上转换发光稀土纳米材料和磷光铱配合物的合成及生物成像应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决荧光成像中生物样品的自发荧光干扰和荧光探针的穿透深度不够这两个问题,本论文从上转换发光和长寿命发光两个角度出发,设计合成了一系列具有上转换发光特性的稀土纳米材料和具有微秒量级发光寿命的磷光铱(Ⅲ)配合物,并将这些发光探针用于细胞和小动物层次的靶向成像。主要研究内容包括以下两大部分。
     Ⅰ.上转换发光活体成像系统的搭建以及稀土上转换发光纳米材料的肿瘤靶向活体成像和毒性研究
     稀土上转换发光纳米材料(UCNPs)作为发光标记材料拥有极大优势如较高的光穿透深度以及无背景荧光干扰。但将UCNPs广泛用于生物成像仍然存在很大的障碍,主要的困难是目前商用的成像系统不适用于上转换发光成像。为此,我们搭建了第一台高对比度的稳态激光泵浦上转换发光小动物活体成像系统,并开展了上转换发光成像技术用于肿瘤靶向和活体成像的方法。结果表明上转换成像甚至在组织深度高达600μm仍没有自发荧光干扰。
     更重要的是,我们还巧妙地运用了配体与受体之间的特异性作用,分别以整合素ανβ3受体、叶酸受体(FR)为靶点,以精氨酸-甘氨酸-天冬氨酸(RGD肽)、叶酸(FA)为识别位点,通过化学手段将RGD肽/FA与UCNPs结合起来,发展了一些具有靶向肿瘤功能的上转换发光探针,并首次将其成功地应用到小动物活体水平的肿瘤靶向成像上。结果表明RGD肽/FA标记的UCNPs具有很好的肿瘤靶向效果和高的信噪比(-24)。
     迄今为止,只有少数研究涉及UCNPs的细胞毒性,关于UCNPs的长期活体毒性的研究尚未见文献报道。为此,我们设计合成了聚丙烯酸(PAA)包覆的NaYF4稀土上转换发光纳米材料(PAA-UCNPs),并将其用于长期的活体生物分布和毒性研究。结果表明PAA-UCNPs的摄取主要在肝脏和脾脏,且能以非常缓慢的方式通过肠道从小鼠体内排出体外。我们通过小鼠体重变化、组织学、血液学以及生化指标检测来考察PAA-UCNPs的长期活体毒性,结果表明15mg/kg剂量的PAA-UCNPs经尾静脉注射到小鼠体内长达115天,小鼠没有受到任何明显的毒性影响。
     Ⅱ.磷光铱配合物用于肿瘤细胞的靶向成像以及活细胞内半胱氨酸、高半胱氨酸的比度成像
     1)基于整合素ανβ3受体与RGD肽之间的特异性作用,我们设计合成了一个RGD肽偶联的、红光发射的磷光铱(Ⅲ)配合物,并将其应用于靶向成像整合素ανβ3表达的肿瘤细胞。结果表明该探针能快速(-15 min)、高灵敏度(2μM)、特异性地靶向成像整合素ανβ3过表达的U87MG细胞。此外,我们设计合成了一种RGD肽偶联的有机荧光探针用于靶向肿瘤细胞。光漂白实验显示该探针具有比有机染料吖啶橙更高的光稳定性。
     2)半胱氨酸(Cys)和高半胱氨酸(Hcy)在生物系统中扮演许多重要的角色。我们合成了一个阳离子型的铱(Ⅲ)配合物,首次用于细胞内的Hcy和Cys的比度磷光成像。结果表明当探针孵育KB细胞30分钟后,发光强度比值(I586/I547)大于1;当用马来酰亚胺封闭了探针和Hcy/Cys的反应后,发光强度比值(I586/I547)小于l,表明该探针能对活细胞内Hcy和Cys的释放过程进行可视化观察。
In order to address two issues in fluorescence imaging:high autofluorescence background and limited light penetration. This thesis is focused on the upconversion luminescence and long lifetimes, synthesizing a series of rare-earth nanoparticles with upconversion luminescence and phosphorescent iridium complexes with-μs lifetimes for targeted imaging in vitro and in vivo.
     I. Implementation of Upconversion Luminescence In Vivo Imaging System and Rare-Earth Upconversion Nanophosphors for Targeted Imaging of Tumors In Vivo and Toxicity Studies
     Rare-earth upconversion nanophosphors (UCNPs) exhibit unique luminescence properties such as remarkable light penetration depth and no background fluorescence. Up until now, the broad application of UCNPs in bioimaging suffers a hindrance resulting from the absence of a commercially available system for upconcersion luminescence (UCL) imaging. Therefore, we set up the first high contrast upconversion luminescence in vivo imaging system, and developed the methods of targeted imaging of tumors in vivo using upconversion luminescence imaging protocol. Results indicated that UCL possess unique features in vivo imaging:the remarkable light penetration depth (-600μm) and no background fluorescence.
     More importantly, based on the high specificity between the ligand and receptor: folic acid (FA) and folic acid receptor (FR), arginine-glycine-aspartic peptide (RGD) peptide andαvβ3 integrin receptor, we synthesized the RGD/FA-labeled UCNPs through the chemical methods, and for the first time developed UCL probes for targeted imaging of tumor in vivo. Results showed that RGD/FA-labeled UCNPs can successfully target imaging of tumors in vivo with a high signal-to-noise ratio (-24).
     To date, there are only few studies concerning the cytotoxicity of UCNPs. No reports on long-term toxicological studies of UCNPs using animal models. Therefore, we demonstrated the long-term in vivo biodistribution and toxicity studies using polyacrylic acid-coated NaYF4 upconversion nanophosphors (PAA-UCNPs) as near infrared (NIR)-to-near infrared (NIR) luminescence probes. In vivo biodistribution imaging studies indicated that PAA-UCNPs originated predominantly from the liver and spleen and can be excreted from the body of the mice through the intestinal tract in a very slow manner. In vivo toxicity studies results indicated that mice intravenously injected with 15mg/kg of PAA-UCNPs survived for 115 days without any evident (body weight of the mice, histological, hematological and biochemical) toxic effects.
     Ⅱ. Phosphorescent Iridium(Ⅲ) Complexes for Targeted Imaging of Tumor Cells and Ratiometric Imaging of Intracellular Homocysteine and Cysteine
     1) Based on the high affinity between the integrinαvβ3 and the amino acid sequence Arg-Gly-Asp (RGD), we synthesized RGD-conjugated phosphorescent iridium complex with red emissions for targeted imaging of integrinαvβ3 expressions. Results showed that this complex can specifically target imaging integrinαvβ3 over expressioned U87MG cells with high sensitivity (2μM) and a rapid response time (-15 min). Furthermore, we designed an organic fluorescence probe for targeted imaging of integrinαvβ3 expressions. Photobleaching experiment established that this probe has higher photostability than acridine orange.
     2) Thiol-containing amino acids, homocysteine (Hcy) and cysteine (Cys) play many crucial roles in biological systems. Herein, we demonstrated ratiometric phosphorescence imaging of intracellular Hcy and Cys using a cationic iridium(III) complex as a luminescent probe. Importantly, cell imaging experiments demonstrated that the probe can monitor the changes of Hcy/Cys within living cells in a ratiometric mode. When KB cells incubated with iridium complex for 30 min at 37℃showed an emission ratio (I586/I547) of> 1, indicating the reaction of iridium complex with Hcy/Cys. In a competition assay, KB cells were pre-incubated with N-ethylmaleimide (as a thio-reactive compound) at 37℃for 1 h and then incubated with iridium complex at 37℃for 30 min. As a result, the phosphorescence intensity of the green channel increased and that of the red channel decreased, so the ratio (I586/I547) was reduced to< 1.
引文
[1]Weissleder R, Pittet MJ. Imaging in the era of molecular oncology [J]. Nature,2008, 452(3):580-589.
    [2]Willmann JK, Bruggen NV, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development [J]. Nature Reviews Drug Discovery,2008,7:591-607.
    [3]Rudin M. Noninvasive structural, functional, and molecular imaging in drug development [J]. Current Opinion in Chemical Biology,2009,13:360-371.
    [4]Salzer R. Molecular imaging [J]. Anal Bioanal Chem,2007,389:1101-1102.
    [5]唐孝威,陈宜张,胡汛,孙达.分子影像学导论,[M].杭州:浙江大学出版社,2005.
    [6]魏光全,宦怡,李颖.分子影像学:前景与挑战,[J].实用放射学杂志.2006,22(6):641-643.
    [7]辛军,郭启勇.分子影像学的现状与未来,[J].首都医科大学学报.2007,28(6):679-682.
    [8]张贵祥,赵京龙,李玉洁,李康安,张峰,周根泉,张悦萍.分子影像学的研究范畴及其进展,[J].中国医学影像技术.2005,21(11):1636-1639.
    [9]Du W, Wang Y, Luo QM, Liu BF. Optical molecular imaging for systems biology:from molecule to organism [J]. Anal Bioanal Chem,2006,386:444-457.
    [10]Jaiswal JK, Simon SM. Imaging single events at the cell membrane [J]. Nature Chemical Biology,2007,3(2):92-98.
    [11]Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging [J]. Nature Medicine, 2009,15(10):1219-1224.
    [12]Barretto RPJ, Messerschmidt B, Schnitzer MJ. In vivo fluorescence imaging with highresolution microlenses [J]. Nature Methods,2009,6(7):511-514.
    [13]Thekkek N, Kortum RR. Optical imaging for cervical cancer detection:solutions for a continuing global problem [J]. Nature Reviews Cancer,2008,8:725-731.
    [14]石立兴,张继武.光学分子影像学及其应用[J].中国医学影像技术,2008,24(12):2024-2026.
    [15]周涛,韩或,巩伟丽,赵春林.活体动物体内成像技术及其在生物医学中的应用进展[J].中国体视学与图像分析,2007,12(1):69-74.
    [16]王怡,詹林盛.活体动物体内光学成像技术的研究进展及其应用[J].生物技术通讯,2007,18(6):1033-1035.
    [17]张怡,韩或,赵春林.活体动物体内光学成像技术的研究进展[J].生命科学,2006,18(1):25-30.
    [18]张龙江,祁吉.分子影像学探针的研究与进展[J].国外医学临床放射学分册,2006,29(5):289-293.
    [19]Schroeder T. Imaging stem-cell-driven regeneration in mammals [J]. Nature,2008, 453:345-351.
    [20]Bosch P, Catalina F, Corrales T, Peinado C. Fluorescent Probes for Sensing Processes in Polymers [J]. Chem Eur J,2005,11:4314-4325.
    [21]Pandya SS, Yu JH, Parker D. Engineering emissive europium and terbium complexes for molecular imaging and sensing [J]. Dalton Trans,2006,2757-2766.
    [22]Ko SK, Yang YK, Tae J, Shin I. In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe [J].J Am Chem Soc,2006,128(43):14150-14155.
    [23]Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM. Bright far-red fluorescent protein for whole-body imaging [J]. Nature Methods,2007,4(9):741-746.
    [24]Zhang M, Gao YH, Li MY, Yu MX, Li FY, Li L, Zhu MW, Zhang JP, Yi T, Huang CH. A selective turn-on fluorescent sensor for FeⅢ and application to bioimaging [J]. Tetra Lett, 2007,48(21):3709-3712.
    [25]Yang H, Zhou ZG, Huang KW, Yu MX, Li FY, Yi T, Huang CH. Multisignaling Optical-Electrochemical Sensor for Hg2+ based on Rhodamine derivative with Ferrocene Units [J]. Org Lett,2007,9(23):4729-4732.
    [26]Chen HL, Zhao Q, Li FY, Wu YB, Yang H, Yi T, Huang CH. A Highly Selective Sensor for Hcy Based on a Phosphorescent Iridium(Ⅲ) Complex [J]. Inorg Chem,2007, 46(26):11075-11081.
    [27]Yu MX, Zhao Q, Shi LX, Li FY, Zhou ZG, Yang H, Yi T, Huang CH. Cationic iridium(Ⅲ) complexes for phosphorescence staining in thecytoplasm of living cells [J]. Chem Commun, 2008,18:2115-2117.
    [28]Yu M, Shi M, Chen ZG. Highly Sensitive and Fast Responsive Fluorescence Turn-On Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging [J].Chem Eu J,2008, 14(23):6892-6900.
    [29]Zhou ZG, Yu MX, Yang H, Huang KW, Li FY, Yi T, Huang CH. FRET-based sensor for imaging chromium(Ⅲ) in living cells [J]. Chem Commun,2008,29:3387-3389.
    [30]Huang KW, Yang H, Zhou ZG, Yu MX, Li FY, Gao X, Yi T, Huang CH. Multisignal chemosensor for Cr3+ and its application in bioimaging [J]. Org Lett,2008,10 (12):2557-2560.
    [31]Kiyose K, Kojima H, Nagano T. Functional Near-Infrared Fluorescent Probes [J]. Chem Asian J,2008,3:506-515.
    [32]Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, Nagano T, Watanabe T, Hasegawa A, Choyke PL, Kobayashi H. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes [J]. Nature Medicine,2009,15(1):104-109.
    [33]Santra S, Liesenfeld B, Dutta D, Chatel D, Batich CD, Tan W, Moudgil BM, Mericle RA. Folate Conjugated Fluorescent Silica Nanoparticles for Labeling Neoplastic Cells [J]. Nanosci Nanotechnol,2005,5:899-904.
    [34]Ute RG, Markus G, Sara CJ, Roland N, Thomas N. Quantum dots versus organic dyes as fluorescent labels [J]. Nat Methods,2008,5(9):763-775.
    [35]Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nature Mater,2005,4(6):435-446.
    [36]Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science,2002, 298(5599):1759-1762.
    [37]Xie HY, Liang JG, Liu Y, Zhang ZL, Pang DW, He ZK, Lu ZX, Huang WH. Preparation and characterization of overcoated II-VI quantum dots [J]. J Nanosci Nanotech,2005, 5(6):880-886.
    [38]Xie M, Liu HH, Chen P, Zhang ZL, Wang XH, Xie ZX, Du YM, Pan BQ, Pang DW. CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging [J]. Chem Commun,2005, (44):5518-5520.
    [39]Wang X, Du Y, Ding S, Wang Q, Xiong G, Xie M, Shen X, Pang D. Preparation and Third-Order Optical Nonlinearity of Self-Assembled Chitosan/CdSe-ZnS Core-Shell Quantum Dots Multilayer Films [J]. JPhys Chem B,2006,110(4):1566-1570.
    [40]Yang YH, Gao MY. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method [J]. Adv Mater,2005,17(19):2354-2357.
    [41]Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nature Biotech,2002,21(1):41-46.
    [42]Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J]. Science,2003, 302(5644):442-445.
    [43]Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo [J]. Science,2003, 300 (5624):1434-1436.
    [44]Cai WB, Shin DW, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects [J]. Nano Lett,2006,6(4):669-676.
    [45]Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping [J]. Nature Biotech,2004,22(1):93-97.
    [46]Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright Fluorescent Nanodiamonds:No Photobleaching and Low Cytotoxicity [J]. J Am Chem Soc,2005,127:17604-17605.
    [47]Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers [J.] Proc Natl Acad Sci USA,2007,104(3):727-732.
    [48]Emerich DE, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis [J]. Biomolecular Engineering,2006,23:171-184.
    [49]Kam NWS, O'Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction [J]. Proc Natl Acad Sci USA,2005,102:11600-11605.
    [50]Kam NWS, Jessop TH, Wender PA, Dai HJ. Nanotube molecular transporters:internalization of carbon nanotube-protein conjugates into mammalian cells [J]. J Am Chem Soc,2004, 126:6850-6851.
    [51]Kam NWS, Liu Z, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA:an investigation of the uptake mechanism and pathway [J]. Angew Chem Int Ed,2006, 35:577-581.
    [52]Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Beckingham KM, Weisman RB. Single-Walled Carbon Nanotubes in the Intact Organism:Near-IR Imaging and Biocompatibility Studies in Drosophila [J]. Nano Letters,2007,7:2650-2654.
    [53]Weber MJ, Rare Earth Lasers. In:Handbook on the Physicis and Chemistry of Rare Earths, Vol.4, Eds. Gschneidner K A and Eyring L, Amsterdam:North-Holland Publishing Compang, 1979.
    [54]Auzel F. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem Rev, 2004,104(1):139-173.
    [55]Wang F, Liu XG. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem Soc Rev,2009,38(4):976-989.
    [56]Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH. High-Quality Sodium Rare-Earth Fluoride Nanocrystals:Controlled Synthesis and Optical Properties [J]. J Am Chem Soc,2006,128(19):6426-6436.
    [57]Boyer JC, Vetrone F, Cuccia LA, Capobianco JA. Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors [J]. J Am Chem Soc,2006,128 (23):7444-7445.
    [58]Yi GS, Chow GM. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence [J]. Adv Funct Mater,2006, 16(18):2324-2329.
    [59]Wang X, Zhuang J, Peng Q, Li Y. Hydrothermal Synthesis of Rare-Earth Fluoride Nanocrystals [J]. Inorg Chem,2006,45(17):6661-6665.
    [60]Wang LY, Li YD. Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials [J]. Nano Lett,2006,6(8):1645-1649.
    [61]Sivakumar S, Diamente PR, Van Veggel FCJM. Silica-coated Ln3+-doped LaF3 nanoparticles as robust down-and upconverting biolabels [J]. Chem Eur J,2006, 12:5878-5884.
    [62]Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, et al. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties [J]. J Am Chem Soc,2006, 128(19):6426-6436.
    [63]Zhang P, Rogelj S, Nguyen K, Wheeler D. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles [J]. J Am Chem Soc,2006, 128(38):12410-12411.
    [64]Yi GS, Chow GM. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem Mater, 2007,19(3):341-343.
    [65]Mai HX, Zhang YW, Sun LD, Yan CH. Size-and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with ipconversion spectroscopy [J].J Phys Chem C,2007,111(37):13730-13739.
    [66]Wang LY, Li YD. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals [J]. Chem Mater,2007,19(4):727-734.
    [67]Yi GS, Chow GM. Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence [J]. Chem Mater, 2007,19(3):341-343.
    [68]Qian HS, Zhang Y. Synthesis of Hexagonal-Phase Core-Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence [J]. Langmuir,2008,24(21):12123-12125
    [69]Venkatramu V, Falcomer D, Speghini A, Bettinelli M, Jayasankar CK. Synthesis and luminescence properties of Er3+-doped Lu3Ga5O12 nanocrystals [J]. J Lumin,2008,128: 811-813.
    [70]Chen ZG, Chen HL, Hu H, Yu MX, Li FY, Zhang Q, et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels [J]. J Am Chem Soc,2008,130(10):3023-3029.
    [71]Wang F, Liu XG. Upconversion Multicolor Fine-Tuning:Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles [J]. J Am Chem Soc,2008,130(17): 5642-5643.
    [72]Hu H, Chen ZG, Cao TY, Zhang Q, Yu MX, Li FY, Yi T, Huang CH. Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence [J]. Nanotechnology,2008,19(37):375702/1-9.
    [73]Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA. Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles [J]. Chem Mater,2009,21(4):717-723.
    [74]Zhou HP, Xu CH, Sun W, Yan CH. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications [J]. Adv Funct Mater,2009,19(24):3892-3900.
    [75]Wang GF, Peng Q, Li YD. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals [J]. J Am Chem Soc,2009,131(40):14200-14201.
    [76]Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature,2010,463(7284): 1061-1065.
    [77]Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans [J]. Nano Lett,2006,6(2):169-174.
    [78]Yu MX, Li FY, Chen ZG, Hu H, Zhan C, Huang CH. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors [J]. Anal Chem,2009,81(3):930-935.
    [79]Hu H, Yu MX, Li FY, Chen ZG, Gao X, Xiong LQ, et al. Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels [J]. Chem Mater,2008,20(22):7003-7009.
    [80]Hu H, Xiong LQ, Zhou J, Li FY, Cao TY, Huang CH. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells [J]. Chem Eur J,2009, 15(14):3577-3584.
    [81]Cao TY, Yang TS, Gao Y, Yang Y, Hu H, Li FY. Water-soluble NaYF4:Yb/Erupconversion nanophosphors:synthesis, characteristics and application in bioimaging [J]. Inorg Chem Commun,2010,13(3):392-394.
    [82]Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors [J]. Nano Lett,2008,8(11):3834-3838.
    [83]Rufaihah AJ, Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals [J]. Biomaterials,2008,29(30):4122-4128.
    [84]Idris NM, Li ZQ, Ye L, Sim EKW, Mahendran R, Ho PCL, et al. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles [J]. Biomaterials,2009, 30(28):5104-5113.
    [85]Hilderbrand SA, Shao FW, Salthouse C, Mahmood U, Weissleder R. Upconverting luminescent nanomaterials:application to in vivo bioimaging [J]. Chem Commun,2009, (28):4188-4190.
    [86]Jiang S, Zhang Y, Lim KM, Sim EKW, Ye L. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA [J]. Nanotechnology,2009, 20(15):155101/1-9.
    [87]Lim SF, Riehn R, Tung CK, Ryu WS, Zhuo R, Dalland J, et al. Upconverting nanophosphors for bioimaging [J]. Nanotechnology,2009,20(40):405701/1-6.
    [88]Kobayashi H, Kosaka N, Ogawa M, Morgan NY, Smith PD, Murray CB, et al. In vivo multiple color lymphatic imaging using upconverting nanocrystals [J]. J Mater Chem,2009, 19(36):6481-6484.
    [89]Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles [J]. ACS Nano,2009,3(6):1580-1586.
    [90]Wang M, Mi CC, Zhang YX, Liu JL, Li F, Mao CB, Xu SK. NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion Fluorescent Nanoparticles with Tunable Emission Colors and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells [J]. J Phys Chem C,2009,113:19021-19027.
    [1]Billinton N, Knight AW. Seeing the wood through the trees:a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence [J]. Anal Biochem, 2001,291:175-197.
    [2]Yu MX, Zhao Q, Shi LX, Li FY, Zhou ZG, Yang H, Yi T, Huang CH. Cationic iridium(ⅲ) complexes for phosphorescence staining in the cytoplasm of living cells [J]. Chem Commun, 2008,(18):2115-2117.
    [3]Mansfield JR, Gossage KW, Hoyt CC, Levenson RM. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging [J]. J Biomed Opt,2005, 10(4):041207.
    [4]Chen XY, Conti PS, Moats RA. In vivo Near-Infrared Fluorescence Imaging of Integrin αvβ3 in Brain Tumor Xenografts [J]. Cancer Res,2004,64(21):8009-8014.
    [5]Leevy WM, Gammon ST, Jiang H, Johnson JR, Maxwell DJ, Jackson EN, Marquez M, Piwnica-Worms D, Smith BD. Optical Imaging of Bacterial Infection in Living Mice Using a Fluorescent Near-Infrared Molecular Probe [J].JAm Chem Soc,2006,128(51):16476-16477.
    [6]Cai WB, Shin DW, Chen K, Gheysens O, Cao QZ, Wang SX, Gambhir SS, Chen XY. Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects [J]. Nano Lett,2006,6(4):669-676.
    [7]Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Real-Time Intravital Imaging of RGD-Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature [J]. Nano Lett,2008,8(9):2599-2606.
    [8]Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles [J]. Science,2002,298:1759-1762.
    [9]Smith AM, Duan HW, Mohs AM, Nie SM. Bioconjugated quantum dots for in vivo molecular and cellular imaging [J]. Adv Drug Deliver Rev,2008,60(11):1226-1240.
    [10]Ute RG, Markus G, Sara CJ, Roland N, Thomas N. Quantum dots versus organic dyes as fluorescent labels [J]. Nat Methods,2008,5(9):763-775.
    [11]Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids [J]. Chem Rev, 2004,104(l):139-173.
    [12]Wang F, Liu XG. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem Soc Rev,2009,38(4):976-989.
    [13]Heer S, Kompe K, Giidel HU, Haase M. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals [J]. Adv Mater, 2004,16(23):2102-2105.
    [14]Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH. High-Quality Sodium Rare-Earth Fluoride Nanocrystals:Controlled Synthesis and Optical Properties [J]. J Am Chem Soc,2006,128(19):6426-6436.
    [15]Li P, Peng Q, Li YD. Dual-Mode Luminescent Colloidal Spheres from Monodisperse Rare-Earth Fluoride Nanocrystals [J]. Adv Mater,2009,21(19):1945-1948.
    [16]Chen ZG, Chen HL, Hu H, Yu MX, Li FY, Zhang Q, Zhou ZG, Yi T, Huang CH. Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels [J].J Am Chem Soc,2008,130(10):3023-3029.
    [17]Yu MX, Li FY, Chen ZG, Hu H, Zhan C, Huang CH. Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors [J]. Anal Chem,2009,81(3):930-935.
    [18]Hu H, Xiong LQ, Zhou J, Li FY, Cao TY, Huang CH. Multimodal-Luminescence Core-Shell Nanocomposites for Targeted Imaging of Tumor Cells [J]. Chem Eur J,2009, 15(14):3577-3584.
    [19]Hu H, Yu MX, Li FY, Chen ZG, Gao X, Xiong LQ, Huang CH. Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels [J]. Chem Mater,2008,20(22):7003-7009.
    [20]Xiong LQ, Chen ZG, Yu MX, Li FY, Liu C, Huang CH. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors [J]. Biomaterials,2009,30(29):5592-5600.
    [21]Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials,2008,29(7):937-943.
    [22]Jalil RA, Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals [J]. Biomaterials,2008,29(30):4122-4128.
    [23]Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors [J]. Nano Lett,2008,8(11):3834-3838.
    [24]Zako T, Nagata H, Terada N, Utsumi A, Sakono M, Yohda M, Ueda H, Soga K, Maeda M. Cyclic RGD Peptide-Labeled Upconversion Nanophosphors for Tumor Cell-Targeted Imaging [J]. Biochem Biophys Res Commun,2009,381:54-58.
    [25]Yi G, Chow G. Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence [J]. Chem Mater, 2007,19(3):341-343.
    [26]Li Z, Zhang Y. Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission [J]. Angew Chem Int Ed,2006, 45(46):7732-7735.
    [27]林凤云,朱照静.叶酸受体介导的靶向给药研究进展[J].中国医院药学杂志,2006,26(10):1281-1284.
    [28]李书芹,杨志勇.叶酸受体介导靶向治疗肿瘤[J].医学综述,2008,14(13):2041-2043.
    [29]雷英杰,欧阳杰,史小凤.叶酸受体介导的肿瘤细胞靶向分子显像剂的研究进展[J].化学研究与应用,2008,20(5):511-517.
    [30]Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases [J]. Acc Chem Res,2008,41(1):120-129.
    [31]Sun Y, Cressman S, Fang N, Cullis PR, Chen DDY. Capillary Electrophoresis Frontal Analysis for Characterization of αvβ3 Integrin Binding Interactions [J]. Anal Chem,2008, 80(9):3105-3111.
    [32]刘俭,郭顺星,唐建国.RGD肽与肿瘤治疗研究进展[J].国外医学肿瘤学分册,2003,30(3):193-197.
    [33]肖斌,朱永红,邹全明.RGD肽在肿瘤治疗中的研究进展[J].中国肿瘤临床,2005, 32(19):1135-1137.
    [34]Wang Q, Jakubowski JA, Sweedler JV, Bohn PW. Quantitative Submonolayer Spatial Mapping of Arg-Gly-Asp-Containing Peptide Organomercaptan Gradients on Gold with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry [J]. Anal Chem,2004, 76(1):1-8.
    [35]L6ssner D, Kessler H, Thumshirn G, Dahmen C, Wiltschi B, Tanaka M, Knoll W, Sinner EK, Reuning U. Binding of Small Mono- and Oligomeric Integrin Ligands to Membrane-Embedded Integrins Monitored by Surface Plasmon-Enhanced Fluorescence Spectroscopy [J]. Anal Chem,2006,78(13):4524-4533.
    [36]Liu S. Radiolabeled Multimeric Cyclic RGD Peptides as Integrin a,fl3 Targeted Radiotracers for Tumor Imaging [J]. Mol Pharm,2006,3:472-487.
    [37]Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol,2004,22(8):969-976.
    [38]Wang LY, Li YD. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals [J]. Chem Mater,2007,19(4):727-734.
    [39]Van Delden CJ, Bezemer JM, Engbers GHM, Feijen J. Poly(ethylene oxide)-modified carboxylated polystyrene latices-Immobilization chemistry and protein adsorption [J]. J Biomat Sci-Polym E,1996,8(4):251-268.
    [40]Yoon TJ, Yu KN, Kim E, Kim JS, Kim BG, Yun SH, Sohn BH, Cho MH, Lee JK, Park SB. Specific Targeting, Cell Sorting, and Bioimaging with Smart Magnetic Silica Core-Shell Nanomaterials [J]. Small,2006,2:209-215.
    [41]Wang F, Liu XG Upconversion Multicolor Fine-Tuning:Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles [J]. J Am Chem Soc,2008,130(17):5642-5643.
    [42]Mai HX, Zhang YW, Sun LD, Yan CH. Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals [J]. J Phys Chem C,2007,111 (37):13721-13729.
    [43]Cahalan MD, Parker I, Wei SH, Miller MJ. Two-photon tissue imaging:seeing the immune system in a fresh light [J]. Nat Rev Immunol,2002,2(11):872-880.
    [1]Auzel F. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem Rev, 2004,104(l):139-173.
    [2]Wang F, Liu XG. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem Soc Rev,2009,38(4):976-989.
    [3]Wang X, Zhuang J, Peng Q, Li YD. A general strategy for nanocrystal synthesis [J]. Nature, 2005,437(7055):121-124.
    [4]Wang LY, Yan RX, Hao ZY, Wang L, Zeng JH, Bao J, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles [J]. Angew Chem Int Ed, 2005,44(37):6054-6057.
    [5]Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, et al. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties [J]. J Am Chem Soc,2006, 128(19):6426-6436.
    [6]Zhang P, Rogelj S, Nguyen K, Wheeler D. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles [J]. J Am Chem Soc,2006, 128(38):12410-12411.
    [7]Yi GS, Chow GM. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem Mater, 2007,19(3):341-343.
    [8]Mai HX, Zhang YW, Sun LD, Yan CH. Size-and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with ipconversion spectroscopy [J]. JPhys Chem C,2007, 111(37):13730-13739.
    [9]Chen ZG, Chen HL, Hu H, Yu MX, Li FY, Zhang Q, et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels [J]. J Am Chem Soc,2008,130(10):3023-3029.
    [10]Wang F, Liu XG. Upconversion Multicolor Fine-Tuning:Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles [J]. J Am Chem Soc,2008,130(17):5642-5643.
    [11]He Hu, Zhigang Chen, Tianye Cao, Qiang Zhang, Mengxiao Yu, Fuyou Li, Tao Yi and Chunhui Huang. Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence [J]. Nanotechnology,2008,19(37):375702/1-9.
    [12]Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA. Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles [J]. Chem Mater, 2009,21(4):717-723.
    [13]Zhou HP, Xu CH, Sun W, Yan CH. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications [J]. Adv Funct Mater,2009,19(24):3892-3900.
    [14]Wang GF, Peng Q, Li YD. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals [J]. J Am Chem Soc,2009,131(40):14200-14201.
    [15]Gai SL, Yang PP, Li CX, Wang WX, Dai YL, Niu N, Lin J. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers [J]. Adv Funct Mater,2010,20:1-7.
    [16]Cao TY, Yang TS, Gao Y, Yang Y, Hu H, Li FY. Water-soluble NaYF4:Yb/Erupconversion nanophosphors:synthesis, characteristics and application in bioimaging [J]. Inorg Chem Commun,2010,13(3):392-394.
    [17]Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature,2010, 463(7284):1061-1065.
    [18]Yu MX, Li FY, Chen ZG, Hu H, Zhan C, Huang CH. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors [J]. Anal Chem,2009,81(3):930-935.
    [19]Idris NM, Li ZQ, Ye L, Sim EKW, Mahendran R, Ho PCL, et al. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles [J]. Biomaterials,2009, 30(28):5104-5113.
    [20]Xiong LQ, Chen ZG, Tian QW, Cao TY, Xu CJ, Li FY. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors [J]. Anal Chem, 2009,81(21):8687-8694.
    [21]Rufaihah AJ, Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals [J]. Biomaterials,2008,29(30):4122-4128.
    [22]Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors [J]. Nano Lett,2008,8(11):3834-3838.
    [23]Xiong LQ, Chen ZG, Yu MX, Li FY, Liu C, Huang CH. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors [J]. Biomaterials,2009,30(29):5592-5600.
    [24]Zhou J, Sun Y, Du XX, Xiong LQ, Hu H, Li FY. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties [J]. Biomaterials,2010,31(12):3287-3295.
    [25]Hilderbrand SA, Shao FW, Salthouse C, Mahmood U, Weissleder R. Upconverting luminescent nanomaterials:application to in vivo bioimaging [J]. Chem Commun,2009, (28):4188-4190.
    [26]Jiang S, Zhang Y, Lim KM, Sim EKW, Ye L. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA [J]. Nanotechnology,2009, 20(15):155101/1-9.
    [27]Hu H, Yu MX, Li FY, Chen ZG, Gao X, Xiong LQ, et al. Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels [J]. Chem Mater,2008,20(22):7003-7009.
    [28]Hu H, Xiong LQ, Zhou J, Li FY, Cao TY, Huang CH. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells [J]. Chem EurJ,2009,15(14):3577-3584.
    [29]Lim SF, Riehn R, Tung CK, Ryu WS, Zhuo R, Dalland J, et al. Upconverting nanophosphors for bioimaging [J]. Nanotechnology,2009,20(40):405701/1-6.
    [30]Kobayashi H, Kosaka N, Ogawa M, Morgan NY, Smith PD, Murray CB, et al. In vivo multiple color lymphatic imaging using upconverting nanocrystals [J]. J Mater Chem,2009, 19(36):6481-6484.
    [31]Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles [J]. ACS Nano,2009,3(6):1580-1586.
    [32]Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface [J]. Nat Mater,2009,8(7):543-557.
    [33]Yong KT, Roy I, Ding H, Bergey EJ, Prasad PN. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications [J]. Small,2009, 5(17):1997-2004.
    [34]Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao WW, et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging [J]. Small,2009,5(11):1302-1310.
    [35]Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, et al. Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo [J]. J Control Release,2007, 120(1-2):41-50.
    [36]Choi HS, Liu WH, Liu FB, Nasr K, Misra P, Bawendi MG, et al. Design considerations for tumour-targeted nanoparticles [J]. Nat Nanotechnol,2010,5(1):42-47.
    [37]Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WCW. In vivo quantum-dot toxicity assessment [J]. Small,2010,6(1):138-144.
    [1]Yu MX, Zhao Q, Shi LX, Li FY, Zhou ZG, Yang H, Yi T, Huang CH. Cationic iridium(III) complexes for phosphorescence staining in the cytoplasm of living cells [J]. Chem Commun, 2008,(18):2115-2117.
    [2]Zhao Q, Yu MX, Shi LX, Liu SJ, Li CY, Shi M, Zhou ZG, Huang CH, Li FY. Cationic Iridium(III) Complexes with Tunable Emission Color as Phosphorescent Dyes for Live Cell Imaging [J]. Organometallics,2010,29(5):1085-1091.
    [3]Jiang WL, Gao Y, Sun Y, Ding F, Xu Y, Bian ZQ, Li FY, Bian J, Huang CH. Zwitterionic Iridium Complexes:Synthesis, Luminescent Properties, and Their Application in Cell Imaging [J]. Inorg Chem,2010,49(7):3252-3260.
    [4]Lo KKW, Lee PK, Lau JSY. Synthesis, Characterization, and Properties of Luminescent Organoiridium(Ⅲ) Polypyridine Complexes Appended with an Alkyl Chain and Their Interactions with Lipid Bilayers, Surfactants, and Living Cells [J]. Organometallics,2008, 27:2998-3006.
    [5]Lau JSY, Lee PK, Tsang KHK, Ng CHC, Lam YW, Cheng SH, Lo KKW. Luminescent Cyclometalated Iridium(Ⅲ) Polypyridine Indole Complexes Synthesis, Photophysics, Electrochemistry, Protein-Binding Properties, Cytotoxicity, and Cellular Uptake [J]. Inorg Chem,2009,48:708-718.
    [6]Zhang KY, Lo KKW. Synthesis, Properties, and Live-Cell Imaging Studies of Luminescent Cyclometalated Iridium(III) Polypyridine Complexes Containing Two or Three Biotin Pendants [J]. Inorg Chem,2009,48:6011-6025.
    [7]Zhang KY, Li SPY, Zhu NY, Or IWS, Cheung MSH, Lam YW, Lo KKW. Structure, Photophysical and Electrochemical Properties, Biomolecular Interactions, and Intracellular Uptake of Luminescent Cyclometalated Iridium(III) Dipyridoquinoxaline Complexes [J]. Inorg Chem,2010,49:2530-2540.
    [8]Stephens DJ, Allan VJ. Light Microscopy Techniques for Live Cell Imaging [J]. Science,2003, 300(5616):82-86.
    [9]Lichtman JW, Conchello JA. Fluorescence microscopy [J]. Nat Methods,2005,2(12):910-919.
    [10]Lourdes BD, David NR, Mercedes CC. Design of fluorescent materials for chemical sensing [J]. Chem Soc Rev,2007,36(6):993-1017.
    [11]Leevy WM, Gammon ST, Jiang H, Johnson JR, Maxwell DJ, Jackson EN, Marquez M, Piwnica-Worms D, Smith BD. Optical Imaging of Bacterial Infection in Living Mice Using a Fluorescent Near-Infrared Molecular Probe [J]. J Am Chem Soc,2006,128(51):16476-16477.
    [12]Srikun D, Miller EW, Domaille DW, Chang CJ. An ICT-Based Approach to Ratiometric Fluorescence Imaging of Hydrogen Peroxide Produced in Living Cells [J]. J Am Chem Soc, 2008,130(14):4596-4597.
    [13]Smith JW, Cheresh DA. Integrin (αvβ3)-ligand interaction. Identification of a heterodimeric RGD binding site on the vitronectin receptor [J]. J Biol Chem,1990,265(4):2168-2172.
    [14]Ruoslahti E. RGD and other recognition sequences for integrins [J]. Annu Rev Cell Dev Biol, 1996,12:697-715.
    [15]Meyer A, Auernheimer J, Modlinger A, Kessler H. Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting [J]. Curr Pharm Design, 2006,12(22):2723-2747.
    [16]刘红洁,王荣福,张春丽.RGD肽在肿瘤显像和治疗中的应用研究进展[J].肿瘤学杂志,2008,14(8):620-622.
    [17]Willem JMM, Gustav JS, Jo. WH, Egbert JWB, Daisy WJ, Gert S, Gerben AK, Arjan WG, Klaas N. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle [J]. FASEB J,2005,19:2008-2010.
    [18]Hu Z, Luo F, Pan Y, Hou C, Ren L, Chen J, Wang J, Zhang Y. Arg-Gly-Asp (RGD) peptide conjugated poly(lactic acid)-poly(ethylene oxide) micelle for targeted drug delivery [J]. J Biomed Mater Res A,2007,85A(3):797-807.
    [19]Xavier M, Martin F, Karin M, Ralph W, Lee J. Multivalent Effects of RGD Peptides Obtained by Nanoparticle Display [J]. J Med Chem,2006,49(20):6087-6093.
    [20]Eric AM, Bharat KM, Leo AB, Milan M, Sara MW, Kimberly LF, Wolfgang W, David AC. From the Cover:Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis [J]. Proc Natl Acad Sci USA,2008,105(27):9343-9348.
    [21]Petersen S, Alonso JM, Specht A, Duodu P, Goeldner M, Campo A. Phototriggering of Cell Adhesion by Caged Cyclic RGD Peptides [J]. Angew Chem Int Ed,2008,47(17):3192-3195.
    [22]Achilefu S, Bloch S, Markiewicz MA, Zhong TX, Ye YP, Dorshow RB, Chance B, Liang KX. Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression [J]. Proc Natl Acad Sci U.S.A.,2005,102(22):7976-7981.
    [23]Chen XY, Conti PS, Moats RA. In vivo Near-Infrared Fluorescence Imaging of Integrin αvβ3 in Brain Tumor Xenografts [J]. Cancer Res,2004,64:8009-8014;
    [24]Wallbrunn AV, Holtke C, Zuhlsdorf M, Heindel W, Schafers M, Bremer C. In vivo imaging of integrin αvβ3 expression using fluorescence-mediated tomography [J]. Eur J Nucl Med Mol Imaging,2007,34(5):745-754.
    [25]Ye YP, Bloch S, Xu BG, Achilefu S. Design, Synthesis, and Evaluation of Near Infrared Fluorescent Multimeric RGD Peptides for Targeting Tumors [J]. J Med Chem,2006, 49(7):2268-2275.
    [26]Jin ZH, Razkin J, Josserand V, Boturyn D, Grichine A, Texier I, Favrot MC, Dumy P, Coll JL. In vivo noninvasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c(-RGDfK-)(4) [J]. Molecular Imaging,2007,6(1):43-55.
    [27]Cheng Z, Wu Y, Xiong ZM, Gambhir SS, Chen XY. Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice [J]. Bioconjugate Chem,2005, 16(6):1433-1441.
    [28]Cai WB, Shin DW, Chen K, Gheysens O, Cao QZ, Wang SW, Gambhir SS, Chen XY. Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects [J]. Nano Lett,2006,6(4):669-676.
    [29]Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Real-Time Intravital Imaging of RGD-Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature [J]. Nano Lett,2008,8(9):2599-2606.
    [30]www.probes.com and www.invitrogen.com; R. P. Haugland, A Guide to Fluorescent Probes and Labelling Technologies, Molecular Probes, Eugene, Oregon,10th ed.,2005.
    [31]Bruchez MJ, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science,1998,281(5385):2013-2016.
    [32]Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles [J]. Science,2002, 298:1759-1762.
    [33]Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nature Mater,2005,4(6):435-446.
    [34]Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J]. Science,2005,307(5709):538-544.
    [35]Xiao Y, Liu F, Qian X, Cui J. A new class of long-wavelength fluorophores:strong red fluorescence, convenient synthesis and easy derivation [J]. Chem Commun,2005, 5(2):239-241.
    [36]Liu F, Xiao Y, Qian X, Zhang Z, Cui J, Cui D, Zhang R. Versatile acenaphtho[1,2-b]pyrrol-carbonitriles as a new family of heterocycles:diverse SNArH reactions, cytotoxicity and spectral behavior [J]. Tetrahedron,2005,61(47):11264-11269.
    [37]Zhang M, Yu MX, Li FY, Zhu MW, Li MY, Gao YH, Li L, Liu ZQ, Zhang JP, Zhang DQ, Yi T, Huang CH. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging [J]. J Am Chem Soc,2007,129(34):10322-10323.
    [38]Coskun A, Yilmaz MD, Akkaya EU. An acenaphthopyrrolone-dipicolylamine derivative as a selective and sensitive chemosensor for group IIB cations [J]. Tetrahedron Lett,2006, 47(22):3689-3691.
    [39]Filipescu N, Mushrush GW, Hurt CR, McAvoy N. Fluorescence Quantum Efficiencies of Octa-coordinated Europium Homogeneous and Mixed Chelates in Organic Solvents [J]. Nature,1966,211:960-961.
    [40]Oba M, Fukushima S, Kanayama N, Aoyagi K, Nishiyama N, Koyama H, Kataoka K. Cyclic RGD Peptide-Conjugated Polyplex Micelles as a Targetable Gene Delivery System Directed to Cells Possessing αvβ3 and αvβ5 Integrins [J]. Bioconjugate Chem,2007,18(5):1415-1423.
    [41]Roberts M, Barry S, Woods A, Sluijs PVD, Norman J. PDGF-regulated rab4-dependent recycling of αvβ3 integrin from early endosomes is necessary for cell adhesion and spreading [J]. Curr Biol,2001,11:1392-1402.
    [42]Jin VX, Ranford JD, Complexes of platinum(Ⅱ) or palladium(Ⅱ) with 1,10-phenanthroline and amino acids [J], Inorganica Chimica Acta 2000,304:38-44.
    [43]Ke YY, Zhao JF, Verkerk UH, Hopkinson AC, Siu KWM, Histidine, Lysine, and Arginine Radical Cations:Isomer Control via the Choice of Auxiliary Ligand (L) in the Dissociation of [CuⅡ(L)(amino acid)]2+ Complexes [J], J Phys Chem B,2007,111:14318-14328.
    [1]Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PWF, Wolf PA. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease [J]. N Engl J Med,2002,346(7):476-483.
    [2]Shahrokhian S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode [J]. Anal Chem,2001,73(24):5972-5978.
    [3]Rusin O, Luce NNS, Agbaria RA, Escobedo JO, Jiang S, Warner IM, Dawan FB, Lian K, Strongin RM. Visual Detection of Cysteine and Homocysteine [J]. J Am Chem Soc,2004, 126(2):438-439.
    [4]Tanaka F, Mase N, Barbas Ⅲ CF. Determination of cysteine concentration by fluorescence increase:reaction of cysteine with a fluorogenic aldehyde [J]. Chem Commun,2004,4(15): 1762-1763.
    [5]Wang WH, Rusin 0, Xu XY, Kim KK, Escobedo JO, Fakayode SO, Fletcher KA, Lowry M, Schowalter CM, Lawrence CM, Fronczek FR, Warner IM, Strongin RM. Detection of Homocysteine and Cysteine [J]. J Am Chem Soc,2005,127(45):15949-15958.
    [6]Lu C, Zu YB. Specific detection of cysteine and homocysteine:recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles [J]. Chem Commun,2007, (37):3871-3873.
    [7]Lee KS, Kim TK, Lee JH, Kim HJ, Hong JI. Fluorescence turn-on probe for homocysteine and cysteine in water [J]. Chem Commun,2008, (46):6173-6175.
    [8]Lin WY, Long LL, Yuan L, Cao ZM, Chen BB, Tan W. A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift [J]. Org Lett,2008, 10(24):5577-5580.
    [9]Kim TK, Lee DN, Kim HJ. Highly selective fluorescent sensor for homocysteine and cysteine [J]. Tetrahedron Lett,2008,49(33):4879-4881.
    [10]Zhang XJ, Ren XS, Xu QH, Loh KP Chen ZK. One- and Two-Photon Turn-on Fluorescent Probe for Cysteine and Homocysteine with Large Emission Shift [J]. Org Lett,2009, 11 (6):1257-1260.
    [11]Zhang M, Yu MX, Li FY, Zhu MW, Li MY, Gao YH, Li L, Liu ZQ, Zhang J, Zhang DQ, Yi T, Huang CH. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging [J]. J Am Chem Soc,2007,129(34):10322-10323.
    [12]Zhang M, Li MY, Zhao Q, Li FY, Zhang DQ, Zhang JP, Yi T, Huang CH. Novel Y-type two-photon active fluorophore:synthesis and application in fluorescent sensor for cysteine and homocysteine[J]. Tetrahedron Lett,2007,48(13):2329-2333.
    [13]Chen HL, Zhao Q, Wu YB, Li FY, Yang H, Yi T, Huang CH. Selective Phosphorescence Chemosensor for Homocysteine Based on an Iridium(Ⅲ) Complex [J]. Inorg Chem,2007, 46(26):11075-11081.
    [14]Huang KW, Yang H, Zhou ZG, Chen HL, Li FY, Yi T, Huang CH. A highly selective phosphorescent chemodosimeter for cysteine and homocysteine based on platinum(II) complexes [J]. Inorg Chim Acta,2009,362(8):2577-2580.
    [15]Duan LP, Xu YF, Qian XH, Wang F, Liu JW, Cheng TY. Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage:symmetrical naphthalimide aldehyde [J]. Tetrahedron Lett,2008,49(47):6624-6627.
    [16]Li HL, Fan JL, Wang JY, Tian MZ, Du JJ, Sun SG, Sun PP, Peng XJ. A fluorescent chemodosimeter specific for cysteine:effective discrimination of cysteine from homocysteine [J]. Chem Commun,2009, (39):5904-5906.
    [17]Jares-Erijman EA, Jovin TM. FRET imaging [J]. Nat Biotechnol,2003,21:1387-1395.
    [18]Sapsford KE, Berti L, Medintz IL. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations [J]. Angew Chem Int Ed,2006, 45(28):4562-4589.
    [19]Levitt JA, Matthews DR, Ameer-Beg SM, Suhling K. Fluorescence lifetime and polarization-resolved imaging in cell biology [J]. Curr Opin Biotech,2009,20(1):28-36.
    [20]Xu ZC, Xiao Y, Qian XH, Cui JN, Cui DW. Ratiometric and Selective Fluorescent Sensor for Cull Based on Internal Charge Transfer (ICT) [J]. Org Lett,2005,7(5):889-892.
    [21]Xu ZC, Qian XH, Cui JN. Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission:Cu(Ⅱ)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore [J]. Org Lett,2005,7(14):3029-3032.
    [22]Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion [J]. Chem Commun,2005,5(25):3156-3158.
    [23]Lo KKW, Chung CK, Zhu N. Synthesis, Photophysical and Electrochemical Properties, and Biological Labeling Studies of Cyclometalated Iridium(Ⅲ) Bis(pyridylbenzaldehyde) Complexes:Novel Luminescent Cross-Linkers for Biomolecules [J]. Chem Eur J,2003, 9(2):475-483.
    [24]Lo KKW, Chung CK, Zhu N. Nucleic Acid Intercalators and Avidin Probes Derived from Luminescent Cyclometalated Iridium(Ⅲ)-Dipyridoquinoxaline and-Dipyridophenazine Complexes [J]. Chem Eur J,2006,12(5):1500-1512.
    [25]Lo KKW, Zhang KY, Chung CK, Kwok KY. Synthesis, Photophysical and Electrochemical Properties, and Protein-Binding Studies of Luminescent Cyclometalated Iridium(Ⅲ) Bipyridine Estradiol Conjugates [J]. Chem Eur J,2007,13(25):7110-7120.
    [26]Zhang KY, Lo KKW. Synthesis, Properties, and Live-Cell Imaging Studies of Luminescent Cyclometalated Iridium(Ⅲ) Polypyridine Complexes Containing Two or Three Biotin Pendants [J]. InorgChem,2009,48(13):6011-6025.
    [27]Yu MX, Zhao Q, Shi LX, Li FY, Zhou ZG, Yang H, Yi T, Huang CH. Cationic iridium(Ⅲ) complexes for phosphorescence staining in the cytoplasm of living cells [J]. Chem Commun, 2008,2115-2117.
    [28]Liu ZW, Bian ZQ, Bian J, Li ZD, Nie DB, Huang CH. Acetonitrile-Vapor-Induced Color and Luminescence Changes in a Cyclometalated Heteroleptic Iridium Complex [J]. Inorg Chem, 2008,47(18):8025-8030.
    [29]Chou PT, Chi Y. Phosphorescent Dyes for Organic Light-Emitting Diodes [J]. Chem Eur J, 2007,13:380-395.
    [30]Hwang FM, Chen HY, Chen PS, Liu CS, Chi Y, Shu CF, Wu FI, Chou PT, Peng SM, Lee GH. Iridium(III) Complexes with Orthometalated Quinoxaline Ligands:Subtle Tuning of Emission to the Saturated Red Color [J]. Inorg Chem,2005,44(5):1344-1353.
    [31]Li J, Djurovich PI, Alleyne BD, Yousufuddin M, Ho NN, Thomas JC, Peters JC, Bau R, Thompson ME. Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary Ligands [J]. Inorg Chem,2005,44(6):1713-1727.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.