岷江上游山地森林—干旱河谷交错带不同土地利用类型土壤有机碳
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态交错带(Ecotone)是全球气候变化的最敏感区域,对生态交错带不同土地利用类型土壤有机碳的研究,可为生态交错带土地利用和有效管理提供基础数据。岷江上游山地森林—干旱河谷交错带作为典型的生态过渡区,在抑制干旱河谷上延和延伸亚高山森林生态系统的功能等方面具有十分重要的作用。本文按典型选样的方法,研究了岷江上游山地森林-干旱河谷交错带6种不同土地利用类型的土壤有机碳、微生物生物量碳、水溶性有机碳、易氧化态碳、土壤水分物理性质及它们之间的关系。研究结果表明:
     (1)6种土地利用类型土壤有机碳含量介于8.86±3.99 gC·kg-1-17.52±7.77gC·kg-1之间,有机碳储量介于56.56±7.21 tC·hm-2-104.15±4.84 tC·hm-2之间,并均随土壤深度的增加而降低;有机碳含量及碳储量的大小顺序都表现为:天然川滇高山栎次生林>灌木林地>灌丛地>经济林>人工刺槐林>农耕地;其中天然川滇高山栎次生林土壤有机碳含量及有机碳储量显著高于其他5种土地利用类型(p<0.05)。这表明,在岷江上游山地森林—干旱河谷交错带不同土地利用类型中,森林土壤是最大的碳储存者。但由于人为干扰以及交错带生态系统的脆弱性及其叠加效应,导致岷江上游山地森林—干旱河谷交错带6种土地利用类型的土壤有机碳低于同区域(岷江上游米亚罗林区)土壤的平均有机碳。
     (2)6种土地利用类型土壤微生物生物量碳含量介于145.34±64.70mgc·kg-1-411.55±102.12mgc·kg-1之间,其大小顺序依次为:天然川滇高山栎次生林>灌木林地>灌丛地>人工刺槐林>经济林>农耕地;天然川滇高山栎次生林的土壤微生物生物量碳含量高于灌木林地,显著高于其它4种土地利用类型(p<0.05);6种土地利用类型的土壤微生物生物量碳含量在0-40cm土层下降明显,随着土层的加深,土壤微生物生物量碳含量的降低幅度逐渐减小;6种土地利用类型的土壤微生物生物量碳占有机碳的比率都比较低,介于1.36%-2.35%之间,表明交错带内土壤有机碳有不断下降的趋势。
     (3)6种土地利用类型的土壤水溶性有机碳含量介于84.41±16.09 mgc·kg-1-198.27±17.75mgc·kg-1之间,其大小顺序依次为:天然川滇高山栎次生林>人工刺槐林>灌木林地>灌丛地>经济林>农耕地,且均随土层的加深而降低;天然川滇高山栎次生林的水溶性有机碳含量显著高于其它5种土地利用类型(p<0.05);6种土地利用类型的土壤水溶性有机碳占有机碳的比率介于0.82%-1.34%之间,以人工刺槐林最高,灌木林地最低;受交错带内土壤水分特异分布规律影响,6种土地利用类型土壤水溶性有机碳占有机碳的比率在20-40cm土层较高。
     (4)6种土地利用类型的土壤易氧化态碳含量介于0.90±0.26gc·kg-1-1.84±0.25 gc·kg-1之间,其大小顺序依次为:天然川滇高山栎次生林>灌木林地>灌丛地>人工刺槐林>经济林>农耕地;天然川滇高山栎次生林的易氧化态含量高于灌木林地,显著高于其它4种土地利用类型(p<0.05);各土地利用类型的土壤易氧化态碳含量均随土层的加深而降低;6种土地利用类型的土壤易氧化态碳占有机碳的比率都比较高,介于7.77%-10.50%之间,表明交错带内土壤碳的活性大,容易转化。
     (5)6种土地利用类型的土壤有机碳、微生物生物量碳、水溶性有机碳和易氧化态碳与土壤容重均呈极显著负相关关系(p<0.01);受交错带自然条件和人为干扰的双重影响,6种土地利用类型的有机碳和活性有机碳与土壤含水量的相关性不同;6种土地利用类型的土壤有机碳和活性有机碳与土壤PH多呈负相关关系,且相关性不显著,但交错带内土壤PH值过高,在一定程度上不利于土壤有机碳和活性有机碳的积累。
     (6)农耕地转变为经济林和人工刺槐林后,土壤有机碳含量分别提高了36.73%和21.93%,有机碳储量分别提高了50.56%和25.13%,易氧化态碳含量增加了4.58%和7.53%,微生物生物量碳含量增加了13.16%和23.31%,水溶性有机碳增加的幅度较大,分别为27.28%和71.06%。这表明退耕地还林后土壤有机碳和活性有机碳都增加,但增加的程度与植被恢复的类型有关;同时土壤水溶性有机碳对土地利用变化更为敏感。
Ecotone is a sensitive region for global climate change, and study on soil organic carbon under different land use types at ecotone could provide basal data for land management.The mountain forest-drought valley ecotone in the upper reaches of Minjiang River is a typical tension zone,It can inhibit the extension of the drought valley and extension the function of subalpine forest ecosystem.This paper usethe method of sampling by the typical, research on soil organic carbon、microbial biomass carbon、water-soluble organic carbon、readily oxidation carbon、soil water physical property and the relationship between them at mountain forest-drought valley ecotone in the upper reaches of Minjiang River. the results show that:
     (1) Soil organic carbon content under Six kinds of land use lies between 8.86±3.99 gC·kg-1-17.52±7.77gC·kg-1,Soil organic carbon storage lies between 56.56±7.21 tC·hm-2-104.15±4.84 tC·hm-2,soil organic carbon content and storage were decreased with the soil depth increment.Soil organic content and storage followed the order of Quercus semicarpifolia secondary forest>shrubbery > shrub> economic forest> Robinia pseudoacacia plantation> farmland.Among them, the Soil organic carbon storage under Quercus semicarpifolia secondary forest higher than the other five kinds of land use(p<0.05); show that the forest Soil is the largest carbon storage under different land use types at mountain forest-drought valley ecotone in the upper reaches of Minjiang River. However, because of the Jamming and frangibility of ecotone, soil organic carbon of mountain forest-drought valley ecotone in the upper reaches of Minjiang River under six kinds of land use was lower than the same area(Miyaluo forest area in the upper reaches of Minjiang River).
     (2) Soil microbial biomass carbon content under six kinds of land use lies between 145.34±64.70mgc·kg-1-411.55±102.12 mgc·kg-1,they followed the order of Quercus semicarpifolia secondary forest> shrubbery> shrub> Robinia pseudoacacia plantation >economic forest> farmland .Soil microbial biomass carbon content of Quercus semicarpifolia secondary forest higher than the shrubbery, it were much higher than the other four types of land use(p<0.05).The extent of reduction were significantly in the 0-40cm soil layer under Six kinds of land use,it were decreases gradually with the soil depth increment.The percentage was lower which of Soil microbial biomass carbon to soil organic carbon under Six kinds of land use lies between 1.36%-2.35%, show that the Soil organic carbon have downward trend at ecotone.
     (3) water-soluble organic carbon content of soil profile under six kinds of land use lies between 84.41±16.09mgc·kg-1-198.27±17.75mgc·kg-1,they followed the order of Quercus semicarpifolia secondary forest>Robinia pseudoacacia plantation>shrubbery>shrub>economic forest> farmland,water-soluble organic carbon were decreased with the soil depth increment.water-soluble organic carbon content of Quercus semicarpifolia secondary forest were much higher than the other five types of land use(p<0.05);The percentage of soil water-soluble organic carbon to Soil organic carbon under Six kinds of land use lies between 0.82%-1.34%,the robinia pseudoacacia plantation presents a maximum conductivity and a minimum shrubbery.Effect of specific distribution of soil moisture at the ecotone,the percentage were higher in the 20-40cm soil layer which of water-soluble organic carbon to soil organic carbon under six kinds of land use.
     (4)Readily oxidation carbon content under six kinds of land use lies between0.90±0.26gc·kg-1-1.84±0.25 gc·kg-1,they followed the order of Quercus semicarpifolia secondary forest>shrubbery>shrub>Robinia pseudoacacia plantation>economic forest> farmland; Readily oxidation carbon content of Quercus semicarpifolia secondary forest higher than the shrubbery, it were much higher than the other four types of land use(p<0.05); soil readily oxidation carbon content were decreased with the soil depth increment under all kinds of land use types.The percentage was higher which of Soil readily oxidation carbon to soil organic carbon under Six kinds of land use lies between 7.77%-10.50%, show that the Soil organic carbon have high reactivity and easy conversion at ecotone.
     (5)soil organic carbon,microbial biomass carbon,water-soluble organic carbon and readily oxidation carbon under six kinds of land use showed a significant negative correlation with Soil bulk density (p<0.01);Soil organic carbon and soil active organic carbon of six kinds of land use have different correlation with soil water content under the double influence which natural conditions of ecotone and human disturbance.Soil organic carbon and soil active organic carbon of Six kinds of land use have negative correlation with soil PH and they had a great closely correlation.The ecotone of the soil PH is too high but go against accumulation in soil organic carbon and soil active organic carbon at a certain extent.
     (6)Arter farmland transformed into robinia pseudoacacia plantation and economic forest ,Soil organic carbon content increased by36.73% and 21.93%, Soil organic carbon storage increased by 50.56% and 25.13%, readily oxidation carbon content increased by 4.58% and 7.53%, microbial biomass carbon content increased by 13.16% and 23.31%, there was a big rate of increase amplitude of the water-soluble organic carbon,increased by 27.28% and 71.06%.It shows that the soil organic carbon and soil active organic carbon is increased after conversion of cropland to forest, but the degree of this increase is related to vegetation types.The water-soluble organic carbon is more sensitive to land use change at mountain forest-drought valley ecotone.
引文
Anderson T H,Domsch K H.Ratios of microbial biomass carbon tototal organic carbon in arable soils[J].Soll boil Biochem,1989,21:471-479.
    Anderson TH,Domsch KH.Application of eco-physiological quotients(q CO2 and qD)on microbial biomasses fron soils of different cropping histories[J].Soil Biol,Biochem,1990,22:251-255
    Baties,et al.World inventory of soil emission potentials geographic quantificationof soil factors that control fluxes of gerrnhouse gases[J].Studies in Environmeatal science,1995,640-650.
    Blair,GJ.Lefroy,R.D.B,Lisle,L.Soil carbon fractions basde on their degree of oxidation and the development of a carbon management index for agricultural systems[J].Australian Journal of Agricultural Research,1995,46,1459-1466.
    Bolan NS,Baskaran S,Thiagarajan S. AN evaluation of the measure method dissolved organic carbon in soils,manures,sludge and stream water.Commun Soil Sic[J].Plant Anal,1996,27(13-14):2732-2737
    Bolinder L.C,Angers D A,Gregorich E G,et al.The response of soil quality indicators to conservation management[J].Can J Soil,1999,79:37-45.
    Burford J R,Bremner J M.Relationships between denitrification capacities of soils an d total water soluble an d readily decompos able soil organic matter[J].Soil Biol Biochem,1975,7:389-394.
    Chantigny M H,Angers D A,Prevost D,et al.Dynamics of Soluble organic C and C mineralization in cultivated soils with varying N fertilization[J].Soil Biol Biochem,1999,31:543-550.
    CHRIST M J,DAVID M B.Dynamics of extractable organic carbon in spodosol forest floors[J].Soil Biol Biochem,1996,28:1171-1179
    Delprat L,Chassin P,Linerrs M,et al.Characrerization of dissolved organic in cleared forest soils converted to maize cultivation[J].Euro J Agron,1997,7:201-210
    Dixon R K,Brown S,Houghton R A,et al.Carbon pools and flux of global forest ecosystems [J].Sciense,1994,263:185-190.
    Gregorich EG,Ellert BH,Monreal CM. Turnover of soil organic matter and storage of corn residue carbon estimated from natural 13Cabundance[J].Can J Soil Sci,1995,75:161-167.
    Holland M M.SCOPE/MAB technical consultations on landscape houndaries:report on A SCOPE/MAB workshop on ecotones[C].Biol,Int,1998,17,47-106.
    Houghton,R A,Hackler,J L,Lawrence,K T.The US carbon budget:contributions from land use change[J].Science,1999,285:574-578.
    Insam H et al. Influence of macroclimate on soil microbial biomass[J].Soil Boil,Biochem, 1989,21:211-221.
    Jamen HH.Carbon cycling in earth systems-A soil science persp ec tive[J].Agric Eorstot Enviorn,2004,104:399-417.
    Jenkinson D S,Ladd J N. Miciobial biomass in soil,measurement and turnover[J].Soil biochemistry,Marcel Dekker,Inc,New York,1981,5:415-471
    JenniferSP.Changes in soil carbon and nitrogen after contrasting land use transitions in notrheastern Costa Rica[J].Ecosystemx,2004,7:134-146.
    Kaiser K,Zech w.Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfatem[J].Soil Sci Soc Am J,1998,62:129-136.
    Kaur B,Gupta S R,Singh G.Carbon storage and nitrogen cycling in silvopastoral systems on a sodic soil in northwestern India[J].Agroforestry Systems,2002,54:21-29.
    keeling C D,Bacastow RB.Industrial gasses on climate:In Energy and climate[J],National Academy of Sciences, Washington D C,USA,1997.
    Knopes J,Tilman D.Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J].Ecol ogy,2000,81,88-98.
    Konyushkov,D.Y.Geochemical history of carbon on the planet:implications for soil carbon studi es in soil processes and carbon cycle CRC press[J].Inc,1998:293-313.
    Lal,R.Soil carbon dynamics in cropland and rangeland[J].Environmental Pollution,2002,116:353-362. Lal,R.Soil erosion and the global carbon budget[J].Environment international,2003,29:437-450.
    Li Z,Zhao QG.Organic caron concentration and distribution in soils under different land uses in tropical and subtropical China[J].Plant and Soil,2001,231:175-185.
    Ljoyd K M.McQueen A A m,Lee B J,et al.Evidence on ecotone concepts fromswitch[J].environmental and anthropogenic ecotonds,2000,11:903-910.
    Loginow,W,Wisniewski,W,Gonest,S,S,Cicscinska,B.Fractionation of organnic carbon on susceptibility to oxidation[J].Polish journal of soil science,1987,20:85-89.
    Lugo A E,Sanchez AJ,Brown S.Land use and organic carbon content of some subtropical soils[J].Plant and Soil,1986,96:185-196.
    Lundquist E J,Jackson L E,Scow K M.Wet-dry cycles affect dissolved organic carbon in two California agricultural soils[J].Soil Biol Biochem,1999,31:1031-1038.
    Manjaiah K M et al. Soil organic carbon srocks,storage profile and microbial biomass under different crop management systems in a tropical agriculture ecosystem[J].Biol,Fertil,Soils,2000,31:273-278.
    Mcdowell W H. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soil[J]. Water Air Soil Pollu,1998,105(1/2):175-182.
    Mendham D S,Connell A M,Grove T S.Change in soil carbon after land clearing or afforestaion in highly weathered lateritic and sandy soils of south western Australia Agric[J].Ecosystem Environment,2003,95:143-156.
    Murty D,Kirsehbauin M U F,Mcmurtrie R E,et al.Dose conversion of forest to agricultural land change soil carbon and nitrogen?A review of the literature[J].Global Change Biol,2002,8:105-123.
    Oesterreich T,Klaus U,Volk M,et al.Environmental fate of amitrole:influence of dissolved organic matter[J].Chemosphere,1999,38:379-392.
    Ogutu Z A.An inverstigation of the influence of human disturbance on selectedsoil nutrients in Narok District,Kenya[J].Environmental Monitoring and Assessment,1999,58:39-60.
    Ohno T,Erich M S.Inhibitory efects of crop residue-derived organic ligands on phosphate adsorption kinetics[J].J Environ Qual,1997,26:889-895.
    Phillips,O L,Malhi,Y,Higuchi,N,et al.Changes in the carbon balance of tropical forests:evidence from long-term plots[J].Science,1998,282:440-442.
    Post,W M,W R Emanuel,P J,Zinke A G Stangenberger.Soil carbon pools and world life zones[J].Nature,1982,298:156-159.
    Powlson D S et al. Measurement of soil microbial provides an early indication of changes in total soil organic matter due to straw incorporation[J].Soil Biol.Biochem,1987,19:159-164
    Powlson D S. The soil microbial biomass:before,beyond and back[J].In:K.Ritz et al.Ed.Beyond the biomass,Wiley,Chichester,1994,3-20
    Smith,P.Carbon sequestration in croplands:the potential in Europe and the global context[J].Europeam Journal of Agronomy,2004,20,229-236.
    Sommer R,Denich M,Vlek P L G.Carbon storage and root penetration in deep soils under small-farmer land-use systems in theEastern Amazon region,Brazil[J].Plant and Soil,2000,219:231-241.
    Thurman E M. Organic Geochemistry of Natural Waters[M]. Boston:Kluwer Academic,1985.
    Watson R T,Bolin B.Land use change and forestry:a special report of the IPCC[M].Cambridge,UK:Cambridge University Press,2000,189-217.
    Wu J,Joergensen RQPommerening B,et al.Measurement of soil microbial biomass C by fumigation-extraction an automated procedure[J].Soil Biol Binehem,1991,20:1167-1169.
    Yano Y,Mcdowell W H,Kinner N.Quantification of biodegradable dissolved organic carbon in soil solution with flow-through bioreactors[J].Soil Science Society of America Journal,1998,62:1556-1564.
    Zhu B,Alva A K.Trace metal and cation transport in a sandy soil with various amendments[J].Soil Sci Soc Am J,1993,57:723-727.
    Zsolnay A,Gorlitz H.Water extraxtable organic mater in arable soils-efects of drought and long-term fertilization[J].Soil Biol Biochem,1994,26:1257-1261.
    曹志平,胡诚,叶钟年,等.不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响[J].生态学报,2006,26(5):1486-1493.
    陈国阶.长江上游退耕还林与天然林保护的问题与对策[J].长江流域资源与环境,2001,10(16):544-548.
    陈亮中,肖文发,唐万鹏,等.三峡库区几种退耕还林模式下土壤有机碳研究[J].林业科学2007,43(4):111-114.
    方精云,刘国华.中国陆地生态系统碳库[M].中国科学技术出版社,1996,251-267.
    方晰,田大伦,项文化,等.杉木人工林凋落物量及其分解过程中碳的释放率[J].中南林学院学报,2005,25(6):12-16.
    冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓[J].生态学报,2006,26(11):3870-3877.
    高亚琴,黄高宝,王晓娟,等.退耕土壤的碳、氮固存及其对CO2、N2O通量的影响[J].生态环境学报,2009,18(3):1071-1076.
    郭锐,汪景宽.李双异.长期地膜覆盖及不同施肥处理对棕壤水溶性有机碳的影响[J].安徽农业科学,2007,35(9):2672-2673
    华娟,赵世伟,张扬,等.云雾山草原区不同植被恢复阶段土壤团聚体活性有机碳分布特征[J].生态学报,2009,29(9):4613-4619
    黄从德,张健,杨万勤,等.四川森林土壤有机碳储量的空间分布特征[J].生态学报,2009,29(3):1217-1225.
    黄辉,陈光水,谢锦升,等.土壤微生物生物量碳及其影响因子研究进展[J].湖北林业科技,2008,4(152):34-41.
    黄雪夏,唐晓红,魏朝富,等.不同利用方式对紫色水稻土水溶性有机碳的影响[J].农业资源与环境科学,2007,23(8):440-443
    黄宇,冯宗炜,汪思龙,等.杉木、火力楠纯林及其混交林生态系统C、N贮量[J].生态学报,2005,25(12):3146-3154.
    姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报,2003,20(1):8-11.
    焦坤,李忠佩.红壤稻田土壤溶解有机碳含量动态及其生物降解特征[J].土壤,2005,37(3):272-276.
    黎荣彬.土壤微生物生物量碳研究进展[J].广东林业科技,2008,24(6):65-69.
    李鸿博,史锟.不同植物过程土壤剖面有机碳含量和含水量研究[J].大连铁道学院学报,2005,26,(1):92-95.
    李家水,袁小华.红壤丘陵区不同土地资源利用方式下有机碳储量的比较研究[J].资源科学,2001,23(5):73-76.
    李克让,陶波,王绍强,等.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002.
    李守中,徐文程,许鹏程.闽侯郊区不同土地利用方式对土壤活性碳的影响[J].安徽农业科学,2008,36(31):13733-13734,13770.
    李新爱,肖和艾,吴金水,等.喀斯特地区不同土地利用方式对土壤有机碳、全氮以及微生物生物量碳和氮的影响[J].应用生态学报,2006,17(10):1827-1831.
    李银科,李小刚,张平良,等.土地利用方式对荒漠土壤有机碳和养分含量的影响[J].甘肃农业大学学报,2007,42(2):103-107.
    李裕元,邵明安,郑纪勇,等.黄土高原北部草地的恢复与重建对土壤有机碳的影响[J].生态学报,2007,27(6):2279-2286.
    李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548-552.
    李志鹏,潘根兴,张旭辉.改种玉米连续3年后稻田土壤有机碳分布和C自然丰度变化关[J].土壤学报,2007,44(2):244-249.
    李忠,巢世军,董敬群.黄土丘陵沙棘人工林地水分及养分规律研究[J].干旱地区农业研究,2008,26(5):115-117.
    刘彬,吴福忠,张健,等.岷江干旱河谷-山地森林交错带震后生态恢复的关键科学技术问题[J].生态学报,2008,28(12):5892-5898.
    刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].水土保持学报,2003,17(3):5-9.
    刘军会,高吉喜,韩永伟,等.北方农牧交错带可持续发展战略与对策[J].中国发展,2008,8(2):89-94.
    刘小虎,许艳华,杨劲峰,等.不同施肥处理对棕壤几个肥力指标的影响[J].土壤通 报,2005,36(4):474-478
    柳敏,宇万太,姜子绍,等.土壤活性有机碳[J].生态学杂志,2006,25(11):1412-1417
    鲁晓阳.岷江上游生态环境治理对策探讨[J].四川环境,1999,18(1):72-74.
    吕超群,孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报,2004,28(5).692-703.
    倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展[J].生态环境,2003,12(1):71-75.
    庞学勇,包维楷,吴宁.森林生态系统土壤可溶性有机质(碳)影响因素研究进展[J].应用与环境生物学报,2009,15(3)390-398.
    彭佩钦,张文菊,童成立,等.洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J].应用生态学报,2005,16(10):1872-1878.
    邱建军,唐华俊.北方农牧交错带耕地土壤有机碳储量变化模拟研究-以内蒙古自治区为例[J].中国生态农业学报,2003,11(4):86-88.
    石培礼,于贵瑞.拉萨河下游河谷不同土地利用方式下土壤有机碳储量格局[J].资源科学,2003,25(5):96-102.
    苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    孙波,张桃林,赵其国.我国中亚热带缓丘区红壤肥力的演化Ⅱ.化学和生物学肥力的演化[J].土壤学报,1999,36(2):203-217.
    唐国勇,黄道友,童成立,等.红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J].应用生态学报,2006,17(3):429-433.
    谭波,张健,杨万勤等.岷江干旱河谷-山地森林交错区典型人工林细根生物量及其碳储量特征[J].四川林业科技,2008,29(2):18-22
    汪吉东,张永春,俞美香,等.不同有机无机肥配合施用对土壤活性有机质含量及pH值的影响[J].江苏农业学报,2007,23(6):573-578.
    汪文霞,周建斌,严德翼,等.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J].水土保持学报,2006,20(6):103-106.
    王春明,包维楷,陈建中,等.岷江上游干旱河谷区褐土不同亚类剖面及养分特征[J].应用与环境生物学报,2003,9(3):230-234,
    王海稳,张金柱,许中旗,等.太行山区不同土地利用方式下土壤碳储量的研究[J].水土保持学报,2007,21(2):90-94.
    王淑平.土壤有机碳和氮的分布及其对气候变化的响应[D].北京,中国科学院植物所生态中心,2003.
    王小利,苏以荣,黄道友,等.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响[J].中国农业科学,2006,39(4):750-757.
    卫金困,吴强.马丽.林地土壤pH值、磷、钾、有机质和水含量具有可变和可控性[J].山西林业科技,2002,12(4):26-30.
    吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    吴建国,徐德应.土地利用变化对土壤有机碳的影响-理论、方法和实践[M].北京:中国林业出版社,2004,72-14.
    吴金水,肖和艾.土壤有机质循环及含量变化预测,中国土壤学会第九次全国代表大会论文集-迈向21世纪的土壤科学[C].长沙:湖南科学技术出版社1999,,61-66
    吴金水,肖和艾.土壤微生物生物量碳的表观周转时间测定方法[J].土壤学报,2004,41(3):401-407
    吴金水.土壤有机质及其周转动力学.中国南方土壤肥力及栽培作物施肥[c].北京:科学出版社,1991,28-62.
    武晓红.林地土壤肥力及理化性质研究[J].林业科技,2008,1:15-16.
    徐德应,傅懋毅,孙雪忠,等.北亚热带土地利用变化对土壤有机碳垂直分布特征及储量的影响[J].林业科学研究,2007,20(6):744-749.
    徐佩,王玉宽,邓玉林.岷江流域不同土地利用方式下紫色土有机碳储量特征[J].应用与环境生物学报,2007,13(2):205-208.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.
    许泉,芮雯奕,何航,等.不同利用方式下中国农田土壤有机碳密度特征及区域差异[J].中国农业科学,2006,39(12):2505-2510.
    许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报,2005,19(6):193-200.
    许自成,王林,肖汉乾.湖南烟区土壤pH分布特点及其与土壤养分的关系[J].中国生态农业学报,2008,16(4):830-834.
    阎顺国,田贵仓,朱兴运,等.河西盐渍化草地盐分组成及PH与有机质关系的通径分析[J].草业科学,1992,9(1):31-34.
    杨万勤,张健,胡庭兴,等.森林土壤生态学[M].四川科学技术出版社,2006.
    杨玉盛,郭剑芬,林鹏,等.格氏栲天然林与人工林枯枝落叶层碳库及养分库[J].生态学报,2004,24(2):359-367.
    俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-422
    宇万太,姜子绍,李新宇,等.不同土地利用方式对潮棕壤有机碳含量的影响[J].应用生态学报,2007,18(12):2760-2764.
    宇万太,马强,赵鑫,等.不同土地利用类型下土壤活性有机碳库的变化[J].生态学杂志,2007,26(12):2013—2016
    袁颖红,李辉信,黄欠如,等.长期施肥对红壤性水稻土活性碳的影响[J].生态环境2007,16(2):554-559
    张剑,汪思龙,王清奎,等.不同森林植被下土壤活性有机碳含量及其季节变化[J].中国生态农业学报,2009,17(1):41-47.
    张金波,宋长春,杨文燕.土地利用方式对土壤水溶性有机碳的影响[J].中国环境科学,2005,25(3):343-347.
    张履勤,章明奎.林地与农地转换过程中红壤有机碳、氮和磷库的演变[J].浙江林学院学报,2006,23(1):75-79.
    张平良,李小刚,李银科.高寒农牧交错带植被恢复对土壤有机碳、全氮含量的影响[J].甘肃农业大学学报,2007,42(2):98-102.
    张心昱,陈利顶,傅伯杰,等.不同农业土地利用方式和管理对土壤有机碳的影响.以北京市延庆盆地为例[J].生态学报,2006,26(10):3198-3204.
    张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报,2006,17(11):2029-2033.
    周程爱,张于光,肖烨,等.土地利用变化对川西米亚罗林土壤活性碳库的影响[J].生态学报,2009,8(29):4542-4547.
    周焱,徐宪根,阮宏华,等.武夷山不同海拔土壤水溶性有机碳的含量特征[J].南京林业大学学报(自然科学版),2009,33(4):48-52.
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    朱芬萌,安树青,关保华,等.生态交错带及其研究进展[J].生态学报,2007,27(7):3032-3041.
    朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究,2006,19(4):523-526.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.