基于倒立摆的三种控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
倒立摆是典型的多变量、非线性、强耦合的自然不稳定系统。在对倒立摆的控制过程中能反映控制理论中的许多关键问题,如镇定问题、非线性问题、鲁棒性问题以及跟踪问题等,所以倒立摆被广泛的用来验证各种控制理论和控制方法的有效性。对倒立摆系统的研究在理论上和工程应用上具有着深远的意义,相关的科研成果已经应用到航天科技和机器人学等诸多领域。
     本文首先利用牛顿力学分析的方法建立了直线一级倒立摆实物系统的线性状态方程,并在此基础上分析了该系统是不稳定的,同时又是能控的和能观的。然后详细的介绍了直线一级倒立摆实物系统的硬件和软件构成,重点阐述了基于MATLAB/Simulink实时工具箱RTW(Real-Time Workshop)的实控软件的使用方法。
     本文主要研究了倒立摆系统的PID控制算法、线性二次最优控制算法和极点配置法,并设计出了这三种算法的控制器,同时利用MATLAB/Simulink仿真分析了这三种算法的优缺点。在PID控制器的设计中,本文提出了一种基于MATLAB/Sumlink的参数整定方法,较好和较快的整定了PID的控制参数,并利用MATLAB/Sumlink仿真实验看出传统的PID算法只能较好的控制摆杆的角度这一个输出量,而对另一个输出量——小车的位移却不能有效的控制,因此传统的PID控制对直线一级倒立摆这样的单输入两输出系统是无法实现稳定控制的。在LQR最优控制器的设计中,我们通过不断的MATLAB仿真实验总结出了性能矩阵Q选择的一般原则,为LQR算法的实际应用给出了一定的理论指导,同时通过MATLAB仿真,得出LQR算法是能较好的控制倒立摆系统,并具有较好的稳态效果。在极点配置法控制器的设计中,我们同样通过MATLAB仿真验证了其对倒立摆系统具有较好的控制效果。同时将极点配置法和LQR法进行了MATLAB仿真比较,得出极点配置法的响应时间较快,鲁棒性和动态性较好,而LQR算法具有较小的超调量和较好的稳态效果。最后指出极点配置法适合应用到要求快速响应的控制系统中,而LQR法适合应用到对稳态性能要求较高的控制系统中。
Inverted pendulum is a typical multi-variable, non-linear, strong coupling and naturally unstable system. During its control process, Inverted pendulum can reflect many crucial questions in the control theory, such as calm question, non-linear problem, robust question as well as tracking question and so on. Therefore, inverted pendulum has been widely used to verify some qualities and effect of certain control theory or method. The research on inverted pendulum system has the profound significance in theory and project application. The correlative scientific research achievement has already applied to astronautics science technology and subject of robot and so on.
     In this paper, we firstly use Newtonian mechanics analysis method to establish the linear state equations of the linear 1-stage inverted pendulum’s physical system. In the meantime, the system is unstable by analyzing the linear state equation, but it is also controllable and observable. And then we describe in detail the hardware and software on the physical system of the linear 1-stage inverted pendulum, focusing on the use of the real time control software based on MATLAB/Simulink real-time toolkit RTW(Real-Time Workshop).
     The thesis has been mainly discussed the control methods of inverted pendulum system based on PID control algorithm, the linear quadratic optimal control algorithm and the pole assignment algorithm, and then we design the controllers of the three control algorithm. We analyze the advantages and disadvantages of the three control algorithm through MATLAB/Simulink. In the design of PID controller, this paper has put forward the parameter turning method which is based on MATLAB/Simulink. Using this method, we have turned the PID control parameters better and faster. Through MATLAB/Simulink simulation, we find out that traditional PID control algorithm can be well-placed to control the pendulum’s angle of this output, and the control for another output-car displacement’s control is not effective. So PID control for linear 1-stage inverted pendulum, which is the single-input and two-output system, is unable to achieve stability control. In the design of LQR optimal controller, we have summed up the general principle of the performance matrix Q choice through MATLAB simulation, which gives a certain theoretical guidance for the practical application of LQR algorithm. Meanwhile, through MATLAB simulation we know that LQR algorithm can effectively control inverted pendulum system, which has good steady results. In the design of the pole assignment controller, we have also proved that it can control inverted pendulum effectively through MATLAB simulation. At the same time, by comparing the pole assignment method with LQR method through MATLAB simulation, we have found that the pole assignment has the faster response time, better robustness and dynamic, but LQR method has smaller overshoot and better steady-state results. Finally we have pointed out that the pole assignment method is suitable for applications that require fast response in the control system, and LQR method is suitable for applications that require higher steady-state performance in the control system.
引文
[1]黄苑虹.倒立摆系统的稳定控制研究[D].广东工业大学硕士论文,2002:9.
    [2]丛爽,李泽湘.实用运动控制技术[M].北京:电子工业出版社,2005:242-243,243-245.
    [3] J.F.Schacfer,R.H.Cannon. On the control of unstable mechanical systems[M]. Proc.IFAC World Conger London,1996,6C.1-6C.13.
    [4] W.R.Sturegeon and M.V.Loscutoff. Application of modal control and dynamic observers to control of a double inverted pendulum[J]. Proc.JACC,Stanford,1972,857-865.
    [5] S.Mori,H.Nishihara and K.Furuta. Control of unstable mechanical system control of pendulum[J]. Int.J.Control 23,673-692,1976.
    [6] Tasuku Hoshino,Katsubusa Furuta. Stablibization of 2-D inverted pendulum via partial exact linearization[A]. Proc of the 2nd Asian Control Conf[C].Seoul,1977,495-498.
    [7] FURUTA K,HIROYUKI K,KOSUGE K. Digital control of a double inverted pendulum on an inclined rail[J]. International Journal of Control,1980,32:907-924.
    [8] FURUTA K,OCHIAI T,ONO N. Attitude control of a triple inverted pendulum[J].International Journal of Control ,1984,39:1321-1365.
    [9] J.W.Watts. Control of an inverted pendulum[C]. ASEE Annual Conference,session2527, 1984, 706-710.
    [10] Charier W.Andorson. Learning to Control an Inverted Pendulum Using Neural Networks[J]. IEEE Control System Magazine,1989:31-36.
    [11] K.Furuta,M.Yamakita and S.Kobayashi. Swing-up control of inverted pendulum usingpseudo-state feedback[J]. Systems and Control Engineering 1992,206.
    [12] A.L.Fradkov,P.Y.Guzenko,D.J.Hill and A.Y.Pogromsky. Speed gradient control and Passivity of nonlinear oscillators[C]. Proc. of IFAC symposium on Control of Nonlinear Systems,Lake Tahoe.1995,655-659.
    [13] Wiklund,Magnus,Anders Kristenson and K.J Astrom. A new strategy for swing up an inverted pendulum[C]. In preprints IFAC 12th world congress.Sydney,Australia.1993,151-154.
    [14] M.Yamakita,M.Iwashiro,Y.Sugahara and K.Furuta. Robust swing-up control of inverted pendulum[C]. Proc. Of the American Control Conference,Seattle,Washington.1995,290-294.
    [15]任章,徐德民.一种镇定倒立摆系统的新方法[J].控制与决策,1995,10(4):373-376.
    [16]翁正新,张钟俊,王广雄.两级倒立摆的鲁棒H∞状态反馈控制[J].上海交通大学学报,1996,30(4):119-120.
    [17]翁正新,张钟俊,王广雄.倾斜导轨上两级倒立摆的H∞控制[J].上海交通大学学报,1997,31(3):119-125.
    [18]蒋国飞,吴沧浦.基于Q学习算法和BP神经网络的倒立摆控制[J].自动化学报,1998,24(5):662-666.
    [19]刘妹琴,廖晓听,陈际达等.用进化RBF神经网络控制二级倒立摆[J].控制理论与应用,2000,17(4):593-600.
    [20]单波,徐燕,赵建涛.预测控制算法及其在倒立摆中的应用[J].华北电力大学学报,2001,28(2):46-51.
    [21]李洪兴,苗志宏,王加银.四级倒立摆的变论域自适应模糊控制[J].中国科学(E辑),2002,32(1):65-75.
    [22]黄永宜.自动平衡倒置摆系统—-一个有趣的经典控制理论教学实验装置[J].控制理论与控制工程.1987,4(3):94-98.
    [23]薛安克.二级倒立摆的鲁棒建模及其鲁棒H∞最优控制[J].计算技术与自动化,2003,22(2):52-54.
    [24]丛爽,张冬军,魏衡华.单级倒立摆三种控制方法的对比研究[J].系统工程与电子技术,2001,23(11):47-49.
    [25]郑大钟.线性系统理论(第二版)[M].北京:清华大学出版社,2002.
    [26]王彩霞. LQR最优控制系统中加权阵的研究[J].西北民族大学学报,2003,24(28):29-31.
    [27] Dorf R C,Bishop R H. Modern Control Systems(9th Edition)[M]. Addison Wesley Longman Inc,2001.
    [28] [美] Katsuhiko Ogata著,卢伯英,于海勋等译.现代控制工程(第三版)[M].北京:电子工业出版社,2000.
    [29]刘豹主编.现代控制理论[M].北京:机械工业出版社,1983.
    [30]固高科技(深圳)有限公司.直线倒立摆安装与使用手册[M].深圳:固高科技有限公司,2005.
    [31]王正林,王胜开,陈国顺. MATLAB/Simulink与控制系统仿真[M].北京:电子工业出版社,2005:11-16,187-198.
    [32]固高科技(深圳)有限公司.固高MATLAB实时控制软件用户手册[M].深圳:固高科技有限公司,2004.
    [33]刘金琨.先进PID控制MATLAB仿真(第2版)[M].北京:电子工业出版社,2004,323-325.
    [34]赖寿宏.微型计算机控制技术[M].北京:机械工业出版社,2003,90-112.
    [35]卢泽生.控制理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [36]欧阳黎明. MATLAB控制系统设计[M].北京:国防工业出版社,2001.
    [37]陈纬山,赵杰.机电系统计算机控制[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [38]邱丽,曾贵蛾,朱学峰.几种PID控制器参数整定方法的比较研究[J].自动化技术与应用,2005,24(11):28-31.
    [39]白金,韩俊伟.基于MATLAB/Simulink环境下的PID参数整定[J].哈尔滨商业大学学报(自然科学版),2007,23(6):673-681.
    [40]王仲民,孙建军,岳宏.基于LQR的倒立摆最优控制系统研究[J],工业仪表与自动化装置. 2005,(3):6-9.
    [41] M.AIT RAMI,X.CHEN and Control and X.Y.ZHOU. Discrete-time indefinite LQ Control with State and Control Dependent Noises[J]. Journal of Global Optimization. 2002,23:245-265.
    [42] Gabriele Pannoochia,Nabil Laachi and James B.Rawlings. A Candidate to Replace PID Control:SISO-Constraine LQ Control[J]. Journal of Process Control,2005(15):81-88.
    [43]解学书主编.最优控制理论与应用[M].北京:清华大学出版社,1986.
    [44] [日]细江繁编著,白玉林等译.系统与控制[M].北京:科学出版社,2001
    [45]李俊,高健,汪彦彦.倒立摆系统的线性二次状态反馈控制[J].兵工自动化,2007,26(3):56-58.
    [46]郑大钟.线性系统理论(第二版)[M].北京:清华大学出版社,2002.
    [47]王彩霞. LQR最优控制系统中加权阵的研究[J].西北民族大学报,2003,24(28),29-31.
    [48]阙志宏.线性系统理论[M].西安:西北工业大学出版社,1995.
    [49]薛定宇.控制系统仿真与计算机辅助设计[M].北京:机械工业出版社,2005,210-217.
    [50] Balasubramanian R. Continuous time controller design[J]. IEEE Control Engineering Series Vol.39.London:Peter Peregrinus Ltd,1989.
    [51]丛爽,张冬军,魏衡华.单级倒立摆三种控制方法的对比研究[J].系统工程与电子技术,2001,23(11):47-49.
    [52]崔平,翁正新.基于状态空间极点配置的倒立摆平衡控制[J].实验室研究与探索,2003,22(2):70-72.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.