有机催化的不对称Michael加成反应和Aldol反应及PDK-1抑制剂的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两部分:1)有机小分子催化剂的设计合成以及在不对称Michael加成反应和Aldol反应中的应用。2)PDK-1抑制剂的设计合成。
     催化剂一直是有机合成中的热点,尤其是在List等人发现L-脯氨酸催化Aldol缩合反应后,有机小分子催化剂受到了极大的关注,近来发展迅速。目前,作为小分子的手性二胺化学的研究已成为不对称催化化学领域中一个十分活跃和引人注目的研究热点。本文第一部分首先报道了一种新的以环己二胺为母核的手性伯胺催化剂,并成功用于催化硝基烯烃与酮类的不对称Michael加成反应,首次报道了硝基苯乙烯与苯并环戊酮的不对称加成反应产物(dr=3:1,87% ee)。该反应底物具有普适性,并且以33-94%的产率和57-96% ee的对映选择性成功得到16个4-芳基-5-硝基-2-酮类的衍生物。其次是通过对催化剂和溶剂及反应条件的筛选,我们成功的发现了基于手性环己二胺的伯胺硫脲催化剂催化的马来酰亚胺与α取代醛的不对称Michael加成反应,之前Cordova等人报道了马来酰亚胺与丙醛等的不对称Michael加成反应,但对与α取代的醛反应效果却很差,我们的方法很好地解决了这个问题,并且该反应具有催化剂用量少、条件温和、产率高以及对映选择性好的特点。该反应底物具有普适性,得到了一批新型结构的手性化合物。在模型反应中,以0.5 mmo1%催化剂,反应70 h后得到的反应产物具有87%的产率和97% ee。所得产物的构型通过X-射线单晶衍射得到确证。再次是手性四氮唑催化剂催化靛红和醛的Aldol反应,通过条件的优化制备手性3-取代-3羟基-2-酮类吲哚生物碱,得到的化合物具有两个相邻的季碳中心,其中一个具有手性。此结构单元在很多的的天然产物及药物分子中都是核心的组成部分。实验发现模型反应得到的产物可以通过乙酸乙酯和石油醚重结晶提高其对映选择性,一次重结晶后可超过97%ee。
     3-磷酸肌醇依赖性激酶-1(PDK-1)是蛋白激酶B的上游激酶,通过与3,4,5-三磷酸磷脂酰基醇作用激活相邻的PKB分子。同时,PDK-1被称为AGC激酶的掌管着,能够激活包含PKB在内的一系列的AGC激酶家族成员。PDK-1磷酸化这些激酶的保守区域T-loop区,使它们充分激活,从而调节细胞代谢,生长,扩散,生存,抗凋亡等诸多生理过程,但是过度激活却可能导致一些疾病的发生,所以必要的PDK-1抑制剂变得尤其重要。本文依据计算机辅助设计出的7个PDK-1抑制剂分子,设计了其合成路线,通过Suzuki偶联等反应构建其芳基-芳基全共轭结构,最终顺利合成了目标化合物,我们期望通过生物活性测试能够获得具有高选择性和高生物活性的PDK-1抑制剂,以达到治疗肿瘤的目的。
The whole thesis consists of two parts.1):design, synthesis and applications of novel organocatalysts in asymmetric Michael addition reactions and Aldol reactions. And 2):design, synthesis of the PDK-1 inhibitors.
     Catalyst is always the focus of organic synthesis, especially, when List found that L-proline could catalyze the Aldol condensation reaction, much attention has been paid to small organic molecule catalyst. At present, studies and applications of chiral cyclohexane diamines as small molecule have been regarded as one of the hottest fields in catalytic asymmetric reactions. Initial of this paper we first reported a new chiral primary amine catalyst that the parent nucleus is the cyclohexane diamine, and successfully used in the Michael addition of ketones to nitroolefins, first reported the asymmetric addition reaction product of 1-indanone to nitrostyrene (dr=3:1,87% ee). The reaction substrates possessed catholicity, and we obtained sixteen 4-aryl-5-nitro-2-ones derivatives with 33-94% yield and 57-96% ee. Secondly, we successfully found the asymmetric Michael reaction of maleimide with a-substituted aldehyde that catalyzed by primary amine-thiourea bifunctional catalyst on account of chiral cyclohexane diamine after screening of catalysts, solvents and other reaction conditions. Priorly, Cordova and coworkers had reported this reaction, but the result of the a-substituted aldehyde was very bad, we overcame the problem smoothly, and the reaction possessed the features:low catalyst loading, mild conditions, high yields and enantioselectivities. Not only the reaction substrates possessed catholicity, but also we got a batch of new structure chiral compounds. In the model reaction with the presence of 0.5 mol% catalyst, we got the desired product with 87% yield and 97% ee after 70 h. The configuration of the product was confirmed with X-ray diffraction by a single crystal. Thirdly was the Aldol reaction of isatins with aldehydes catalyzed by (S)-pyrrolidine tetrazole, prepared the chiral two contiguous quaternary centered 3-substituted-2-hydroxyindol-2-ones indole alkaloids after screening the reaction conditions. This structure constituted a core unit of a number of natural products and pharmaceuticals. In the experiment, we found that the enantioselectivity of the product can be increased to more than 97% ee after one recrystallisation with the solvent of acetic ether and petroleum.
     3-Phosphoinositide-dependent protein kinase-1 (PDK-1) is the upstream kinase of protein kinase B, which interacts with PtdIns (3,4,5) P3 and activates neighboring PKB. PDK-1 is also termed the master of AGC kinase. It activates many members of AGC kinase subfamily in addition to PKB. PDK-1 phosphorylates the conservative T-loop region of all these AGC members to gain their full activation, which subsequently adjust cellular metabolism, growth, proliferation, survival, anti-apoptosis and so on. But excessed activation can be lead to some diseases, so essential PDK-1 inhibitors become especially important. The thesis incorporated with computer-aided design, we designed seven PDK-1 inhibitors' synthetic routes and finally successfully synthetized the target compounds through Suzuki-coupling reaction and other reactions to build its aryl-aryl conjugation structures. With biological activity testing, we expect to obain high selectivity and high biological activity of PDK-1 inhibitors, in order to achieve the purpose of treatment of tumors.
引文
[1]Eder, U.; Sauer, G.; Wiechert, R. New type of asymmetric cyclization to optically active steroid CD partial structures [J]. Angew. Chem. Int. Ed.1971,10,496-497.
    [2]List, B.; Barbas III, C. F. Proline-catalyzed direct asymmetric Aldol reactions [J].J.Am. Chem. Soc.2000,122,2395-2396.
    [3]Kateri A. Ahrendt, Christopher J. Borths, and David W. C. MacMillan. New Strategies for Organic Catalysis:The First Highly Enantioselective Organocatalytic Diels-Alder Reaction[J]. J. Am. Chem. Soc.2000,122,4243-4244.
    [4]Yong Tu, Zhi-Xian Wang, and Yian Shi. An Efficient Asymmetric Epoxidation Method for trans-Olefins Mediated by a Fructose-Derived Ketone[J]. J. Am. Chem. Soc.1996, 118,9806-9807; Shi, Y. Organocatalytic asymmetric epoxidation of olefins by chiral ketones[J]. Acc. Chem. Res.,2004,37,488-
    [5]Sigman, M.S.; Jacobsen, E.N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries [J]. J. Am. Chem. Soc.1998, 120,4901-4902.
    [6]Peter, I.D.; Lionet, M. In the gold age of organocatalysis [J]. Angew. Chem. Int. Ed. 2004,43,5138-5175.
    [7]Rudolf O. Duthaler. Recent developments in the stereoselective synthesis of a-aminoacids[J]. Tetrahedron,1994,50,1539-1560. Robert M. Williams, James A. Hendrix. Asymmetric synthesis of arylglycines[J]. Chem. Rev.,1992,92,889-917.
    [8]Matthew S. Sigman, Petr Vachal, and Eric N. Jacobsen. A General Catalyst for the Asymmetric Strecker Reaction [J]. Angew. Chem. Int. Ed.2000.39,1279-1281.
    [9]SC Pan, J. Zhou, B List. Catalytic Asymmetric Three-Component Acyl-Strecker Reaction [J]. Angew. Chem. Int. Ed.2007,46,612-614.
    [10](a)Perlmutter, P. Conjugate Addition Reactions in OrganicSynthesis; Pergamon: Oxford,1992; (b) Bemer, O. M.;Tedeschi, L.; Enders, D. Eur. Asymmetric Michael additions to nitroalkenes [J].J. Org. Chem.2002,1877-1894.
    [11](a)R. C. Larock, Comprehensive Organic Transformations, VCH, New York,1989, 411-415. (b)A. K. Beck, D. Seebach. Chem. Ber.,1991,124,2897-2911. (c)R. E. Maeri, J.Heinzer, D. Seebach. Liebigs Ann.,1995,1193-1215. (d)M. A.Poupart, G. Fazal, S. Goulet, L. T. Mar. Solid-Phase Synthesis of Peptidyl Trifluoromethyl Ketones [J]. J. Org. Chem.,1999,64,1356-1361. (e)A. G. M. Barrett, C. D. Spilling. Transfer hydrogenation:A stereospecific method for the conversion of nitro alkanes into amines[J]. Tetrahedron Lett.,1988,29,5733-5734. (f)D. H. Loyd, D. E. Nichols. Nickel boride/hydrazine hydrate reduction of aromatic and aliphatic nitro compounds. Synthesis of 4-(benzyloxy)indole and .alpha.-alkyltryptamines[J]. J. Org. Chem.,1986, 51,4294-4298.
    [12](a)Pinnick, H. W. Org. React.,1990,38,655-792; (b) Nef, J. U. Liebigs Ann. Chem., 1894,280
    [13]K. Klager, J. P. kispersky, E. Hamel. The Preparation and Reactions of 1,1,3,3-Tetranitropropane[J], J. Org. Chem.,1961,26,4371-4375.
    [14]Kandasamy Sakthivel, Wolfgang Notz, Tommy Bui, and Carlos F. Barbas III. Amino Acid catalyzed direct asymmetric Aldol reactions:a bioorganic approach to catalytic carbon-carbon bond-forming reactions[J]. J. Am. Chem. Soc.2001,123,5260-5267.
    [15]Hongbing Huang and Eric N. Jacobsen. Highly Enantioselective Direct Conjugate Addition of Ketones to Nitroalkenes Promoted by A Chiral Primary Amine-Thiourea Catalyst[J]. J. Am. Chem. Soc.2006,128,7170-7171.
    [16]Svetlana B. Tsogoeva and Shengwei Wei. Highly enantioselective addition of ketones to nitroolefins catalyzed by new thiourea-amine bifunctional organocatalysts[J]. Chem. Commun.,2006,1451-1453.
    [17]Kun Liu, Han-Feng Cui, Jing Nie, Ke-Yan Dong, Xiao-Juan Li, and Jun-An Ma. Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts Based on Saccharides[J]. Organic Letters.2007,9,923-925.
    [18]Ramesh Rasappan and Oliver Reiser. Cyclohexane-1,2-diamines:Efficient Catalysts for the Enantioselective Conjugate Addition of Ketones to Nitro Olefins[J]. Eur. J. Org. Chem.2009,1305-1308.
    [19]Xianxing Jiang, Yifu Zhang, Albert S.C.Chan, and Rui Wang. Highly Enantioselective Synthesis of y-Nitroheteroaromatic Ketones in a Doubly Stereocontrolled Manner Catalyzed by Bifunctional Thiourea Catalysts Based on Dehydroabietic Amine:A Doubly Stereocontrolled Approach to Pyrrolidine Carboxylic Acids[J]. Organic Letters. 2009,11,153-156.
    [20]Hisatoshi Uehara and Carlos F. Barbas. Ⅲ. Anti-Selective Asymmetric Michael Reactions of Aldehydes and Nitroolefins Catalyzed by a Primary Amine/Thiourea[J]. Angew. Chem. Int. Ed.2009,48,9848-9852.
    [21]Ye Zhu, Jeremiah P. Malerich, and Viresh H. Rawal. Squaramide-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroalkenes [J]. Angew. Chem. Int. Ed.2009,49,153-156.
    [22]Tomotaka Okino, Yasutaka Hoashi, Tomihiro Fruukawa, Xuenong Xu, and Yoshiji Takemoto. Enantio-and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea[J]. J. Am. Chem. Soc. 2005,127,119-125.
    [23]Pengfei Li, Shigang Wen, Feng Yu, Qiaoxia Liu, Wenjun Li, Yongcan Wang, Xinmiao Liang, and Jinxing Ye. Enantioselective Organocatalytic Michael Addition of Malonates to α,β-Unsaturated Ketones[J]. Organic Letters.2009,11,753-756.
    [24]Yasutaka Hoashi, Takaya Yabuta and Yoshiji Takemoto. Bifunctional thiourea-catalyzed enantioselective double Michael reaction of γ,δ-unsaturated β-ketoester to nitroalkene:asymmetric synthesis of (-)-epibatidine[J]. Tetrahedron Letters.2004,45, 9185-9188.
    [25]Yangyun Wang, Haitao Yang, Jipan Yu, Zhiwei Miao, and Ruyu Chen. Highly Enantioselective Biginelli Reaction Promoted by Chiral Bifunctional Primary Amine-Thiourea Catalysts:Asymmetric Synthesis of Dihydropyrimidines[J]. Adv. Synth. Catal.,2009.351,3057-3062.
    [26]Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.; O Reilly, B. C.; Schwartz, J.; Malley, M. F. Dihydropyrimidine calcium channel blockers.4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents[J]. J. Med. Chem.1992,35,3254-3263.
    [27]Anna G. Wenzel and Eric N. Jacobsen. Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives:Enantioselective Synthesis of β-Aryl-β-Amino Acids[J]. J. Am. Chem. Soc.2002,124,12964-12965.
    [28]Yoshihiro Sohtome, Nobuko Takemura, Rika Takagi, Yuichi Hashimoto, Kazuo Nagasawa. Thiourea-catalyzed Morita-Baylis-Hillman reaction[J]. Tetrahedron,2008, 64,9423-9429.
    [29]Xiao Wang, Yongfei Chen, Liangfeng Niu, and Pengfei Xu. Diastereo- and Enantioselective Aza-MBH-Type Reaction of Nitroalkenes to N-tosylimines Catalyzed by Bifunctional Organocatalysts[J]. Organic Letters,2009,11(15):3310-3313.
    [30]Douglas E. Fuerst and Eric N. Jacobsen. Thiourea-catalyzed Enantioselective Cyanosilylation of Ketones[J].J. Am. Chem. Soc.2005,127,8964-8965.
    [31]Nolwenn J. A. Martin, Lidia Ozores, and Benjamin List. Organocatalytic Asymmetric Transfei Hydrogenation of Nitroolefins[J]. J. Am. Chem. Soc.2007,129,8976-8977.
    [32](a) Jones PF, Jakubowicz T, Pitossi FJ, et al. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily [J]. Proc. Natl. Acid. Sci. USA.1987,84,5034-5037. (b) Bellacosa A, Testa JR, Staal SP, et al. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region[J]. Science.1991,254,274-277. (c) Coffer PJ, Woodgett JR, Molecular cloning and characterization of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families[J]. Eur. J. Biochem.,1991,201,475-481
    [33]Jacinto E, Facchinetti V, Liu D, et al. SINI/MIPI maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity [J]. Cell.2006,127, 125-137.
    [34]Fiala ES, Sohn OS, Wang, CX, et al. Induction of preneoplastic lung lesions in uinea pigs by cigarette smoke inhalation and their exacerbation by high dietary evels of vitamins C and E[J]. Carcinogenesis.2005,26,605-612.
    [35]Nakanishi K, Sakamoto M, Yamasaki S, et al. Akt phosphorylation is a risk factor for early diserase recurrence and poor prognosis in hepatocellular carcinoma[J]. Cancer. 2005,103,307-312.
    [36](a) Kim W, Seong J, An JH, et al. Enhancement of tumor radiores ponse by wortmannin in C3H/HeJ hepatocarcinoma[J]. Radiat. Res.,2007,48,187-195. (b) Brognard J, Clark AS, Ni Y, et al. Akt/protein kinase bis constitutively active innon-small celllung cancer cells and promotes cellular survical and resistance to chemotherapy and radiation[J]. Cancer. Res.,2001,61,3986-3997.
    [37]Abbott RT, Tripp S, Perkins SL, et al. Analysis of the PI-3-Kinase -PTEN-AKT pathway in human lymphoma and leukemia using a cell line microarray[J]. Mod. Pathol.,2003,16,607-612.
    [38]Zhou M, Gu L, Findley HW, et al. PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acutelymphoblastic leukemis cells[J]. Cancer. Res., 2003,63,6357-6362.
    [39]Margolin K, Longmate J, Baratta T, et al. CCI-779 in metastatic melanoma:a phase Ⅱ trialof the California Cancer Consortium[J]. Cancer,2005,104,1045-1048.
    [40]VanUmmersen L, Binger K, Volkman J, et al. Aphase I trial of perifosine(NSC639966) on a loading dose/maintenance doses chedule in patients with advanced cancer[J]. Clin Cancer Res,2004,10,7450-7456.
    [41]Omura S, Iwai Y, Hirano A, et al. A new alkaloid AM-2282 of Streptomyces origin. Taxonomy, fermentation, isolation and prelimunary cbaracterization[J]. J. Antibiot., 1977,30,275-282.
    [42]Thomas D. Penning, John J. Talley, Stephen R. Bertenshaw, et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole calss of cyclooxygenase-2 inhibitors: indentification of 4-[5-(4-methylphenyl) -3-(trifluoromethyl)-1H- pyrazol-1-yl] benzenesulfonamide(SC-58653,Celecoxib)[J]. J. Med. Chem.1997.40.1347-1365.
    [43]Richard I. Feldman, James M. Wu, Mark A. Polokoff, et al. Novel Small Molecular Inhibitors of 3-Phosphoinositide-dependent Kinase-1[J]. J. Biol. Chem.,2005,280, 19867-19874.
    [44](a) Imadul Islam, Judi Bryant, You-Ling Chou, et al. Indolinone based phosphoinositide-denpendent kinase-1(PDK-1) inhibitors. Part1:Design, synthesis and biological activity[J]. Bio. Med. Chem. Lett.,2007,17,3814-3818. (b) Imadul Islam, Greg Brown, Judi Bryant, Paul Hrvatin, et al. Indolinone based phosphoinositide-denpendent kinase-1(PDK-1) inhibitors. Part2:Optimization of BX-517[J]. Bio. Med. Chem. Lett.,2007,17,3819-3825.
    [45]Marie M. Ahlstrom, Marianne Ridderstrom, Ismael Zamora, and Kristina Luthman. CYP2C9 Structure-Metabolism Relationships:Optimizing the Metabolic Stability of COX-2 Inhibitors[J]. J. Med. Chem.,2007,50,4444-4452.
    [46]Ariamala Gopalsamy, Mengxiao Shi, Diane H. Boschelli, et al. Discovery of Dibenzo[c,f][2,7]naphthyridines as Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 Inhibitors[J].J. Med. Chem.,2007,50,5547-5549.
    [47]For a recent review of primary amine catalyzed reactions, see:a) L.-W. Xu, Y.-X. Lu, Org. Biomol. Chem.2008,6,2047; b) Y.-C. Chen, Synlett,2008,1919; and examples see:c) H. Huang, E. N. Jacobsen, J. Am. Chem. Soc.2006,128,7170; d) M. P. Lalonde, Y. Chen, E. N. Jacobsen, Angew. Chem., Int. Ed.2006,45,6366; e) K. Liu, H.-F. Cui, J. Nie, K.-Y. Dong, X.-J. Li, J.-A. Ma, Org. Lett.2007,9,923; f) S. B. Tsogoeva, S. Wei, Chem. Commun.,2006,1451; g) J.-W. Xie, L. Yue, W. Chen, W. Du, J. Zhu, J.-G. Deng, Y.-C. Chen, Org. Lett.2007,9,413; h) J.-W. Xie, W. Chen, R. Li, M. Zeng, W. Du, L. Yue, Y.-C. Chen, Y. Wu, J. Zhu, J.-G. Deng, Angew. Chem. Int. Ed.2007,46, 389; i) S. H. McCooey, S. J. Connon, Org. Lett.2007,9,599; j) S. S. V. Ramasastry, H. Zhang, F. Tanaka, C. F. Barbas, III J. Am. Chem. Soc.2007,129,288; k) P. Ricci, A. Carlone, G. Bartoli, M. Bosco, L. Sambri, P. Melchiorre, Adv. Synth. Catal.2008,350, 49; 1) R. P. Singh, K. Bartelson, Y. Wang, H. Su, X. Lu, L. Deng J. Am. Chem. Soc. 2008,130,2422; m) X. Wang, C. M. Reisinger, B. List J. Am. Chem. Soc.2008,130, 6070.
    [48]S. Luo, H. Xu, J. Li, L. Zhang, J.-P. Cheng, J. Am. Chem. Soc.2007,129,3074.
    [49]T.-Y. Liu, H.-L. Cui, Y. Zhang, K. Jiang, W. Du, Z.-Q. He, Y.-C. Chen, Org. Lett. 2007,9,3671.
    [50]W. Chen, W. Du, Y.-Z. Duan, Y. Wu, S.-Y. Yang, Y.-C. Chen, Angew. Chem. Int. Ed. 2007,46,7667.
    [51]For examples of (S)-pyrrolidine trifluoromethanesulfonamide promoted reactions, see:a) W. Wang, J. Wang, H. Li, Tetrahedron Lett.2004,45,7235; b) W. Wang, J. Wang, H. Li, Tetrahedron Lett.2004,45,7243; c) W. Wang, H. Li, J. Wang, Tetrahedron Lett. 2004,45,8229; d) W. Wang, J. Wang, H. Li, Angew. Chem. Int. Ed.2005,44,1369; e) W. Wang, H. Li, J. Wang, Tetrahedron Lett.2005,46,5077; f) J. Wang, H. Li, Y. Mei, B. Lou, D. Xu, D. Xie, H. Guo, W. Wang, J. Org. Chem.2005,70,5678; g) J. Wang, H. Li, B. Lou, L.-S. Zu, H. Guo, W. Wang, Eur. Chem. J.2006,12,4321; h) J. Wang, H. Li, L.-S. Zu, W. Wang, Adv. Synth. Catal.2006,348,425; i) L.-S. Zu, J. Wang, H. Li, X-H. Yu, W. Wang, Org. Lett.2006,8,3077; j) C.-L. Cao, X.-L. Sun, J.-L. Zhou, Y. Tang, J. Org. Chem.2007,72,4073; k) C.-L. Cao, X.-L. Sun, Y.-B. Kang, Y. Tang, Org. Lett.2007,9,4151.
    [52](a) Cheruku, S. R.; Padmanilayam, M. P.; Vennerstrom, J. L. Synthesis of 2H-pyrroles by treatment of pyrrolidines with DDQ [J]. Tetrahedron Lett.2003,44,3701-3703. (b) Halland, N.; Hazell, R. G.; J(?)rgensen, K. A. Organocatalytic asymmetric conjugate addition of nitroalkanes to α,β-unsaturated enones using novel imidazoline catalysts [J]. J. Org. Chem.2002,67,8331-8338. (c) List, B.; Pojarliev, P.; Martin, H. J. efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins. Org. Lett. 2001,3,2423-2425.
    [53]Sil, D.; Sharon, A.; Maulikb, P. R.; Rama, V. J. A concise synthesis of highly functionalized α,β-unsaturated y-butyrolactones through ring contraction of 2H-pyran-2-ones [J]. Tetrahedron Lett.2004,45,6273-6276.
    [54](a) Ballini, R.; Barboni, L.; Bosica, G.; Fiorini, D. One-pot synthesis of y-diketones, y-keto esters, and conjugated cyclopentenones from nitroalkanes. Synthesis 2002,2725-2728. (b) Ballini, R. One-pot synthesis of gamma-diketones, gamma-keto esters, and conjugated cyclopentenones from nitroalkanes [J]. Synthesis 1993,687-688.
    [55](a) Jiang, X.; Zhang, Y.; Chan, A. S. C.; Wang, R. Highly enantioselective synthesis of gamma-nitro heteroaromatic ketones in a doubly stereocontrolled manner catalyzed by bifunctional thiourea catalysts based on dehydroabietic amine:a doubly stereocontrolled approach to pyrrolidine carboxylic acids [J]. Org. Lett.2008,11,153. (b) Zhu, S. L.; Yu, S. Y.; Ma, D. W. Highly efficient catalytic system for enantioselective Michael addition of aldehydes to nitroalkenes in water [J]. Angew. Chem. Int. Ed.2008,47,545-548. (c) Foresti, E.; Palmieri, G.; Petrini, M.; Profeta, R. Highly diastereoselective addition of nitromethane anion to chiral alpha-amidoalkylphenyl sulfones. Synthesis of optically active alpha-amino acid derivatives [J]. Org. Biomol. Chem.2003,1,4275-4281.
    [56]Scott E. Denmark, Brenda S. Kesler, and Young-Choon Moon. Inter-and Intramolecular [4+2] Cycloadditions of Nitroalkenes with Olefins.2-Nitrostyrenes[J]. J. Org. Chem.,1992,57,4912-4924.
    [57]John R. Peterson, Hoang D. Do, and Andrew J.Dunham. Cerium(IV)-induced nitration of cinnamic acids. Novel remote electrophilic substitution[J]. Can. J. Chem.,1988,66, 1670-1674.
    [58]Devesh Sawant, Rishi Kumar, Prakas R. Maulik and Bijoy Kundu. Unprecedented SnCl2-Mediated cyclization of Nitro Arenes via N-N Bond Formation[J]. Org. Lett., 2006,8,1525-1528.
    [59]Rita Menicagli and Simona Samaritani.1,4-Congugate addition of the reformatsky reagent to a-nitrostyenes:A new synthesis of y-nitroesters[J]. Tetrahedron,1996,1425-1432.
    [60]Toshiyuki Ohe and Sakae Uemura. Palladium(II)-Catalyzed Michael-Type Hydroarylation of Nitroalkenes Using Aryltins and Sodium Tetraarylborates[J]. Bulletin of the Chemical Society of Japan,2003,76,1423-1432
    [61]Peter S. Hynes, Paul A. Stupple, and Darren J. Dixon. Organocatalytic Asymmetric Total Synthesis of (R)-Rolipram and Formal Synthesis of (3S,4R)-Paroxetine[J]. Org. Lett.,2008,10,1389-1391.
    [62]W.L.F.Armarego. Reactions of nitroacetic acid with aldehydes and enamines[J]. J. Chem. Soc. C.,1969,986-990.
    [63]Stephanie Cassel, Brigitte Casenave, Gerard Deleris, Laurent Latexague and Patrick Rollin. Exploring an Alternative Approach to the Synthesis of Arylalkyl and Indolylmethyl Glucosinolates[J]. Tetrahedron,1998,54,8515-8524.
    [64]Ronald Grigg, Martyn Inman, Colin Kilner, Ines Koppen, John Marchbank, Peter Selby and Visuvanathar Sridharan. Synthesis of carbo- and heterocycles via palladium catalysed cascade allene insertion- nucleophile incorporation -Michael addition processes[J]. Tetrahedron,2007,63,6152-6169.
    [65]Masayuki Fujii. A Highly Chemoselective Reduction of Conjugated Nitro Olefins with Hantzsch Ester in the Presence of Silica Gel[J]. Bulletin of the Chemical Society of Japan,1988,11,4029-4036.
    [66]Ryo Shintani, Weiling Duan, Takashi Nagano, Atsushi Okada, and Tamio Hayashi. Chiral Phosphine Olefin Bidentate Ligands in Asymmetric Catalysis:Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl Boronic Acids to Maleimides[J]. Angew. Chem. Int. Ed.2005,44,4611-4614.
    [67]Juan Shen, Thanh Truc Nguyen, Yongpeng Goh, Weiping Ye, Xiao Fu, Junye Xu, and Choonhong Tan. Chiral Bicyclic Guanidine-Catalyzed Enantioselective Reactions of Anthrones[J]. J. Am. Chem. Soc.,2006,128,13692-13693.
    [68]Giuseppe Bartoli, Marcella Bosco, Arnando Carlone, et al. Oranocatalytic Asymmetirc Conjugate Addition of 1,3-Dicarbonyl Compounds to Maleimides[J]. Angew. Chem. Int. Ed.2006,45,4966-4970.
    [69]Weiping Ye, Zhiyong Jiang, Yujun Zhao, Serena Li Min Goh, et al. Chiral Bicyclic Guanidine as a Versatile Bronsted Base Catalyst for the Enantioselective Michael Reactions of Dithiomalonates and β-Keto Thioesters[J]. Adv. Synth. Catal.,2007,349, 2454-2458.
    [70]Liansuo Zu, Hexin Xie, Hao Li, Jian Wang, Wei Jiang, Wei Wang. Chiral Amine Thiourea-Promoted Enantioselective Domino Michael-Aldol Reactions between 2-Mercaptobenzaldehydes and Maleimides[J]. Adv. Synth. Catal.,2007,349,1882-1886.
    [71]Guiling Zhao, Yongmei Xu, Henrik Sunden, Lars Eriksson, Mahmoud Sayah and Armando Cordova. Organocatalytic enantioselective conjugate addition of aldehydes to maleimides[J]. Chem. Coummn.,2007,734-735.
    [72](a) Chong-Dao Lu, Zhi-Yong Chen, Hui Liu, Wen-Hao Hu, and Ai-Qiao Mi. A Facile Three-Component One-Pot Synthesis of Structurally Constrained Tetrahydrohurans That Are t-RNA Synthetase Inhibitor Analogues[J]. J. Org. Chem.,2004,69,4856-4859. (b) Mhaske, Santosh B, Argade, Narshinha P. Base-Induced Alcoholysis of N-Arylmaleimides:Facile in situ Oxa-Michael addition to Alkyl Maleanilates:Two-step One-pot Rapid Access to Alkoxysuccinic Acids [J]. Synthesis,2003,863-870.
    [73]For reviews of catalytic asymmetric synthesis of quaternary stereogenic centers, see:a) M. Bella, T. Gasperi Synthesis 2009,1583; b) J. Christoffers, A. Baro, Adv. Synth. Catal.2005,347,1473; c) E. A. Peterson, L. E. Overman, Proc. Natl. Acad. Sci. U.S.A. 2004,101,11943; d) D. J. Ramon, M. Yus, Curr. Org. Chem.2004,8,149; e) J. Christoffers, A. Baro, Angew. Chem. Int. Ed.2003,42,1688.
    [74]For reviews of oxindole alkaloids, see:a) S. Peddibhotla, Curr. Bioact. Compd.2009,5, 20; b) C. V. Galliford, K. A. Scheidt, Angew. Chem.2007,119,8902; C. V. Galliford, K. A. Scheidt, Angew. Chem. Int. Ed.2007,46,8748; c) C. Marti, E. M. Carreira, Eur. J. Org. Chem.2003,2209.
    [75]Selected examples of natural products that possess 3-substituted 3-hydroxy-oxindole substructures, see:a) H.-P. Zhang, Y. Kamano, Y. Ichihara, H. Kizu, K. Komiyama, H. Itokawa, G. R. Pettit, Tetrahedron 1995,51,5523; b) Y.-Q. Tang, I. Sattler, R. Thiericke, S. Grabley, Eur. J. Org. Chem.2001,261; c) K. C. Nicolaou, P. B. Rao, J. L. Hao, M. V. Reddy, G. Rassias, X. H. Huang, D. Y. K. Chen, S. A. Snyder, Angew. Chem.2003,115,1795; K. C. Nicolaou, P. B. Rao, J. L. Hao, M. V. Reddy, G. Rassias, X. H. Huang, D. Y. K. Chen, S. A. Snyder, Angew. Chem. Int. Ed.2003,42,1753 and references therein; d) C. Takahashi, A. Numata, Y. Ito, E. Matsumura, H. Araki, H. Iwaki, K Kushida, J. Chem. Soc., Perkin Trans.1 1994,1859; e) A. Frechard, N. Fabre, C. Pean, S. Montaut, M.-T. Fauvel, P. Rollin, I. Fouraste, Tetrahedron Lett.2001,42, 9015; f) J. I. Jimenez, U. Huber, R. E. Moore, G. M. L. Patterson, J. Nat. Prod.1999, 62,569; g) J. Kohno, Y. Koguchi, M. Nishio, K. Nakao, M. Juroda, R. Shimizu, T. Ohnuki, S. Komatsubara, J. Org. Chem.2000,65,990; h) H. Suzuki, H. Morita, M. Shiro, J. Kobayashi, Tetrahedron 2004,60,2489; i) V. U. Khuzhaev, I. Zhalolov, K. K. Turgunov, B. Tashkhodzhaev, M. G. Levkovich, S. F. Aripova, A. S. Shashkov, Chem. Nat. Compd.2004,40,269; j) T. Kagata, S. Saito, H. Shigemori, A. Ohsaki, H. Ishiyama, T. Kubota, J. Kobayashi, J. Nat. Prod.2006,69,1517; k) H. Kobayashi, K. Shin-Ya, K. Nagai, K.-I. Suzuki, Y. Hayakawa, H. Seto, B.-S. Yun, I.-J. Ryoo, J.-S. Kim, C.-J. Kim, I.-D. Yoo, J. Antibiot.2001,54,1013.
    [76]a) S. Nakamura, N. Hara, H. Nakashima, K. Kubo, N. Shibata, T. Toru Chem. Eur. J. 2008,14,8079; b) A. V. Malkov, M. A. Kabeshov. M. Bella, O. Kysilka, D. A. Malyshev, K. Pluhackova, P. Kocovsky Org. Lett.2007,9,5473; c) J.-R. Chen, X.-P. Liu, X.-Y. Zhu, L. Li, Y.-F. Qiao, J.-M. Zhang, W.-J. Xiao, Tetrahedron 2007,63, 10437; d) G. Chen, Y. Wang, H. He, S. Gao, X. Yang, X. Hao. Heterocycles,2006,68, 2327; e) G. Luppi, P. G. Cozzi, M. Monari, B. Kaptein, Q. B. Broxterman, C. Tomasini, J. Org. Chem.2005,70,7418.
    [77]During the preparation of the manuscript, Nakamura and Toru and coworkers have reported an organocatalytic enantioselective of Aldol reactions of aldehydes with isatins: N. Hara, S, Nakamura, K. Kubo, N. Shibata, T. Toru Chem. Eur. J.2009,15,6790. It is noted that the catalytic system is not applicable to the a-branched aldehydes.
    [78]Gianluigi Luppi, Pier Giorgio Cozzi, et al. Dipeptide-Catalyzed Asymmetric Aldol Condensation of Acetone with (N-Alkylated) Isatins[J]. J. Org. Chem.,2005,70,7418- 7421.
    [79]Keith Smith, Gamal A. EI-Hiti, Anthony C. Hawes. Carbonylation of Doubly Lithiated N'-Aryl-N,N-Dimethylureas:A Novel Approach to Istins via Intramolecular Trapping of Acyllithiums[J]. Synthesis,2003,13,2047-2052.
    [80](a) Panagiotis Polychronopoulos, Prokopios Magiatis, et al. Structural Basis for the Synthesis of Indirubins as Potent and Selective Inhibitors of Glycogen Synthase Kinase-3 and Cyclin-Dependent Kinases[J]. J. Med. Chem.,2004,47,935-946. (b) Teruhisa Tokunaga, W. Ewan Hume, et al. Oxindole Derivatives as Orally Active Potent Growth Hormone Secretagogues[J]. J. Med. Chem.,2001,44,4641-4649.
    [81]Terrence J. Connolly and Tony Durst. Metal hydride mediated reduction of 1,3-dimethyl-3(methylthio) oxindole[J]. Can. J. Chem.,1997,75,542-546.
    [82]Gianluigi Luppi,Magda Monari, et al. The first total synthesis of (?)-convolutamydine A[J]. Tetrahedron,2006,62,12017-12024.
    [83]Zeng X, Xu H, Glazer R.I.Transformation of mammary epithelial cells by 3-phosphoinositide-dependent protein kinase-1(PDK-1) is associated with the introduction of protein kinase Ca[J]. Cancer Res.2002,62,3538-3543.
    [84]Flynn P, Wongdagger M, Zavar M, Dean N M, Stokoe D. Inhibition of PDK-1 activity casuses a reduction in cell proliferation and survival[J]. Curr. Biol.,2000,10,1439-1442.
    [85]Lawlor M. A, Mora A, Ashby P.R, Williams M.R, Murray-Tait V, Malone L, Prescott A.R, Lucocq J.M, Alessi D.R. Essential role of PDK-1 in regulating cell size and development in mice[J]. EMBO J,2002,21,3728-3738.
    [86]Sato S, Fujita N, Tsuruo T. Interference with PDK-1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine)[J]. Oncogene,2002,21,1727-1738.
    [87]Ding H, Han C, Zhu J, et al. Celecoxib derivatives dinduce apoptosis via the disruption of mitochondrial membarane potential and activation of caspase 9[J]. Int. J. Cancer., 2005,113,803-810.
    [88]Dale L. Boger, Joel Goldberg, Steve Silletti, Torsten Kessler, and David A. Cheresh. Identification of a Novel Class of Small-Molecule Antiangiogenic Agents through the Screening of Combinatorial Libraries Which Function by Inhibiting the Binding and Localization of Proteinase MMP2 to Integrin αvβ3[J]. J. Am. Chem. Soc.,2001,123, 1280-1288.
    [89]Chao Jianping, Wang Wei, Wu Wenqun, Luo Xuande and Ling Yangzhi. A Convenient and Practical Prepapation of Acetylphenyl Boronic Acids[J]. Chem. Res. Chinese., 2004,20,734-737.
    [90](a) Thomas Oberhauser. A New Bromination Method for Phenols and Anisoles: NBS/HBF·EtO in CH3CN[J]. J. Org. Chem.,1997,62,4504-4506. (b) William E. Heyd, Larry T. Bell, James R. Heystek, Paul E. Schurr, Charles E. Day. Hypobetalipoproteinemic agents.3. Variation of the polycyclic portion of 4-(1-adamantyloxy)aniline[J]. J. Med. Chem.,1982,25,1101-1103.
    [91]Jiang Cheng, Feng Wang, Jianhua Xu, Yi Pan and Zhaoguo Zhang. Palladium-catalyzed Suzuki-miyaura reaction using aminophosphine as ligand[J]. Tetrhedron Letters,2003,44,7095-7098.
    [92]Gyorgy Szabo, Janos Fischer, Agnes Kis-Varga and Klara Gyires. New celecoxib Derivatives as Anti-Inflammatory Agents[J]. J. Med. Chem.,2008,51,142-147.
    [93]A mgad G. Habeeb, P.N.Praveen Rao, and Edward E.Knaus. Design and Synthesis of Celecoxib and Rofecoxib Analogues as Selective Cyclooxygenase-2(COX-2) Inhibitors: Replacement of Sulfonamide and Methylsulfonyl Pharmacophores by an Azido Bioisostere[J]. J. Med. Chem.,2001,44,3039-3042.
    [94]Wen Kang Xing, Yoshiro Ogata. Effect of meta- and para-substituents on the stannous chloride reduction of nitrobenzenes in aqueous ethanol[J]. J. Org. Chem.,1983,48, 2515-2520.
    [95](a) Louis A. Carpino. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive[J]. J. Am. Chem. Soc.,1993,115,4397-4398. (b) Jiangping Wu, Ji Wang, Asitha Abeywardane, et al. The discovery of carboline analogs as potent MAPKAP-K2 inhibitors[J]. Bio.Med. Chem.Lett.,2007,17,4664-4669.
    [96](a) M. Ghiaci, J. Asghari. Friedel-Crafts Alkylation and Acylation in the Absence of Solvent[J]. Synth. Commun.,1998,28,2213-2220. (b) Nakyen Choy, K.C.Russull, Julio C. Alvarez and Alexa Fider. Synthesis and redox properties of novel alkynyl flavins[J]. Tetrahedron Letters,2000,41,1515-1518.
    [97]Gui-Dong Zhu, Jianchun Gong, Viraj B. Gandhi, et al. Design and synthesis of pyridine-pyrazolopyridine-based inhibitors of protein kinase B/Akt[J]. Bio. Med. Chem.,2007,15,2441-2452.
    [98]Shelton Bank, Richard P. Marcantonio, C. H. Bushweller. Electronic and ion-pairing effects of a methyl group on a diphenylmethyl anion determined by restricted aryl rotation[J]. J. Org. Chem.,1984,49,5091-5093.
    [99]Mikel P. Moyer, John F. Shiurba, and Henry Rapoport. Metal-halogen Exchange of Bromoindoles. A Route to Substituted Indoles[J]. J. Org. Chem.,1986,51,5106-5110.
    [100]Michael Herm, Oliver Molt, and Thomas Schrader. Towards Synthetic Adrenaline Receptors-Shape-Selective Adrenaline Recognition in Water[J]. Chem. Eur.J.,2002,8, 1485-1498.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.