水稻脆性突变体fp2的遗传分析、表型分析和候选基因预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械强度是水稻(Oryza sativa L.)的重要农艺性状之一,反映了植物细胞壁的物理特性。研究与机械强度改变有关的突变体有助于揭示与茎秆机械强度、支撑力等有关的细胞壁生物合成机理和相关基因的调控机制及途径。脆性突变体及其相关基因的研究对于提高水稻的产量、抗倒伏性、抗病、抗虫和抗逆性等方面都具有重要意义;脆性突变体相关基因的研究在提高秸秆的利用率、提高木本植物中纤维素的含量和质量等方面具有广泛的应用前景。本研究对一份脆性突变体进行了分离鉴定、表型分析、遗传分析、基因精细定位和候选基因克隆等方面的研究。取得了主要的结果如下:
     1.从籼稻材料E优532的EMS诱变后代中分离鉴定出一份脆性突变体fp2。该突变体fp2与其野生型E优532相比,机械强度明显下降(根、茎秆、叶片、籽粒等易碎)、株高明显降低、株型较散、叶片呈现下披状态、根长度变短且生长缓慢。
     2.对fp2和其野生型进行了物理性质和化学组成成分方面的研究。结果表明,fp2的机械强度明显下降,茎秆折断力为野生型的70%,茎秆延伸率为野生型的65%,反映出fp2突变影响了植株的机械强度和延伸率。fp2细胞壁的化学组成成分含量也发生了很大的变化,纤维素和木质素的含量下降,仅为野生型的75%和60%;半纤维素和硅含量分别上升30%和31%。
     3.对fp2和其野生型进行了细胞解剖学方面的观察研究。石蜡切片结果显示,fp2的薄壁组织细胞较野生型长度变短,宽度稍微增大,这可能就是导致植株外观形态发生变化的直接原因。扫描电镜观察结果表明,fp2的厚壁组织细胞壁明显变薄且结构改变为一种中空的网状结构,而野生型的厚壁组织细胞壁结构致密;突变体根部的表皮细胞形状不规则且排列错乱,野生型根部细胞狭长且排列整齐。透射电镜观察显示,突变体的单个细胞细胞壁较其野生型明显变薄且部分细胞壁存在缺失现象,而导管等组织的细胞壁纤维素的排列结构发生了明显的变化,变得错乱复杂。
     4.脆性基因的遗传分析。通过田间调查和对四个F_2遗传群体(蜀恢527/fp2、93-11/fp2、日本晴/fp2和粳89/fp2)的研究发现,fp2脆性性状受一对隐性基因控制,该基因在四个群体中的分离均遵循孟德尔单基因遗传分离规律。
     5.完成了对fp2基因的精细定位。利用日本晴/fp2群体进行fp2基因的分子定位,首先将fp2基因定位到第10染色体的长臂端SSR标记,遗传距离分别为1.1cM和11.4cM。继续利用RM271与RM258之间已公布的大号分子标记进行定位研究,将基因进一步定位于RM271与RM25547之间,遗传距离为1.1cM和4.7cM。根据初步定位结果,从RGP数据库获得fp2基因区域的局部物理图谱并下载其中的Contig完整序列,根据相应物理区段内水稻碱基序列开发新的SSR标记和InDel标记进行fp2基因的精细定位,最后将fp2定位于InDel2-15和InDel4-12之间大约69kb的物理范围内。
     6.进行了候选基因的预测和初步分析。利用TIGR Rice Browse引擎、在线注释软件Rice Gaas和http://genes.mit.edu/GENSCAN.html对获得区间序列进行基因预测注释。获得了7个候选基因:LOC_Os10g33040,LOC_Os10g33050,LOC_Os10g33070,LOC_Os10g33060,LOC_Os10g33080,LOC_Os10g33104,LOC_Os10g33130。其中LOC_Os10g33040与蛋白质绑定、细胞壁形成、蛋白改变、碳水化合物合成、生理学过程、膜蛋白等生命活动相关,可能是我们要寻找的目的基因。
     7.对fp2基因的可能功能进行了相关分析。fp2基因的突变引起了纤维素、木质素含量的降低和半纤维素、硅含量的上升;突变降低了植株的机械强度;突变使植物细胞长度变短,细胞宽度增加;突变体的细胞壁厚度明显降低,细胞壁结构呈现不规则排列状态;植株外观形态发生了明显的变化。但是植物厚壁组织细胞壁只是厚度发生改变并伴随部分缺失,在排列结构上没有太明显的变化,而导管等疏导组织的细胞壁在厚度降低的情况下结构也发生了明显的变化。fp2基因可能在植物体的整个生长过程中调节纤维素微纤维动力学改变或其他的非纤维素物质成分的沉积、排列和调节细胞的分化、延伸等方面,以致影响细胞的形态发生、细胞壁物质的生物合成和沉积、初生壁和次生壁的排列结构、机械强度和植株形态。fp2基因是如何改变植株形态和机械强度的机制是十分复杂的,需要我们克隆此基因来进一步阐明这个问题。
Rice (Oryza sativa L.) mechanical strength is an important agronomic trait of rice, theagronomic reflects the physical character of cell wall. Study of the mutant, which hasaltered in mechanical strength would help us to illustrate the mechanism of cell wallmaterial biosynthesize and functions of some related gene. Study of brittle gene has greatsignificance in higher yield, lodging resistance, disease resistance and resistance areas.Brittle gene in improving the utilization of straw, improving the woody cellulose contentand quality has broad application prospects. In this study, a brittle rice mutant wasidentified and the genetically analyzed, fine mapped and candidate gene cloned. The mainresults were as follows:
     1. A novel brittle rice mutant was isolated from the EMS-induced offspring of indicaEyou532. The fp2 mutant has an alteration in plant morphology. The fp2 has reductionin mechanism strength. The fp2 plants exhibited a semi-dwarf with shorter culm,shorter drooping leaf and a disperse phenotype compared with the wild type, fp2seedlings had much shorter hypocotyls and roots than those of wild-type.
     2. We have studied the fp2 and the wild-type from physical and chemistry character. Theresults showed that, the forces required to break the mutant culms was decreased to70% of that required for the wild type, the culm elongation of mutant decreas to 65% ofthat required for the wild-type. Chemical analyses indicated a decrease in cellulose andlignin content, and an increased in hemicelluloses and silicon
     3. We have studied the fp2 and the wild-type from cytology. Anatomical analyses showedthat the fp2 mutation caused a reduction in cell length and wall thickness, an increase incell width, an obvious alteration of cell wall structure, especial in the vessel elements,which led to a global alteration in plant morphology.
     4. Genetic analysis for the fp2 gene: Through investigations and genetic analysis in fourgenetic populations, as Shuhui527/ fp2, 93-11/fp2, Nipponbare/ fp2 and jing89/fp2,We found that the brittle trait of fp2 was controlled by a pair of recessive gene.
     5. Fining map of fp2: By Nipponbare/ fp2 F_2 population, fp2 was mapped on the long armof Chromosome 10 between the SSR makers RM271 and RM258 with the geneticdistance of 1.1cM and 11.4cM, respectively. We continue look for the new markers tomap the gene, and the gene was mapped between RM271 and RM25547 more.According the above results, the linkage map and complete sequence of the genomic among the fp2 gene were obtained from RGP. We developed some new SSR and InDelmarker to fining map the fp2 gene in the aim area, the fp2 gene was mapped betweenmarker InDel2-15 and InDel4-12 finally, the range about 69kb.
     6. Putative and analyzed candidate genes for fp2: We have analyzed and putative the aimsequence by TIGR Rice Browse, Rice Gaas andhttp://genes.mit.edu/GENSC-AN.html.We have get seven putative genes, LOC_Os10933040, LOC_Os10g33050,LOC_Os10g33070, LOC_Os10g33060, LOC_Os10g33080, LOC_Os10g33104,LOC_Os10g33130. The putative gene LOC_Os10g33040was associated to proteinbinding, cell wall form, protein modification process, physiological process, anatomicalstructure morphogenesis.
     7. We have showed that the fp2 mutation resulted in a reduction in cellulose, lignin, celllength and mechanical strength; an increase in hemicellulose, silicon and cell width; analteration in structure and thickness of cell wall and plant morphology. The fp2 genemight play a role in the regulation of dynamic changes of microfibrils during the allstages of establishment of the microfibril or other noncellulosic components depositionand array as well as during cell elongation, which in turn influences cell morphogenesis,the biosynthesis and deposition of cell wall materials, the formation of primary andsecondary cell wall, mechanism strength and plant morphology. The mechanism aboutthe decline of mechanical strength and the alteration of plant morphology in fp2 iscomplex. It was needed further elucidation the function of fp2 by gene cloning.
引文
1. 李雄彪,吴绮(1993),《植物的细胞壁》北京出版社
    2. Cosgrove, D. J. (1997). Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171 -201.
    3. Varner, J.E. and L. S. Lin (1989). Plant cell wall architecture. Cell 56 (2):231-9.
    4. Brown Jr RM. (2004). Cellulose structure and biosynthesis: what is in store for the 21st century? Journal of Polymer Science. Part A. Polymer Chemistry 42: 487 -495.
    5. Tsekos I. 1999. The sites of cellulose synthesis in algage: diversity and evolution of cellulose-synthesizing enzyme complexes. Journal of Phycology 35: 635-655.
    6. Nishiyama Y, Sugiyama J, Chanzy H, Langan P. 2003. Crystal structure and hydrogen bonding system in cellulose Ia from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society 125: 14300-14306.
    7. Sugiyama J, Persson J, Chanzy H. 1991. Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24: 2461-2466.
    8. Kuga S, Takagi S, Brown Jr RM. 1993. Native folded-chain cellulose II. Polymer 34: 3293-3297.
    9. Kobayashi S, Shoda S. 1995. Chemical synthesis of cellulose and cellooligomers using a hydrolysis enzyme as a catalyst. International Journal of Biological Macromolecules 17: 373-379.
    10. Kobayashi S, Kashiwa K, Kawasaki T, Shoda S. 1991. Novel method for polysa-ccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. Journal of the American Chemical Society 113: 3079-3084.
    11. Lee J, Brown Jr RM, Kuga S, Shoda S, Kobayashi S. 1994. Assembly of synthetic cellulose I. Proceedings of the National Academy of Sciences of the USA 91: 7425-7429.
    12. Baker TA, Bell SP. 1998. Polymerases and the replisome: machines within machines. Cell 92: 295-305.
    13. Brown Jr RM,MontezinosD. 1976.Cellulosemicrofibrils:visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proceedings of the National Academy of Sciences of the USA 73: 143-147.
    14. Mueller SC, Brown Jr RM. 1980. Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. Journal of Cell Biology 84: 315-326.
    15. Itoh T, Brown Jr RM. 1984. The assembly of cellulose microfibrils in Valonia macrophysa Kutz. Planta 160: 372-381.
    16. Tsekos I, Reiss HD. 1992. Occurrence of the putative microfibril-synthesizing complexes (linear terminal complexes) in the plasma membrane of the epiphytic marine red alga Erythrocladia subintegra Rosenv. Protoplasma 169: 57-67.
    17. Brown Jr RM. 1985. Cellulose microfibril assembly and orientation: recent developments. Journal of Cell Science Supplement 2: 13-32.
    18. Okuda K. 2002. Structure and phylogeny of cell coverings. Journal of Plant Research 115: 283-288.
    19. iermayerO, Sleytr UB. 1979. Hexagonally ordered 'rosettes' of particles in the plasma membrane of Micrasterias denticulata Bre'b. and their significance for microfibril formation and orientation. Protoplasma 101: 133-138.
    20. Giddings Jr TH, Brower DL, Staehelin LA. 1980. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. Journal of Cell Biology 84: 327-339.
    21. Brown Jr RM. 1996. The biosynthesis of cellulose. Journal of Macromolecular Science —Pure and Applied Chemistry A33: 1345-1373.
    
    22. Okuda K. 2002. Structure and phylogeny of cell coverings. Journal of Plant Research 115: 283-288.
    23. HerthW.1983. Arrays of plasma-membrane 'rosettes' involved in cellulose microfibril formation of Spirogyra. Planta 159: 347-356.
    
    24. HaM-A, ApperleyDC, EvansBW,HuxhamIM, JardineWG,Vietor RJ, et al. 1998. Fine structure in cellulose microfibrils: NMR evidence from onion and quince. The Plant Journal 16:183-190.
    25. Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N. 1985. Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kutz. Planta 166: 161-168.
    26. Haigler CH, Brown Jr RM. 1986. Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134: 111-120.
    27. Itoh T, Brown Jr RM. 1988. Development of cellulose synthesizing complexes in Boergesenia and Valonia. Protoplasma 144: 160-169.
    28. Tsekos I, Okuda K, Brown Jr RM. 1996. The formation and development of cellulose-synthesizing linear terminal complexes (TCs) in the plasma membrane of the marine red alga Erythrocladia subintegra Rosenv. Protoplasma 193: 33-45.
    29. Okuda K, Sekida S, Yoshinaga S, Suetomo Y. 2004. Cellulosesynthesizing complexes in some chromophyte algae. Cellulose 11: 365-376.
    
    30. Pear JR,KawagoeY, SchreckengostWE.Delmer DP, StalkerDM.1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic sub-unit of cellulose synthase. Proceedings of the National Academy of Sciences of the USA 93: 12637-12642.
    31. Saxena IM, Lin FC, Brown Jr RM. 1990. Cloning and sequencing of the cellulose synthase catalytic sub-unit gene of Acetobacter xylinum. Plant Molecular Biology 15: 673-683.
    32. Wong,H.C, A.L. Fear, et al. (1990). Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci U S A 87 (20): 8130-8134
    33. Saxena,I.M.(1994). Charaterization of genes in the cellulose-synthesizing operon (acs Operon) of Acetobacter xylinum: implication for cellulose crystallization. J.Bateriol 176: 5735-5752.
    34. Delmer,D.P.(1999). CELLULOSE BIOSYNTHESIS: Exciting Times for A Difficult Field of Study. Annu Rev Plant Physiol Plant Mol Biol 50: 245-276.
    35. Arioli, T., L. Peng, et al. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279 (5351): 717-720.
    36. Sugimono,K., R. E. Williamson, et al. 2001. wall architecture in the cellulose-deficient rswl mutant of Arabidopsis thaliana: microfibrils but not microtubules lose their transverse alignment before microfibrils become unrecognizable in the mitotic and elongation zones of roots. Protoplasma 215 (1-4): 172-183.
    37. Williamson, R. E., J. E. Burn, et al. 2001. morphology of rswl, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma 215(1-4): 116-127.
    38. Burn, J. E. , C. H. Hocart, et al. 2002. Function analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis thaliana. Plant Physiol. 129(2): 797-807.
    39. Fargard, M., T. Desnos, et al. 2000. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12(12): 2409-2424.
    40. Scheible, W. R., R. Eshed,et al. 2001. modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci U S A 98(18): 10079-10084.
    41. Roux, F., J. Gasquez, et al. 2004. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines. Genetics 166(1): 449-460.
    42. Turner, S. R. and C. R. Somerville 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant cell 9(5): 689-701.
    43. Taylor, N. G., W. R. Scheible, et al. 1999. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis Plant cell (5): 769-780.
    44. Taylor, N. G., S.Laurie, et al. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell. 2000 12(12): 2529-2540.
    45. Ha, M. A., I. M. Mackinnon, et al. 2002. Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana. Phytochemistry 61(1): 7-14.
    46. Hauser, M. T., A. Morikami, et al. 1995. Conditional root expansion mutants of Arabidopsis. Development. 121(4): 1237-1252.
    47. Fagard, M., T. Desnos, et al. 2000. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12(12): 2409-2424.
    48. Gardiner, J. C, N. G. Taylor, et al. (2003). Control of cellulose synthase complex localization in developing xylem. Plant cell 15(8): 1740-1748.
    49. Nam, J., K. S. Mysore, et al. (1999). Identification of T-DNA tagged Arabidopsis mutant that are resistant to transformation by Agrobacterium. Mol Gen Genet 261(3): 429-438.
    50. Favery, B., E. Ryan, et al. (2001). KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev 15 (1) : 79-89.
    51. Richmond, T. A. and C. R. Somerville (2000). The cellulose synthase superfamily. Plant Physiol 124(2): 495-498.
    52. Hazen, S. P., J. S. Scott-Craig,' et al. (2002). Cellulose synthase-like genes of rice. Plant Physiol 128(2): 336-340.
    53. Zhu, Y., J. Nam, et al. (2003). Agrobacterium-mediated root transformation is inhibited by mutation of Arabidopsis cellulose synthase-like gene. Plant Physiol 133(3): 1000-1010.
    54. Samuza, A. and C. P. Joshi (2004). Cloning and characterization of cellulose synthase-like gene, PtrCSLD2 from developing xylem of aspen trees. Physiol plant 120 (4): 631-341.
    55. Nicol, F., I. His, et al. (1998). A plasma membrane-bound putative endo-l,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. Embo J 17 (19): 5563-5576.
    56. Lane, D. R., A. Wiedemeier, et al. (2001). Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-beta-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol 126(1): 278-288.
    57. Sato, S., Kato, et al. (2001). Role of the putative membrane-bound endo-1,4-beta-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol 42(3): 251-263.
    58. Zuo, J., Q. W. Niu, et al. (2000). KORRIGAN, an Arabidopsis endo-1.4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant cell 12 (7): 1137-1152.
    59. His, I., A. Driouich, et al.(2001). Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane-bound endo-1,4-beta-g;ucanase. Planta 212(3): 348-358.
    60. Miyoshi, K., B. O. Ahn, et al.(2004). PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Pro Natl Acad Sci U S A 101(3): 875-880.
    61. Nicol, F., His, et al. (1998). A plasma membrane-bound putative endo-l,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. Embo J 17 (19) : 5563-5576.
    62. Gillmor, C. S., P. Poindexter, et al. (2002). Alpha-glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. J Cell Biol 156(6): 1003-1013.
    63. Boisson, M, V. Gomord, et al. 2001. Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. Embo J 20 (5): 1010-1019.
    64. Doblin, M. S., I. Kurek, et al. 2002. cellulose biosynthesis in plants : from genes to rosettes. Plant cell physiol 43(12): 1407-1420.
    65. Burk, D. H., B. Liu, et al. 2001. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant cell 13(4): 807-827.
    66. CHENCL. lignin: occurrence in woody tissues, isolation, reactions and structure[A]. In: LewinM, Goldstein IS, eds. Wood structure and compositionl-C]. New York: Dekker, 1991.
    67. Baucher. M. (1998) Biosythesis and genetic engineering of lignin. Crit. Rev. Plant Sci 17:125-197.
    68. Boerjan, W., J. Ralph, et al. (2003).'Lignin Biosynthesis.'Mnu Rev Plant Physiol Plant Mol Biol 54: 519-546.
    
    69. Raes, J., A. Rohde, et al. (2003).Genome-wide characterisation of the lignification toolbox in Arabidopsis. Plant Physiol 133(3):1051-71.
    70. Wout Boerjan, J. R., and Marie Baucher (2003) Lignin: Genetic Engineering and Impact on Pulpi .Critical Reviews in Biochemistry and Molecular Biology 38: 305-350.
    71. Humphreys, J. M. and C. Chappie (2002) , Rewriting the lignin roadmap ,Curr Opin Plant Biol 5 (3):224-9.
    72. Chappie, C. C, T. Vogt, et al. (1992). An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4(11):1413-24.
    73. Atanassova, R., Favet, N., Martz, F., Chabbert, B., Tollier, M. -T., Monties, B., Fritig, B. and Legrand, M (1995). Altered lignin composition in transgenic tobacco expressing Omethyltransferase sequences in sense and antisense orientatio n." Plant J 8:465-77.
    74. Dumas, B., Van Doorsselaere, J., Legrand,M., Fritig, B. et al., 1992, Nucleotide sequence of a complementary DNA encoding 0-methyltransferase from poplar Plant Physiol 98: 796-797
    75. Gowri, G., Bugos, R. C, Campbell, W. H., Maxwell, C. A. and Dixon, R. A. (1991), Stress response in alfalfa Medicago sativa L. X. Molecular and expression of S-adenosyl-L-methionine:caffeic acid 3-0-methyltransferase, a key enzyme of lignin biosynthesis." Plant Physiol. 97: 74-77.
    76. Jorgenson, L. R. (1931)."Brown midrib in maiae and its lignage relations.'J. Am. Soc. Agron. 23:549-557.
    77. Kuc, J. and O. E. Nelson, (1964). The Abnormal Lignins Produced by the Brown-Midrib Mutants of Maize. I .The Brown-Midrib-1 Mutant." Arch Biochem Biophys 105: 103-113.
    78. Porter, K., Axtell, JD, Lechtenberg, VL,& Colenbrander, VF (1978), Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum.'Crop Sci 18:205-209.
    79. Bucholtz, D. Cantrell, RP, Axtell, JD, & Lechtenberg, (1980)."Lignin biochemistry of normal and brown midrib mutant sorghum.'J Agric Food Chem 28: 1239-1241.
    80. Pillonel, C, Mulder, MM, Boon, JJ, Forster, B, & Binder, A. (1991). Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench." Planta 185:538-544.
    81. Chemey, J. H., Axtell, J. D, Hassen, M. M y Anliker, K. S (1988)."Forage quality characterization of a chemically induced brown-midrib mu-tant in pearl millet. Crop Sci 28: 783-787.
    82. Lapierre, C., B. Pollet, et al. (2000). Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase. J Agric Food Chem 48(6): 2326-2331.
    83. Barriere. Y. a O. A. (1993). Brown-midrib genes of maize. Agronomie 13:865-876.
    84. Grand C, P. P. Boudet A, Boudet AM (1985)."Comparison of lignins and enzymes involved in lignification in normal and brown midrib (bm3) mutant corn seedlings Physiol Veg 23: 905-911.
    85. Vignols, F., J. Rigau, et al. (1995). The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7(4): 407-16.
    86. Morrow S.L. (1997)."Molecular characterization of a midrib3 deletion mutation in maize. Mol. Breed 3:351-357.
    87. Lapierre, C., B. Poilet, et al. (2000)."Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase.'J Agric Food Chem 48(6):2326-2331.
    88. Jones, L., A. R. Ennos, et al. (2001).'Cloning and characterization of irregular xylem4 (irx4):a severely lignin-deficient mutant of Arabidopsis.'Plant J 26(2): 205-16.
    89. Zhong, R., A. Ripperger, et al. (2000). Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants." Plant Physiol 123(1): 59-70.
    90. Cano-Delgado, A. I., K. Metzlaff, et al (2000). The elil mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127(15): 3395-405.
    91. Cheng, J. C., K. Lertpiriyapong, et al. (2000). The role of the Arabidopsis ELD1 gene in cell development and photomorphogenesis in darkness. Plant Physiol. 123 (2):509-20.
    92. Zhong, R., J. J. Taylor, et al. (1997)."Disruption of interfascicular fiber differentiation in an Arabidopsis mutant." Plant Cell 9(12): 2159-70.
    93. Ratcliffe, O. J., J. L. Riechmann, et al. (2000). INTERFASCICULAR FIBERLESSI is the same gene as REVOLUTA. Plant Cell 12(3):315-317.
    94. Talbert, P. B., H. T. Adler, and B. Parks, (1995)."The revoluta gene is mecessary for apical meristem development and for limiting cell division in the leaves and stems of Arabidopsis thaliana." Development 121:2723-2735.
    95. Turner, S. R. and M. Hall (2000). The gapped xylem mutant identifies a common regulatory step in secondary cell wall deposition. Plant J 24(4):477-88.
    96.谢明,陈新,瞿礼嘉等.1996.一种水稻蛋白酶抑制剂基因的克隆及其结构分析.植物学报.38(6):444-450.
    97. 杨勤忠,杨佩文,王群等.2001.水稻抗稻瘟病基因同源序列的克隆及测序分析.中国水稻科学,15(4):241-247.
    98. Margis-Pinheiro M, Zhou X R, Zhu Q H, et al. 2005. Isolation and characterization of a Ds-tagged rice (oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep, 23(12): 819-833.
    99. 林慧贤,刘筱斌,李发强等.2001.水稻小GTP蛋白基因Osrab5B基因的克隆和鉴定.中国水稻科学.11(3):9-14.
    100. Nofi Kurata, Kazumaru Miyoshi, Ken-Ichi Nonomura, et al., 2005. Rice Mutants and Genes Related to Organ Development, Morphogenesis and Physiological Traits. Plant Cell Physiol. 46(1): 48—62(2005)
    101. Li, Y.H., Qian, Q., Zhou, Y., Yah, M., Sun, L., Zhang, M., Fu, Z., Wang, Y., Han, B., Pang, X., Chen, M., and Li, J. (2003b). BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell, 15:2020-2031.
    102. Haga, K., Takano, M., Neumann, R., and Iino, M. (2005). The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell, 17:103-115.
    103. Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Shibata, Y., Gomi, K., Umemura, I., Hasegawa, Y., Ashikari, M., Kitano, H., and Matsuoka, M. (2005). Crown rootlessl, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell, 17:1387-1396
    104. Jeon J S,Lee S, Jung K H, et al. 2000. T-DNA insertional mutagenesis for activation tagging in flee.Plant Physiology, 130:1636-1644.
    105. Sallaud, C., Gay, C., Larmande, P., Bes, M., Piffanelli, P., Piegu, B., Droe, G., Regad, F., Bourgeois, E., Meynard, D., Perin, C., Sabau, X., Ghesquiere, A., Glaszmann, G.C., Delseny, M., and Guiderdoni, E. (2004). High throughput TDNA insertion mutagenesis in rice: A first step towards in silico reverse genetics. Plant J. 39: 450-464.
    106. Zhang,J., Feng,Q., Jin,C., Qiu,D., Zhang,L., Xie,K., Yuan,D., Han,B., Zhang,Q. and Wang,S. (2005) . Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63. Plant J. 42(5): 772-780.
    107. Zhu QH, Hoque MH, Dennis ES, Upadhyaya MN. (2003). Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol, 3:1-13.
    108. 闫双勇,智庆文,刘欣洁,张红伟,谭振波,李仕贵.(2004).水稻T-DNA插入突变库构建研究进展.中国生物工程杂志,24(6):48-53.
    109. Walden R, Hayashi H, Schell J. 1991. T-DNA as a gene tagging.Plant J, 1:281-288.
    110. Sanghyun Lee, Ki-Hong Jung, Gynheung An and Yong-Yoon Chung. (2004). Isolation and Characterization of a Rice Cysteine Protease Gene, OsCP1, Using T-DNA Gene-Trap System. Plant Molecular Biology, Vol.54,755 - 765.
    111. Izawa, T.,T.Ohnishi,T.Nakano,N. Ishida, H. Enoki, H. Hashimoto, K. Itoh, R. Terada, C. Wu, C. Miyazaki, T. Endo, S. Iida and K. Shimamoto. (1997). Transposon tagging in rice. Plant Molec. Biol., 35: 219-229
    112. Shimamoto K, Miyazaki C, Hashimoto H, Izawa T, Itoh K,Terada K, Inagaki Y, Iida S. (1993). Trans-activation andstable integration of the maize transposable element Dscotransfected with the Ac transposase gene in transgenicrice plants. Mol Gen Genet, 239: 354-360.
    113. Enoki. H., T. Izawa, M. Kawahara, M. Komatsu, S. Koh, J. Kyozuka and K. Shimamoto. (1999). Ac as a tool for functional genomics of rice. Plant J., 19: 605-613.
    114.朱正歌,肖晗,傅亚萍,胡国成,斯华敏,于永红,张景六,孙宗修。(2001)。Construction of transgenic rice populations by inserting the maize transponson Ac/Ds and genetic analysis for several mutants. Chin J Biotech (生物工程学报),17(3): 288-292.
    115. R. Greco, Pieter B.F. Ouwerkerk, Christophe Sallaud, Ajay Kohli, Lucia Colombo, Pere Puigdomenech, Emmanuel Guiderdoni, Paul Christou, J. Harry C. Hoge, and Andy Pereira. (2001). Transposon Insertional mutagenesis in Rice。 Plant Physiol, Vol. 125: 1175-1177.
    116. Kolesnik, Tatiana, Szeverenyi, Ildiko, Bachmann, Doris, Kumar, Chellian Santhosh, Jiang, Shuye, Ramamoorthy, Rengasamy, Cai, Minnie, Ma, Zhi Gang, Sundaresan, Venkatesan & Ramachandran, Srinivasan. (2004). Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences.The Plant Journal, 37 (2): 301 -314.
    117. Chyr-guan Chem, Ming-jen Fang, Yue-ie C. Hsing, Pochang Lu, Sumay Yu. (2005). TRIM -Exploitation of A T-DNA Knockout/Activation-Tagging Rice Mutant Collection In Taiwan. Plant & Animal Genomes XIII Conference (Town & Country Convention Center San Diego, CA), 2,277: 15-19
    118. Shimamoto K, Miyazaki C, Hashimoto H, Izawa T, Itoh K,Terada K, Inagaki Y, Iida S. (1993). Trans-activation andstable integration of the maize transposable element Dscotransfected with the Ac transposase gene in transgenicrice plants. Mol Gen Genet, 239: 354-360.
    119. Kurata, N., Miyoshi, K., Nonomura, K.I., Yamazaki, Y., and Ito, Y. (2005). Rice mutants and genes related to organ development, orphogenesis and physiological traits. Plant Cell Physiol, 46: 48-62.
    120. Droc, G., Ruiz, M., Larmande, P., Pereira, A., Piffanelli, P., Morel, J. B., Dievart, A., Courtois, B., Guiderdoni, E., Perin, C. (2006). OryGenesDB: a database for rice reverse genetics. Nucl. Acids Res. 34: 736-74
    121. Upadhyaya NM, Zhou X-R, Ramm K, Zhu Q-H, L.Wu, Eamens A, Sivakumar R, Kato T, Yun D-W, Kumar S, Narayanan KK, Thomas G, Peacock WJ and Dennis ES (2002). An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol, 29:547-559.
    122.栾维江,孙宗修。(2005).Ac/Ds标签系统与水稻功能基因组学。植物生理与分子生物学学报,31(5):441-450
    123.朱克明,曾大力,郭龙彪,钱前。(2006).水稻突变体的创制与遗传分析.中国稻米,7:16-17
    124. Goff S. A, D. Ricke, et al.(2002).A draft sequence of the rice genome (Oryza sativa L. ssp, japonica).'Science 296(5565):92-100.
    125. Feng, Q., Y. Zhang, et al. (2002).Sequence and analysis of rice chromosome 4 Nature 420 (6913):316-20.
    126. Sasaki, A., M. Ashikari, et al. (2002)o "Green revolution: a mutant gibberellin-synthesis gene in rice.'Nature 416(6882):701-2.
    127. Hiei, Y., S. Ohta, et al. (1994). Efficient transformation of rice (Oryza sativa. L.) mediated by Agrobaeterium and sequence analysis of the boundaries of the T-DNA.. Plant J 6(2):271-82.
    128. Heidi U. B(?)hnert, Isabelle Fudal, Waly Dioh, Didier Tharreau, Jean-Loup Notteghem and Marc-Henri Lebrun. (2004). A Putative Polyketide Synthase/Peptide Synthetase from Magnaporthe grisea Signals Pathogen Attack to Resistant Rice. Plant Cell. , 16(9): 2499-2513.
    129. Zhu, Q.H., Ramm, K., Shivakkurnar, R., Dennis, E.S., and Upadhyaya, N.M. (2004). The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol., 135: 1514-1525.
    130. Ashikari, M., Wu, J.Z., Yano, M., Sasaki, T., and Yoshimura, A. (1999). Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the subunit of GTP-binding protein. Proc. Natl. Acad. Sci. USA, 96: 10284-10289.
    131. Suzaki, T., Sato, M., Ashikari, M., Miyoshi, M., Nagato, Y., and Hirano, H.Y. (2004). The gene FLORAL ORGANNUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA 1. Development, 131: 5649-5657.
    132. Komatsu, K., Maekawa, M., Ujiie, S., Satake, Y., Furutani, I., Okamoto, H., Shimamoto, K., and Kyozuka, J. (2003a). LAX and SPA: Major regulators of shoot branching in rice. Proc. Natl. Acad. Sci. USA, 100:11765-11770
    133. Doi, K., tzawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Gene Dev., 18: 926-936.
    134. Li Xueyong, Qian Qian, et al. (2003). Control of tillering in rice. Nature, 422(10):618-621.
    135. Komatsu, M., Chujo, A., Nagato, Y., Shimamoto, K., and Kyozuka, J. (2003b). FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in dee spikelets. Development, 130:3841-3850.
    136. Yoshimura S, Yamanouchi U, Kurata N, et al. (1996). Identification of a YAC clone carrying the Xal allele,a bacterial blight resistance gene in rice. Theor Appl Genet, 93:117-122.
    137. Komori, T., Ohta, S., Murai, N., Takakura, Y., Kuraya, Y., Suzuki, S., Hiei, Y., Imaseki, H., and Nitta, N. (2004). Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J. 37: 315-325
    138. Chen XW, Li SG, Ma YQ, Li HY, Zhou KD, Zhu LH.(2004). Marker-assisted selection and pyramid- ding for three blast resistance genes, Pi-d (t) 1, Pi-b, Pi-ta2, in rice. Sheng Wu Gong Cheng Xue Bao. 20(5):708-14.
    139. Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C, and Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 270: 1804-1816.
    140. Zeng, L.R., Qu, S., Bordeos, A., Yang, C, Baraoidan, M., Yan, H., Xie, Q., Nahm, B.H., Leung, H., and Wang, G.L. (2004). Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell: 16: 2795-2808.
    141. Yamanouchi-U, Yano-M, Lin-H, Ashikari-M, Yamada-K. (2002). A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences of the United States of America, vol.99: 7530-7535.
    142. GAO Zhenyu, ZENG Dali, CUI Xia, ZHOU Yihua, YAN Meixian, HUANG Danian, LI Jiayang, QIAN Qian. (2003). Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Science in China Series C-Life Sciences, 6, Vol.46: 661-668.
    143. Mori, M., Nomura, T., Ooka, H., Ishizaka, M., Yokota, T., Sugimoto, K., Okabe, K., Kajiwara, H., Satoh, K., Yamamoto, K., Hirochika, H., and Kikuchi, S. (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol., 130: 1152-1161.
    144. Ashikari, M., Sakakibara, H., Lin, S.Y., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E., Qian, Q., Kitano, H., and Matsuoka, M. (2005). Cytokinin oxidase regulates rice grain production. Science, 309:741-745
    145. Nonomura, K.I., Miyoshi, K., Eiguchi, M., Suzuki, T., Miyao, A., Hirochika, H., and Kurata, N. (2003). The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 15: 1728-1739.
    146. Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han CD, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H. (2004). Rice mutant resources for gene discovery. Plant Mol Biol, 54(3):325-324.
    147. The Rice Full-length cDNA Consortium, (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science, 301: 376-379.
    148. Yano, M. and T. Ebitani. (2002). Development of a series of chromosome segment substitution lines and their utilization in the genetic analysis of quantitative traits in rice. NIAS Annual Report: 27-28.
    149. B. A. ANTONIO, A. MIYAO, Y. NAGAMURA and T. SASAKI.(2003). The Rice Genome Resource Center as an outlet for distribution of biological materials from the rice genome project. Rice Genetics Newsletter, Vol. 20:9-10.
    150. Pankaj Jaiswal, Junjian Ni, Immanuel Yap, Doreen Ware, William Spooner, Ke Youens-Clark, Liya Ren, Chengzhi Liang, Wei Zhao, Kiran Ratnapu, Benjamin Faga, Payan Canaran, Molly Fogleman, Claire Hebbard, Shuly Avraham, Steven Schmidt, Terry M. Casstevens, Edward S. Buckler, Lincoln Stein and Susan McCouch.(2006). Gramene: a bird's eye view of cereal genomes. Nucleic Acids Research, Vol. 34: D717-D723.
    151. Kokubo, A., et al., (1991). Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall." Plant Physiol 97: 509-514.
    152. Kokubo, A., S. Kuaishi, and N. Sakurai (1989).Culm strength of barley." Plant Physiol 91:876-882.
    153. Yeo, U.D. et al., (1995). Cell wall polysaccharides of callus and suspernsion-cultured cells from three cellulose less mutants of barley (hordeum vulgare L).Plant cell Physiol 36: 931-936.
    154. Kimura, S., N. Sakurai, and T. Itoh, (1999). Differential distrbution of cellulose synthesizing complexs in brittle and no-brittle strains of barley." Plant cel Physiol 40:335-338.1
    155. Kohel R. J C. R Benedict, and G. M. Jividen (1993)."Incorporation of [14C}glucose into crystalline cellulose in aberrant fibers of a cotton mutant." Crop Science 33:1036-1040.
    156. Carpita, N., and McCann, M. (2000). The cell wall. In Biochemistry and Molecular Biology of Plants, B.B. Buchanan, W. Gruissem, and R.L. Jones, eds (Rockville, MD: American Society of Plant Physiologists), pp. 52-108.
    157. Taylor, N.G., Scheible, W., Cutler, S., Somerville, C.R., and Turner, S.R. (1999). The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell. 11, 769-779.
    158. Turner, S.R., and Somerville, C.R. (1997). Collapsed xylem phenotype of Arabidopsis in the secondary cell wall. Plant Cell 9,689-701.
    159. Taylor, N.G., Laurie, S., and Turner, S.R. (2000). Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12,2529-2539.
    160. Jones, L., Ennos, A.R., and Turner, S.R. (2001). Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of Arabidopsis. Plant J. 26,205-216.
    161. Zhong, R., and Ye, Z. (1999). IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11, 2139-2152.
    162. Ratcliffe, O.J., Riechmann, J.L., and Zhang, J. (2000). INTERFASCICULAR FIBERLESS1 is the same gene as revoluta. Plant Cell 12, 315-317.
    163. Zhong, R., Burk, D.H., Morfison, W.H., and Ye, Z.H. (2002). A kinesinlike protein is essential for oriented deposition of cellulose microfibriis and cell wall strength. Plant Cell 14, 3101-3117.
    164. Burk, D.H., and Ye, Z.H. (2002). Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14, 2145-2160.
    165. Nagao, S. and T.Takahashi,1963, Trail construction of twelve linkage groups in Japanese rice. (Cnnetical studios on rice plant. XxVII).J. Fac. Agr. Hakkaido Univ., 53(1):72-130
    166. Takahashi, M., T. Kinoshita and K. Takeda, 1968, Character expression and causal genes, of some mutants in rice plant(Genetical studies on rice plant. Genetical studies on rice plant. kaido Univ., 55(4):496—512.
    167. SanchPa., A.C and G. S. Khush, 1994, Chromosomal location of some marker genes in rice using the primary trisomics. J. Herecl., 85 : 297—300.
    168. Nagao, S. and T.Takahashi, 1963, Trail construction of twelve linkage groups in Japanese rice. (Cnnetical studios on rice plant. XxVII).J.J. Fac. Agr. Hakkaido Univ.,53(1):72—130.
    169. Takahashi, M., T. Kinoshita and K. Takeda, 1968, Character expression and causal genes, of some mutants in rice plant(Genetical studies on rice plant.) Fac. Agr. Hakkaido Univ., 55 (4):496—512.
    170. Iwata, N and T. Omura, 1977, Linkage studies in rice (Orvza sativia L.) On some mutants derived rom chronic gamma irradiation. J. Fac. Agr. Hakkaido Univ., 21:117—127.
    171. Iwata. N., H. Satoh and A. Yoshimura, 1989a, Linkage map for Nishimura's chromosome 8. Rice Genetic Newsiltter, (6):106-108.
    172. Yun Hu, Ruiqin Zhong, W. Herbert Morrison Ⅲ Zheng-Hua Ye (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization 217:912-921.
    173. 张梅芳,张景六插入含Ds因子的T DNA产生的水稻脆秆突变株的遗传和分子分析植物生理与分子生物学学报Journal of Plant Physiology and Molecular Biology 2002.28(2):111-116.
    174. 沈革志,王新其,王江,宛新衫等.2002.水稻脆杆突变体bcm581-1茎杆形态结构观察、理化测定和遗传分析35(4):307-312.
    175. Yu,J., S. Hu, et al. (2002).A draft sequence of the rice genome (Oryza sativa L.ssp.indica). Science 296(5565):79-92.
    176. Yamaguchi Y .Etudes d'heredite sur ia couleur de glumes chez ia riz. Bot. Mag.Tokyo 1921, 35:106-112.
    177. Sasaki T, Matsumoto T, Yamamoto K, et al., The genome sequence and structure of rice chromosome 1, Nature, 2002, 420:312-3316
    178. Feng Q, Zhang Y, Hao P, et al., Sequence and analysis of rice chromosome 4, Nature, 2002, 420:316-320.
    179. Goff S, Ricke D, Lan TH et al., A draft sequence of the rice genome (Oryza sativa L. Ssp. japonica), science, 2002, 296, 5:92-100
    180. 李正理,植物制片技术.北京:科学出版社.1978,Q94-34/285-2.
    181. Kokubo A, Sakurai N, Kuraishi S, Takeda K (1991) Culm brittleness of barley (Hordeum vulgate L.) mutants is caused by small number of cellulose molecules in cell wall. Plant Physioi 97:509-514.
    182. Dublin MS, Kurek I, Jaeob-Wilk D, Delmer DP (2002) Cellulose biosynthesisin Plants: from genes to rosettes. Plant Cell Physiol 43: 1407-1420.
    183. Kirk, T.K., and Obst, J.R. (1988). Lignin determination. Methods Enzymol. 161, 87-101.
    184. Van Soest P J, Robertson J B. Analysis of forages and fibrous food. A labormanual for Animal Science 613. Cornell University, Ithaca, New York: 1985:74-75,80-82.
    185. Van Soest P J, Robertson J B, Lewis B A. Method for dietary fiber, neutral detergent fiber, and nonstarch polysaecharides in relation to animal nutrition. Journal of Dairy science, 1991,74:3583-3597.
    186. 朱立煌,徐吉臣,陈英.(1994).用分子标记定位一个未知的抗稻瘟病基因[J].中国科学(B辑),24(10):1048~1052
    187. 徐云碧,沈利爽,M cCouch S R(1997)。利用微卫星标记扩充水稻双单倍体群体的遗传图谱[J].科学通报,42(20):2220~2223.
    188. McCouch S R, Kochert G, Yu Z Y, et al. Molecular mapping of rice chromosomes. Theor Appl Genet,1988,7 6:815—829.
    189. Chen X. Temnvkh S.Xu Y, et al. Development of a microsatellitef ramework map providing genome-wide coverage in rice ( Oryza sativa. L .).TheorA Ppl Genet, 1997,9 5:553—567.
    190. 刘仁虎,孟金陵(2003) MapDraw: A Microsoft Excel Macro for Drawing Genetic Linkage Maps Based on Given Genetic Linkage Data. 遗传, Vol. 25, 3:317-321.
    191. Burk, D.H., Liu, B., Zhong, R., Morrison, W.H., and Ye, Z.H. (2001). A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13,807-827.
    192. 沈恒胜,陈君琛等,2004,低纤维基因突变水稻稻草细胞壁组分动态发育分析,中国农业科学,37(7):943-947。
    193. 王健,朱锦懋,林青青等,2006,小麦茎秆结构和细胞壁化学成分对抗压强度的影响,科学通报,51(5):1-7
    194. 王立新,郭强,苏青.玉米抗倒性与茎秆显微结构的关系.植物学通报,1990,7(8):34~36
    195. Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J, 1993, 3(1): 1~30.
    196. Sugimoto, K., R. E. Williamson, et al. (2001)."Wall architecture in the cellulose-deficient rswl mutant of Arabidopsis thaliana: microfibrils but not microtubules lose their transverse alignment before microfibrils become unrecognizable in the mitotic and elongation zones of roots." Protoplasma 215 (1-4): 172-83.
    197. Katsuyuki Tanaka, Kazumasa Murata, Muneo Yamazaki, Katsura Onosato, Akio Miyao, and Hirohiko Hirochika. 2003. Three Distinct Rice Cellulose Synthase Catalytic Subunit Genes Required for Cellulose Synthesis in the Secondary Wall1. Plant Physiology 133: 73-83.
    198. 钱前,李云海,曾大力等,2001,水稻脆性突变体的分离及其基因定位,科学通报,46(15):1273-1276。
    199. Nagato Y, Yoshimura A (1998) B. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newslett 15:13-74
    200. Mathilde Fagard, Thierry Desnos, Thierry Desprez et al., 2000, PROCUSTE1, Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis, Plant cell, 12:2409-2423.
    201. Yun Hu, Ruiqin Zhong, W. Herbert Morrison Ⅲ, Zheng-Hua Ye, 2003, The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization, 217:912-921.
    202. Lukowitz W, Gillmor C S, Scheible W R. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative work-ing for you. Plant Physiol, 2000, 123: 795~805.
    203. Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in flee, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473~2483.
    204. Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α sub-unit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98(14): 7922~7927.
    205. Yamanouchi U, Yano M, Lin H X, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99(11): 7530~7535.
    206. Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-l: Rice "Green Revolution Gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9:11~17.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.