnetic field. The couplingagents of carbon and TiO2were investigated effects to the magnetism andfluorescence. We also discussed the roles of Eu3+as single activator, Eu3+and Tb3+dual-activators to dual-functional applications, showing the possible mechanism ofenergy transferred from Tb3+to Eu3+ions. We speculate from excitation spectrum thatthere exists energy transfer from Tb3+to Eu3+ions.In order to broaden the applicationsof these bifunctional compounds, we also prepared hollow mesoporous compounds,which had large specific surface area, good magnetic and fluorescent properties viasacrificing template. Details were as follows:
     In summary, we demonstrated a solvothermal synthesis of multifunctionalFe3O4@SiO2@Y2O3:Eu3+nanocomposites with well-defined core-shell nanostructures,magnetic and luminescent properties, which had superior performances thanFe3O4@Y2O3:Eu3+nanocomposites in magnetism and fluorescence by variouscharacterizationtechniques. The SiO2on the surface of magnetic core was the base tothe sandwich-structured materials, which was important to good magnetic andluminescent properties. The luminescence gradually increased in3h when the sampleswere in magnetic field for different time, then decreased,indicating tunable opticalproperties, good magnetic respondence and chemical stability.
     We demonstrated a successful synthesis ofmultifunctional Fe3O4@SiO2/C/TiO2@Y2O3:Eu3+nanocomposites with the magnetic and luminescence properties in a core/shell frame. The Y2O3:Eu3+could easily grow on the coupling agents‘layercoating the Fe3O4microsphere.Compared with three different coupling agentnanocomposites, it was obvious that the chemical bonds in activated carbon layerpromoted to combine these two different crystalline structures, which made theFe3O4@C@Y2O3:Eu3+nanocomposites,had better proformance than Fe3O4@SiO2@Y2O3:Eu3+and Fe3O4@TiO2@Y2O3:Eu3+nanocomposites in magnetic andluminescent properties by various characterization techniques. However, differentcoupling agents all shown good magnetic respondence, unique luminescence and highsolubility in ethanol.
     By usingcarbon as a sacrificial template, silica as coupling agent and CTAB asstructure-directingagent, we synthesized multifunctional Fe3O4@HM-SiO2@Y2O3:Eu3+nanocomposites via a multi-step. The results revealed that materials showtypical ordered mesoporous characteristics, havemonodisperse spherical morphologywith smooth surface and narrow size distribution. The multifunctionalnanocomposites show the characteristic emission of Eu3+(5D0-7F1-4). Magnetismmeasurement revealed the paramagnetic feature of the samples. Besides we alsocompared the magnetic and fluorescent properties of solid Fe3O4@SiO2@Y2O3:Eu3+and Fe3O4@HM-SiO2@Y2O3:Eu3+.
     The nanocomposites with good dispersion and core–shellstructures weresynthesized via a facile two-step co-precipitation process in the fabrication ofFe3O4@SiO2@Y2O3:Eu3+,Tb3+. XRD spectra showed that Fe3O4core has crystallizedin a good face-centered cubic structure; SiO2layer is amorphous and Y2O3layer iscubic. Nanocomposites excitated by UV irradiation, Fluorescence spectroscopyshown that there is a strong emission at around610nm corresponding to the forcedelectric dipole5D0–7F2transition of Eu3+and at around545nm corresponding to5D4-7F5transition of Tb3+. We speculated from excitation spectrum that there existedenergy transfer from Tb3+to Eu3+ions.
引文
[1] Levin C S, Hofmann C, Ali T A, et al. Magnetic plasmonic core shellnanoparticles [J]. Acs Nano,2009,3(6):1379-1388.
    [2] Sun L, Zang Y, Sun M, et al. Synthesis of magnetic and fluorescentmultifunctional hollow silica nanocomposites for live cell imaging [J]. Journal ofcolloid and interface science,2010,350(1):90-98.
    [3] Sotiriou G A, Hirt A M, Lozach P Y, et al. Hybrid, silica-coated, Janus-likeplasmonic-magnetic nanoparticles [J]. Chemistry of Materials,2011,23(7):1985-1992.
    [4] Yang P, Quan Z, Hou Z, et al. A magnetic, luminescent and mesoporouscore–shell structured composite material as drug carrier [J]. Biomaterials,2009,30(27):4786-4795.
    [5] Luo B, Song X J, Zhang F, et al. Multi-functional thermosensitive compositemicrospheres with high magnetic susceptibility based on magnetite colloidalnanoparticle clusters [J]. Langmuir,2009,26(3):1674-1679.
    [6] Kurinobu S, Tsurusaki K, Natui Y, et al. Decomposition of pollutants inwastewater using magnetic photocatalyst particles [J]. Journal of Magnetism andMagnetic Materials,2007,310(2): e1025-e1027.
    [7] Ge J, Zhang Q, Zhang T, et al. Core–satellite nanocomposite catalysts protectedby a porous silica shell: controllable reactivity, high stability, and magneticrecyclability [J]. Angewandte Chemie,2008,120(46):9056-9060.
    [8] Lu P, Zhang J L, Liu Y L, et al. Synthesis and characteristic of the Fe3O4@SiO2@Eu (DBM)3.2H2O/SiO2luminomagnetic microspheres with core-shell structure [J].Talanta,2010,82(2):450-457.
    [9] Zhang L, Wang W, Shang M, et al. Bi2WO6carbon/Fe3O4microspheres:Preparation, growth mechanism and application in water treatment [J]. Journal ofhazardous materials,2009,172(2):1193-1197.
    [10] Shi J, Tong L, Liu D, et al. Fabrication, structure, and properties of Fe3O4@Cencapsulated with YVO4: Eu3+composites [J]. Journal of Nanoparticle Research,2012,14(4):1-9.
    [11] Li X, John V T, Zhan J, et al. The synthesis of mesoporous TiO2/SiO2/Fe2O3hybrid particles containing micelle-induced macropores through an aerosol basedprocess [J]. Langmuir,2011,27(10):6252-6259.
    [12] Watson S, Beydoun D, Amal R. Synthesis of a novel magnetic photocatalyst bydirect deposition of nanosized TiO2crystals onto a magnetic core [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2002,148(1):303-313.
    [13] Wang L S, Zhou Y H, Quan Z W, et al. Formation mechanisms and morphologydependent luminescence properties of Y2O3:Eu phosphors prepared by spraypyrolysis process [J]. Materials Letters,2005,59(10):1130-1133.
    [14] Singh L R, Ningthoujam R S, Sudarsan V, et al. Luminescence study on Eu3+doped Y2O3nanoparticles: particle size, concentration and core–shell formationeffects [J]. Nanotechnology,2008,19(5):055201.
    [15] TEJA A S., KOH P Y. Synthesis, properties, and applications of magnetic ironoxide nanoparticles [J]. Progress in Crystal Growth and Characterization of Materials,2009,55:22-45.
    [16] MURAD E, STUCKI J W, GOODMAN B A, SCHWERTMANN U. in: Iron inSoils and Clay Minerals [J]. Nato ASI Series C: Mathematical and Physical Sciences,D. Reidel,1988, p309.
    [17] Tauxe L, Mullender T A T, Pick T. Potbellies, wasp‐waists, andsuperparamagnetism in magnetic hysteresis [J]. Journal of Geophysical Research:Solid Earth (1978–2012),1996,101(B1):571-583.
    [18] Horowitz, Isaac M. Synthesis of feedback systems. acdemic press.1963,
    [19] Jolivet J P, Chanéac C, Tronc E. Iron oxide chemistry. From molecular clusters toextended solid networks [J]. Chemical Communications,2004(5):481-483.
    [20] Lefebure S, Dubois E, Cabuil V, et al. Monodisperse magnetic nanoparticles:preparation and dispersion in water and oils [J]. Journal of materials research,1998,13(10):2975-2981.
    [21] Massart, R, Cabuil, V. Effect of some parameters on the formation of colloidalmagnetite in alkaline-medium-yield and particle-size control. Journal de Chimie Physique et de Physico-Chimie Biologique.1987,84(7-8),967-973.
    [22] Wang C, Daimon H, Onodera T, et al. A General Approach to the Size‐andShape‐Controlled Synthesis of Platinum Nanoparticles and Their CatalyticReduction of Oxygen [J]. Angewandte Chemie International Edition,2008,47(19):3588-3591.
    [23] Jana N R, Chen Y, Peng X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co,Ni) oxide nanocrystals via a simple and general approach [J]. Chemistry of materials,2004,16(20):3931-3935.
    [24] Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis [J].Nature,2005,437(7055):121-124.
    [25] Xuan S, Wang F, Wang Y X J, et al. Facile synthesis of size-controllablemonodispersed ferrite nanospheres [J]. Journal of Materials Chemistry,2010,20(24):5086-5094.
    [26] Xu H, Cui L, Tong N, et al. Development of high magnetizationFe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsionpolymerization [J]. Journal of the American Chemical Society,2006,128(49):15582-15583.
    [27] Kim J, Kim H S, Lee N, et al. Multifunctional uniform nanoparticles composedof a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonanceand fluorescence imaging and for drug delivery [J]. Angewandte Chemie InternationalEdition,2008,47(44):8438-8441.
    [28] Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniformmesoporous silica spheres embedded with monodisperse magnetic and semiconductornanocrystals [J]. Journal of the American Chemical Society,2006,128(3):688-689.
    [29] Zhang L, Qiao S, Jin Y, et al. Fabrication and Size‐Selective Bioseparation ofMagnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure [J].Advanced Functional Materials,2008,18(20):3203-3212.
    [30] Lin Y S, Haynes C L. Synthesis and characterization of biocompatible andsize-tunable multifunctional porous silica nanoparticles [J]. Chemistry of Materials,2009,21(17):3979-3986.
    [31] Lee M H, Oh S G, Yi S C, et al. Characterization of Eu‐Doped Y2O3Nanoparticles Prepared in Nonionic Reverse Microemulsions in Relation to TheirApplication for Field Emission Display [J]. Journal of the Electrochemical Society,2000,147(8):3139-3142.
    [32] Yang J, Quan Z, Kong D, et al. Y2O3: Eu3+microspheres: solvothermal synthesisand luminescence properties [J]. Crystal growth&design,2007,7(4):730-735.
    [33] Chi L S, Liu R S, Lee B J. Synthesis of Y2O3: Eu, Bi red phosphors byhomogeneous coprecipitation and their photoluminescence behaviors [J]. Journal ofThe Electrochemical Society,2005,152(8): J93-J98.
    [34] Zeng S, Tang K, Li T, et al.3D flower-like Y2O3: Eu3+nanostructures:Template-free synthesis and its luminescence properties [J]. Journal of colloid andinterface science,2007,316(2):921-929.
    [35] Pang M L, Lin J, Cheng Z Y, et al. Patterning and luminescent properties ofnanocrystalline Y2O3: Eu3+phosphor films by sol–gel soft lithography [J]. MaterialsScience and Engineering: B,2003,100(2):124-131.
    [36] Dhanaraj J, Jagannathan R, Kutty T R N, et al. Photoluminescence characteristicsof Y2O3: Eu3+nanophosphors prepared using sol-gel thermolysis [J]. The Journal ofPhysical Chemistry B,2001,105(45):11098-11105.
    [37] CORR S A, RAKOVICH Y P AND GUN KO Y K. Multifunctionalmagnetic-fluores centnanocomposites for biomedical applications [J]. Nanoscale Res.Lett.,2008,3(3):87–104.
    [38] Lu P, Zhang J L, Liu Y L, et al. Synthesis and characteristic of theFe3O4@SiO2@Eu(DBM)3.2H2O/SiO2luminomagnetic microspheres with core-shellstructure [J]. Talanta,2010,82(2):450-457.
    [39] Gai S, Yang P, Li C, et al. Synthesis of Magnetic, Up‐Conversion Luminescent,and Mesoporous Core–Shell-Structured Nanocomposites as Drug Carriers [J].Advanced Functional Materials,2010,20(7):1166-1172.
    [40] Shi J, Ren X, Tong L, et al. In situ assembly of monodisperse, multifunctionalsilica microspheres embedded with magnetic and fluorescent nanoparticles and theirapplication in adsorption of methylene blue [J]. Physical Chemistry Chemical Physics,2013,15(42):18642-18648.
    [41] Corr S A, O'Byrne A, Gun'ko Y K, et al. Magnetic-fluorescent nanocompositesfor biomedical multitasking [J]. Chemical communications,2006(43):4474-4476.
    [42] Feher F J, Wyndham K D, Soulivong D, et al. Syntheses of highly functionalizedcube-octameric polyhedral oligosilsesquioxanes (R8Si8O12)[J]. Journal of theChemical Society, Dalton Transactions,1999(9):1491-1498.
    [43] Cecic I, Korbelik M. Mediators of peripheral blood neutrophilia induced byphotodynamic therapy of solid tumors [J]. Cancer letters,2002,183(1):43-51.
    [44] Bertorelle F, Wilhelm C, Roger J, et al. Fluorescence-modifiedsuperparamagnetic nanoparticles: intracellular uptake and use in cellular imaging [J].Langmuir,2006,22(12):5385-5391.
    [45] Hong X, Li J, Wang M, et al. Fabrication of magnetic luminescentnanocomposites by a layer-by-layer self-assembly approach [J]. Chemistry ofmaterials,2004,16(21):4022-4027.
    [46] Fang M, Grant P S, McShane M J, et al. Magnetic bio/nanoreactor withmultilayer shells of glucose oxidase and inorganic nanoparticles [J]. Langmuir,2002,18(16):6338-6344.
    [47] Okamoto Y, Kitagawa F, Otsuka K. Online concentration and affinity separationof biomolecules using multifunctional particles in capillary electrophoresis undermagnetic field [J]. Analytical chemistry,2007,79(8):3041-3047.
    [48] Becker C, Hodenius M, Blendinger G, et al. Uptake of magnetic nanoparticlesinto cells for cell tracking [J]. Journal of Magnetism and Magnetic Materials,2007,311(1):234-237.
    [49] Li X, Wang L, Zhou C, et al. Preliminary studies of application of CdTenanocrystals and dextran Fe3O4magnetic nanoparticles in sandwich immunoassay [J].Clinica chimica acta,2007,378(1):168-174.
    [50] Sahoo Y, Goodarzi A, Swihart M T, et al. Aqueous ferrofluid of magnetitenanoparticles: fluorescence labeling and magnetophoretic control [J]. The Journal ofPhysical Chemistry B,2005,109(9):3879-3885.
    [51] Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniformmesoporous silica spheres embedded with monodisperse magnetic and semiconductornanocrystals [J]. Journal of the American Chemical Society,2006,128(3):688-689.
    [52] Zhang L, Wang T, Li L, et al. Multifunctional fluorescent-magneticpolyethyleneimine functionalized Fe3O4–mesoporous silica yolk–shell nanocapsulesfor siRNA delivery [J]. Chemical Communications,2012,48(69):8706-8708.
    [53] Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis,and biomedical applications [J]. Accounts of chemical research,2009,42(8):1097-1107.
    [54] Bulte J W M, Kraitchman D L. Iron oxide MR contrast agents for molecular andcellular imaging [J]. NMR in Biomedicine,2004,17(7):484-499.
    [55] Jennings L E, Long N J. Two is better than one‘—probes for dual-modalitymolecular imaging [J]. Chemical Communications,2009(24):3511-3524.
    [56] Lee J H, Huh Y M, Jun Y, et al. Artificially engineered magnetic nanoparticlesfor ultra-sensitive molecular imaging [J]. Nature medicine,2007,13(1):95-99.
    [57] Ntziachristos V. Fluorescence molecular imaging [J]. Annu.Rev. Biomed. Eng.,2006,8:1-33.
    [58] Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging withnear-infrared light: new technological advances that enable in vivo molecular imaging[J]. European radiology,2003,13(1):195-208.
    [59] Frullano L, Meade T J. Multimodal MRI contrast agents [J]. JBIC Journal ofBiological Inorganic Chemistry,2007,12(7):939-949.
    [60] Josephson L, Tung C H, Moore A, et al. High-efficiency intracellular magneticlabeling with novel superparamagnetic-Tat peptide conjugates [J]. Bioconjugatechemistry,1999,10(2):186-191.
    [61] Klichko Y, Liong M, Choi E, et al. Mesostructured silica for optical functionality,nanomachines, and drug delivery [J]. Journal of the American Ceramic Society,2009,92(s1): S2-S10.
    [62] Santra S, Kaittanis C, Grimm J, et al. Drug/Dye‐Loaded, Multifunctional IronOxide Nanoparticles for Combined Targeted Cancer Therapy and DualOptical/Magnetic Resonance Imaging [J]. Small,2009,5(16):1862-1868.
    [63] West C M L, Jones T, Price P. The potential of positron-emission tomography tostudy anticancer-drug resistance [J]. Nature Reviews Cancer,2004,4(6):457-469.
    [64] Josephson L, Kircher M F, Mahmood U, et al. Near-infrared fluorescentnanoparticles as combined MR/optical imaging probes [J]. Bioconjugate chemistry,2002,13(3):554-560.
    [65] Singh R, Lillard Jr J W. Nanoparticle-based targeted drug delivery [J].Experimental and molecular pathology,2009,86(3):215-223.
    [66] Tsuchida K, Murakami T. Recent advances in inorganic nanoparticle-based drugdelivery systems [J]. Mini reviews in medicinal chemistry,2008,8(2):175-183.
    [67] Kohler N, Sun C, Wang J, et al. Methotrexate-modified superparamagneticnanoparticles and their intracellular uptake into human cancer cells [J]. Langmuir,2005,21(19):8858-8864.
    [68] Kohler N, Sun C, Fichtenholtz A, et al. Methotrexate‐immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery [J]. Small,2006,2(6):785-792.
    [69] Yang J, Lim E K, Lee H J, et al. Fluorescent magnetic nanohybrids asmultimodal imaging agents for human epithelial cancer detection [J]. Biomaterials,2008,29(16):2548-2555.
    [70] Santra S, Kaittanis C, Grimm J, et al. Drug/Dye‐Loaded, Multifunctional IronOxide Nanoparticles for Combined Targeted Cancer Therapy and DualOptical/Magnetic Resonance Imaging [J]. Small,2009,5(16):1862-1868.
    [1] S.H. Hu, C.H. Tsai, C.F. Liao, D.M. Liu, S.Y. Chen, Langmuir24(2008)11811–11818.
    [2] M.J. Li, Z. Chen, V.W.W. Yam, Y. Zu, ACS Nano2(2008)905.
    [3] C.S. Levin, C. Hofmann, T.A. Ali, A.T. Kelly, E. Morosan, P. Nordlander,K.H.Whit-mire, N.J. Halas, ACS Nano3(2009)1379–1388.
    [4] C.S. Levin, C. Hofmann, T.A. Ali, A.T. Kelly, E. Morosan, P. Nordlander,K.H.Whit-mire, N.J. Halas, ACS Nano3(2009)1379–1388.
    [5] S.T. Selvan, P.K. Patra, C.Y. Ang, J.Y. Ying, Angew. Chem. Int. Ed.46(2007)2448.
    [6] S. Kurinobua, K. Tsurusakib, Y. Natuic, M. Kimatac, M. Hasegawa, J. Magn.Magn. Mater.310(2007) e1025–1027.
    [7] T.T. Baby, S. Ramaprabhu, Talanta.80(2010)2016–2022.
    [8] Zhiwei Sun, Deming Liu, Lizhu Tong, Jianhui Shi, Xuwei Yang, Lianxiang Yu,Yanchun Tao,Hua Yang,*Solid State Sciences13(2011)361-365
    [1] Ma ZY, Dosi Dosev, Mikaela Nichkova, Gee SJ, Hammock BD, Kenned IM(2009) Synthesis and bio-functionalization of multifunctional magneticFe3O4@Y2O3:Eu nanocomposites. J. Mater. Chem19:4695–4700
    [2] El-Toni AM, Khan A, Labis JP, Ibrahim MA, Al-hoshan M (2012) Synthesisof Magnetic Core–Mesoporous Silica Shell Nanoparticles Using Anionic Surfactantand Their Application for Ketoprofen Control Release. Chemistry Letters10:1357-1359
    [3] Guo J, Wang CC, Mao WY, Yang WL, Liu CJ, Chen JY (2008) Facile one-potpreparation and functionalization of luminescent chitosan-poly(methacrylic acid)microspheres based on polymer–monomer pairs.Nanotechnology19:315605
    [4] Sun ZW, Tong LZ, Liu DM, Shi JH, Yang H (2012) Preparation and properties ofmultifunctional Fe3O4@YVO4:Eu3+or Dy3+core-shell nanocomposites as drugcarriers. J. Mater. Chem22:6280-6284
    [5] Corr SA, Rakovich YP, Gun‘ko YK (2008) Multifunctional Magnetic-fluorescentNanocomposites for Biomedical Applications. Nanoscale Res. Lett3:87–104
    [6] Georgios AS, Hirt AM, Pierre-Yves Lozach, Alexandra Teleki, Frank Krumeich,Pratsinis SE (2011) Hybrid, Silica-Coated, Janus-Like Plasmonic-Magnetic Nanoparticles,Chem. Mater23:1985–1992
    [7] Zhang L, Wang WZ, Shang M, Sun SM, Xu JH (2009) Bi2WO6@carbon/Fe3O4microspheres: Preparation, growth mechanism and application in water treatment.Journal of Hazardous Materials172:1193–1197
    [8] álvarez PM, Josefa Jaramillo, Francisco López-Pi nero, Plucinski PK (2010)Preparation and characterization of magnetic TiO2nanoparticles and their utilizationfor the degradation of emerging pollutants in water. Applied Catalysis B,Environmental100:338–345
    [9] Gai SL, Yang PP, Li CX, Wang WX, Dai YL, Niu N, Lin J (2010) Synthesis ofMagnetic, Up-Co nversion Luminescent, and Mesoporous Core–Shell-StructuredNanocomposites as Drug Carriers. Adv. Funct. Mater20:1166–1172
    [10] Liu SH, Lu F, Liu Y, Jiang LP, Zhu JJ (2013) Synthesis, characterization, andelectrochemic applications of multifunctional Fe3O4@C–Au nanocomposites. JNanopart Res15:1331
    [1] Xiao Jiao Kang, Zigong Cheng, Dongmei Yang, Ping'an Ma, Mengmeng Shang,Chong Peng, Yunlu Dai, Jun Lin, Adv Functional Mater.2012,22(7),1470–1481.
    [2] Yonghui Deng, Yue Cai, Zhenkun Sun, Jia Liu, Chong Liu, Jing Wei, Wei Li,Chang Liu, Yao Wang, Dongyuan Zhao, J. Am. Chem. Soc.2010,132(24),8466–8473.
    [3] Ji Eun Lee, Nohyun Lee, Hyoungsu Kim, Jaeyun Kim, Seung Hong Choi,Jeong Hyun Kim, Taeho Kim, In Chan Song, Seung Pyo Park, Woo Kyung Moon,Taeghwan Hyeon, J. Am. Chem. Soc.2010,132(2),552–557.
    [4] Jian Liu, Shi Zhang Qiao, Qiu Hong Hu, Gao Qing,(Max) Lu, Small.2010,7,(4),425–443
    [5] Chih-Pin Tsai, Yann Hung, Yi-Hsin Chou, Dong-Ming Huang, Jong-Kai Hsiao,Chen Chang, Yao-Chang Chen, Chung-Yuan Mouf, Small.2008,4(2),186–191.
    [6] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T,Angew Chem. Int. Ed2008,47,8438.
    [7] Liong M, Angelos S, Choi E, Patel K, Stoffart J F, Zink J I, J. Mater. Chem.2009,19,6251.
    [8] He Hu, Mengxiao Yu, Fuyou Li, Zhigang Chen, Xia Gao, Liqin Xiong, ChunhuiHuang, Chem. Mater.2008,20(22),7003–7009.
    [9]X. W. Lou, L. A. Archer and Z. C. Yang, Adv. Mater.,2008,20,3987–4019.
    [10] Y. Wan and S. H. Yu, J. Phys. Chem. C,2008,112,3641–3647.
    [11] C. Y. Liu, J. Guo, W. L. Yang, J. H. Hu, C. C. Wang, S. K. Fu, J. Mater. Chem.2009,19,4764.
    [12] Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc.2008,130,
    [1] Sotiriou G A, Schneider M, Pratsinis S E. Color-Tunable Nanophosphors byCodoping Flame-Made Y2O3with Tb and Eu. Journal of Physical Chemistry C,2010,115(4):1084-1089.
    [2] Shen H, Feng S, Wang Y, et al. Synthesis and photoluminescence properties ofGdBO3:Ln3+(Ln=Eu, Tb) nanofibers by electrospinning. Journal of Alloys andCompounds,2013,50:531-535.
    [3] Sudarsan V, Van Veggel F C J M, Herring R A, et al. Surface Eu3+ions are differentthan―bulk‖Eu3+ions in crystalline doped LaF3nanoparticles. Journal of MaterialsChemistry,2005,15(13):1332-1342.
    [4] Mahalingam V, Vetrone F, Naccache R, et al. Colloidal T Tm3+/Yb3+-doped LiYF4Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low‐Energy Excitation. Advanced Materials,2009,21(40):4025-4028.
    [5] Srinivasan R, Yogamalar N R, Elanchezhiyan J, et al. Structural and opticalproperties of europium doped yttrium oxide nanoparticles for phosphor applications.Journal of Alloys and Compounds,2010,496(1):472-477.
    [6] Yang P, Quan Z, Li C, et al. Fabrication, characterization of spherical CaWO4:Ln@MCM-41(Ln=Eu3+, Dy3+, Sm3+, Er3+) composites and their applications as drugrelease systems. Microporous and Mesoporous Materials,2008,116(1):524-531.
    [7] Mukherjee S, Sudarsan V, Vatsa R K, et al. Effect of structure, particle size andrelative concentration of Eu3+and Tb3+ions on the luminescence properties of Eu3+co-doped Y2O3: Tb nanoparticles. Nanotechnology,2008,19(32):325704.
    [8] Zhong S, Chen J,Wang S, et al. Y2O3:Eu3+hexagonal microprisms: Fastmicrowave synthesis and photoluminescence properties. Journal of Alloys andCompounds,2010,493(1):322-325.
    [9] Kowsari E, Faraghi G. Synthesis by an ionic liquid-assisted method and opticalproperties of nanoflower Y2O3. Materials Research Bulletin,2010,45(8):939-945.
    [10] Zeng S, Tang K, Li T, et al.3D flower-like Y2O3:Eu3+: Eu3+nanostructures: Template-free synthesis and its luminescence properties. Journal ofcolloid and interface science,2007,316(2):921-929.
    [11] Sotiriou G A, Schneider M, Pratsinis S E. Green, Silica-Coated MonoclinicY2O3: Tb3+Nanophosphors: Flame Synthesis and Characterization. The Journal ofPhysical Chemistry C,2012,116(7):4493-4499.
    [12] Mukherjee S, Sudarsan V, Vatsa R K, et al. Effect of structure, particle size andrelative concentration of Eu3+and Tb3+ions on the luminescence properties of E Eu3+co-doped Y2O3:Tb nanoparticles. Nanotechnology,2008,19(32):325704.
    [13] Zou X, Liu J, Peng Y, et al. Selective and Controlled Synthesis of MultiformMorphologies Y2O3: Eu3+and Luminescence Properties. Journal of Nanoscience andNanotechnology,2012,12(3):2767-2773.
    [14] Singh L R, Ningthoujam R S, Sudarsan V, et al. Luminescence study on Eu3+doped Y2O3nanoparticles: particle size, concentration and core–shell formationeffects. Nanotechnology,2008,19(5):055201.
    [15] Yoo H S, Im W B, Kim S W, et al. Continuous nano-coating of Y2O3: Eu3+phosphor shell on SiO2core particles and its photoluminescence properties. Journal ofLuminescence,2010,130(1):153.
    [16] Tu D, Liang Y, Liu R, et al. Eu/Tb ions co-doped white light luminescence Y2O3phosphors. Journal of Luminescence,2011,131(12):2569-2573.
    [17] Liu G, Hong G. Synthesis and photoluminescence of Y2O3:RE3+(RE=Eu, Tb,Dy) porous nanotubes templated by carbon nanotubes. Journal of nanoscience andnanotechnology,2006,6(1):120-124.
    [18] Liu Zl, Yu L, Wang Q, et al. Effect of Eu, Tb codoping on the luminescentproperties of Y2O3nanorods. Journal of Luminescence,2011,131(1):12-16.
    [19] Liu G, Hong G. Synthesis of SiO2/Y2O3: Eu core-shell materials and hollowspheres. Journal of Solid State Chemistry,2005,178(5):1647-1651.
    [20] Ishiwada N, Ueda T, Yokomori T. Characteristics of rare earth (RE=Eu, Tb, Tm)‐doped Y2O3phosphors for thermometry. Luminescence,2011,26(6):381-389.
    [21] Guo H, Li F, Wei R F, et al. Elaboration and Luminescent Properties of Eu/Tb Co‐Doped GdPO4‐Based Glass Ceramics for White LEDs. Journal of the AmericanCeramic Society,2012,95(4):1178-1181.
    [22] Jin L, Du X, Lei X, et al. Effect of Tb3+concentration on luminescence propertiesof Ce/Tb/Eu co-doped borosilicate glasses for white LEDs. Applied Physics A,2013:1-6.
    [23] Mortimer R J, Varley T S. Quantification of colour stimuli through thecalculation of CIE chromaticity coordinates and luminance data for application to insitu colorimetry studies of electrochromic materials. Displays,2011,32(1):35-4
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.